Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T07:48:33.519Z Has data issue: false hasContentIssue false

1 - Variability of the Oceans

Published online by Cambridge University Press:  13 January 2021

Get access

Summary

The oceans have a huge capability to store, release, and transport heat, water, and various chemical species on timescales from seasons to centuries. Their transports affect global energy, water, and biogeochemical cycles and are crucial elements of Earth’s climate system. Ocean variability, as represented, for example, by sea surface temperature (SST) variations, can result in anomalous diabatic heating or cooling of the overlying atmosphere, which can in turn alter atmospheric circulation in such a way as to feedback on ocean thermal and current structures to modify the original SST variations. Ocean–atmosphere interactions in one ocean basin can also influence remote regions via interbasin teleconnections that can trigger responses having both local and far-field impacts. This chapter highlights the defining aspects of the climate in individual ocean basins, including mean states, seasonal cycles, interannual-to-interdecadal variability, and interactions with other basins. Key components of the global and tropical ocean observing system are also described.

Type
Chapter
Information
Interacting Climates of Ocean Basins
Observations, Mechanisms, Predictability, and Impacts
, pp. 1 - 53
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K., Swift, J. H., Carmack, E. C. (1985). Thermohaline circulation in the Arctic Mediterranean Seas. Journal of Geophysical Research, 90(C3), 48334846.Google Scholar
Abernathey, R., Mazloff, M., Shuckburgh, E. (2010). Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. Journal of Physical Oceanography, 40, 170184.Google Scholar
Alexander, M. A., Deser, C. (1995). A mechanism for the recurrence of wintertime midlatitude SST anomalies. Journal of Physical Oceanography, 25, 122137.2.0.CO;2>CrossRefGoogle Scholar
Alexander, M. A., Blade, I., Newman, M., Lanzante, J. R., Lau, N.-C., Scott, J. D. (2002). The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans, Journal of Climate, 15, 22052231.Google Scholar
Alexander, M. A., Vimont, D. J., Chang, P., Scott, J. D. (2010). The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. Journal of Climate, 23, 28852901.Google Scholar
Alexander, M. A., Kilbourne, K. H., Nye, J. A. (2014). Climate variability during warm and cold phases of the Atlantic Multidecadal Oscillation (AMO) 1871–2008. Journal of Marine Systems, 133, 1426.CrossRefGoogle Scholar
Alory, G., Wijffels, S., Meyers, G. (2007). Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophysical Research Letters, 34(2), L02606, doi:10.1029/ 2006GL028044.CrossRefGoogle Scholar
Alory, G., Meyers, G. (2009). Warming of the upper equatorial Indian Ocean and changes in the heat budget (1960–99). Journal of Climate, 22(1), 93113.CrossRefGoogle Scholar
Amaya, D. J., Bond, N. E., Miller, A. J., DeFlorio, M. J. (2016). The evolution and known atmospheric forcing mechanisms behind the 2013–2015 North Pacific warm anomalies. US CLIVAR Variations, 14(2), US CLIVAR, Washington, DC, 16, https://usclivar.org/newsletter/newsletters.Google Scholar
Amaya, D. J., DeFlorio, M. J., Miller, A. J., Xie, S.-P. (2017). WES feedback and the Atlantic Meridional Mode: Observations and CMIP5 comparisons. Climate Dynamics, 49(5–6), 16651679.Google Scholar
An, S.-I. (2004). A dynamical linkage between the monopole and dipole modes in the tropical Indian Ocean. Theoretical and Applied Climatology, 78, 195201.Google Scholar
Anderson, B. T. (2004). Investigation of a large-scale mode of ocean atmosphere variability and its relation to tropical Pacific sea surface temperature anomalies. Journal of Climate, 17, 10894098.Google Scholar
Ando, K., Kuroda, Y., Yosuke, F. Fukuda, T., Hasegawa, T., Horii, T., Ishihara, Y., Kashino, Y., Masumoto, Y., Mizuno, K., Nagura, M., Ueki, I. (2017). Fifteen years progress of the TRITON array in the Western Pacific and Eastern Indian Oceans. Journal of Oceanography, 73(4), 403426.Google Scholar
Annamalai, H., Murtugudde, R., Potemra, J., et al. (2003). Coupled dynamics over the Indian Ocean: Spring initiation of the Zonal Mode. Deep Sea Research Part II: Topical Studies in Oceanography, 50, 23052330.Google Scholar
Annamalai, H., Xie, S. P., McCreary, J. P., et al. (2005). Impact of Indian Ocean sea surface temperature on developing El Niño. Journal of Climate, 18, 302319.CrossRefGoogle Scholar
Aoki, S., Rintoul, S. R., Ushio, S., Watanabe, S., Bindoff, N. L. (2005). Freshening of the Adelie Land Bottom Water near 140°E. Geophysical Research Letters, 32, L23601, doi:10.1029/2005GL024246.Google Scholar
Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., Newsom, E. R. (2016). Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9, 549554.Google Scholar
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., Ingvaldsen, R. (2012). Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate, 25, 47364743.CrossRefGoogle Scholar
Årthun, M.Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H. L., Keenlyside, N. S. (2017). Skillful prediction of northern climate provided by the ocean. Nature Communications, 8, doi: 10.1038/ncomms16152.Google Scholar
Årthun, M., Kolstad, E. W., Eldevik, T., Keenlyside, N. S. (2018). Time scales and sources of European temperature variability. Geophysical Research Letters, 45, 35973604.CrossRefGoogle Scholar
Årthun, M, Eldevik, T., Smedsrud, L. H. (2019). The role of Atlantic heat transport in future Arctic winter sea ice variability and predictability. Journal of Climate, 32, 33273341, doi.org/10.1175/JCLI-D-18-0750.1.CrossRefGoogle Scholar
Ashok, K., Chan, W. L., Motoi, T., et al. (2004). Decadal variability of the Indian Ocean dipole. Geophysical Research Letters, 31, L24207, doi:10.1029/2004GL021345.Google Scholar
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research, 112, C11007. doi.org/10.1029/2006JC003798.Google Scholar
Baldwin, M. P., Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science, 244, 581584.Google Scholar
Behera, S. K., Krishnan, R., Yamagata, T. (1999). Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophysical Research Letters, 26, 30013004.CrossRefGoogle Scholar
Behera, S. K., Yamagata, T. (2003). Influence of the Indian Ocean Dipole on the southern oscillation. Journal of the Meteorological Society of Japan, 81, 169177.Google Scholar
Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3), 163172.2.3.CO;2>CrossRefGoogle Scholar
Björk, G., Söderkvist, J. (2002). Dependence of the Arctic Ocean ice thickness distribution on the poleward energy flux in the atmosphere. Journal of Geophysical Research, 107(C10), 3173, doi:10.1029/2000JC000723.Google Scholar
Blindheim, J., Rey, F., (2004). Water-mass formation and distribution in the Nordic Seas during the 1990s. ICES Journal of Marine Science, 61, 846863.CrossRefGoogle Scholar
Bond, N. A., Cronin, M. F., Freeland, H., Mantua, N. (2015). Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters, 42, 34143420.Google Scholar
Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S., Schwarzkoph, F. U. (2008). The response of the Antarctic Circumpolar Current to recent climate change, Nature Geoscience, 1, 864869.Google Scholar
Bourlès, B., Lumpkin, R., McPhaden, M. J., Hernandez, F., Nobre, P., Campos, E., Yu, L., Planton, S., Busalacchi, A., Moura, A. D., Servain, S., Trotte, J. (2008). THE PIRATA PROGRAM: History, accomplishments, and future directions. Bulletin of the American Meteorological Society, 89, 11121125.CrossRefGoogle Scholar
Bringedal, C.Eldevik, T., Skagseth, Ø., Spall, M., Østerhus, S. (2018). Structure and forcing of observed exchanges across the Greenland–Scotland Ridge. Journal of Climate, 31, 98819901.Google Scholar
Bruce, J. (1973). Equatorial undercurrent in the western Indian Ocean during the southwest monsoon. Journal of Geophysical Research, 78, 63866394.Google Scholar
Buckley, M. W., Marshall, J. (2016). Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Reviews of Geophysics, 54(1), 563.Google Scholar
Cai, W., Meyers, G., Shi, G. (2005). Transmission of ENSO signal to the Indian Ocean. Geophysical Research Letters, 32, 347354.CrossRefGoogle Scholar
Cai, W. (2006). Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophysical Research Letters, 33. L03712, doi:10.1029/2005GL024911.CrossRefGoogle Scholar
Cai, W. Cowan, T. (2007). Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: Ozone depletion versus greenhouse forcing. Journal of Climate, 20, 681693.Google Scholar
Cai, W., Cowan, T., Sullivan, A. (2009). Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophysical Research Letters, 36, 245253.Google Scholar
Cai, W., Qiu, Y. (2013). An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean dipole. Journal of Climate, 26, 28802890.Google Scholar
Cai, W., Wu, L., Lengaigne, M. Li, T., McGregor, S., Kug, J.-S., Yu, J.-Y., Stuecker, M. F., Santoso, A., Li, X., Ham, Y.-G., Chikamoto, Y., Ng, B., McPhaden, M. J., Du, Y., Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside, N. S., Lin, X., Luo, J.-J., Martín del Rey, M., Ruprich-Robert, Y., Wang, G., Xie, S.-P., Yang, Y., Kang, S. M., Choi, J.-Y., Gan, B., Kim, G.-I. Kim, C.-E., Kim, S., Kim, J.-H., Chang, P., (2019). Pan-tropical climate interactions. Science, 36(6430), eaav4236.Google Scholar
Campos, E. J. D., Franca, C. A. S., Vicentini Neto, F. L., Nonnato, L. V. Piola, A. R. L Barreira, L. R. Cole, R. Nobre, P., Trote-Duha, J. (2014). Atlas-B: Development and testing of a Brazilian deep-ocean moored buoy for climate research. Journal of Shipping and Ocean Engineering, 2, 1120.Google Scholar
Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J.-Y., et al. (2015). Understanding ENSO diversity. Bulletin of the American Meteorological Society, 96, 921938.Google Scholar
Chang, P., Ji, L., Li, H. (1997). A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385(6616), 516.Google Scholar
Chang, P., Zhang, L., Saravanan, R., Vimont, D. J., Chiang, J. C. H., Ji, L., Seidel, H., Tippett, M. K. (2007). Pacific meridional mode and El Niño-Southern Oscillation. Geophysical Research Letters, 34, L16608, doi:10.1029/2007GL030302.Google Scholar
Chapman, W. L., Walsh, J. E. (1993). Recent variations of sea ice and air temperature in high latitudes. Bulletin of the American Meteorological Society, 74, 3347.Google Scholar
Chen, G., Han, W., Li, Y., Wang, D., McPhaden, M. J. (2015). Seasonal-to-interannual time-scale dynamics of the equatorial undercurrent in the Indian Ocean. Journal of Physical Oceanography, 45(6), 15321553.Google Scholar
Chen, G. X., Han, W. Q., Li, Y. L., Wang, D. (2016). Interannual variability of equatorial eastern Indian Ocean upwelling: Local versus remote forcing. Journal of Physical Oceanography, 46, 789807.CrossRefGoogle Scholar
Chen, Z., Du, Y., Wen, Z., Wu, R. Xie, , S.-P. (2019). Evolution of south tropical Indian Ocean warming and the climatic impacts following strong El Niño events, Journal of Climate, 32, 73297347.Google Scholar
Chen, Z., Wen, Z., Wu, R., Lin, X., Wang, J. (2016). Relative importance of tropical SST anomalies in maintaining the western north Pacific anomalous anticyclone during El Niño to la Niña transition years. Climate Dynamics, 46, 10271041.Google Scholar
Chen, Z., Wen, Z., Wu, R., Du, Y. (2017). Roles of tropical SST anomalies in modulating the western north pacific anomalous cyclone during strong La Niña decaying years. Climate Dynamics, 49, 633647.Google Scholar
Chiang, J. C., Vimont, D. J. (2004). Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. Journal of Climate, 17 , 41434158.Google Scholar
Chung, C. E., Ramanathan, V. (2006). Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. Journal of Climate, 19(10), 20362045.CrossRefGoogle Scholar
Ciasto, L. M., Thompson, D. W. J. (2008). Observations of largescale ocean–atmosphere interaction in the Southern Hemisphere. Journal of Climate, 21, 12441259.CrossRefGoogle Scholar
Clement, A., Bellomo, K., Murphy, L. N., Cane, M. A., Mauritsen, T., Rädel, G., Stevens, B. (2015). The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science, 350(6258), 320324.Google Scholar
Comiso, J. C., Nishio, F. (2008). Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research, 113, C02S07, doi:10.1029/2007JC004257.Google Scholar
Comiso, J. C. (2010). Variability and trends of the global sea ice cover. Sea Ice, 2nd edn., Wiley-Blackwell, Oxford, UK, 205246.Google Scholar
Conway, D. (2002). Extreme rainfall events and lake level changes in East Africa: Recent events and historical precedents. Advances in Global Change Research, 12, 6392.Google Scholar
Cowan, T., Cai, W., Purich, A., Rotstayn, L., England, M. H. (2013). Forcing of anthropogenic aerosols on temperature trends of the sub-thermocline southern Indian Ocean. Scientific Reports, 3, 2245.Google Scholar
Cresswell, G. R., Golding, T. J. (1980). Observations of a south-flowing current in the southeastern Indian Ocean: Deep sea research part A. Oceanographic Research Papers, 27(6), 449466.CrossRefGoogle Scholar
Curry, R., Mauritzen, C. (2005). Dilution of the Northern North Atlantic Ocean in recent decades. Science, 308, 17721774.Google Scholar
Danabasoglu, G., Yeager, S. G., Kwon, Y. O., Tribbia, J. J., Phillips, A. S., Hurrell, J. W. (2012). Variability of the Atlantic meridional overturning circulation in CCSM4. Journal of Climate, 25(15), 51535172.Google Scholar
Delman, A. S., Sprintall, J., McClean, J. L., Talley, L. D. (2016). Anomalous Java cooling at the initiation of positive Indian Ocean Dipole events. Journal of Geophysical Research-Oceans, 121, 58055824.CrossRefGoogle Scholar
Delworth, T., Manabe, S., Stouffer, R. J. (1993). Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. Journal of Climate, 6(11), 19932011.Google Scholar
Delworth, T. L., Greatbatch, R. J. (2000). Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. Journal of Climate, 13(9), 14811495.Google Scholar
Delworth, T. L., Mann, M. E. (2000). Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dynamics, 16(9), 661676.Google Scholar
Delworth, T. L., Zeng, F. (2016). The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. Journal of Climate, 29(3), 941962.Google Scholar
Deppenmeier, A. L., Haarsma, R. J., Hazeleger, W. (2016). The Bjerknes feedback in the tropical Atlantic in CMIP5 models. Climate Dynamics, 47(7–8), 26912707.CrossRefGoogle Scholar
Deser, C., Blackmon, M. L. (1993). Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. Journal of Climate, 6(9), 17431753.Google Scholar
Deser, C., Phillips, A. S., Alexander, M. A. (2010). Twentieth century tropical sea surface temperature trends revisited. Geophysical Research Letters, 37(10), L10701, doi:10.1029/2010GL043321.Google Scholar
Dickson, R. R., Brown, J. (1994). The production of North Atlantic deep water: Sources, rates and pathways. Journal of Geophysical Research, 99, 1231912342.Google Scholar
Di Lorenzo, E., Mantua, N. (2016). Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6 , 10421047.Google Scholar
Dieppois, B., Durand, A., Fournier, M., Diedhiou, A., Fontaine, B., Massei, N., Nouaceur, N., Sebag, Z., D. (2015). Low-frequency variability and zonal contrast in Sahel rainfall and Atlantic sea surface temperature teleconnections during the last century. Theoretical and Applied Climatology, 121(1–2), 139155.Google Scholar
Ding, Q., Steig, E. J., Battisti, D. S., Küttell, M. (2011). Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geoscience, 4, 398403.Google Scholar
Ding, H., Keenlyside, N. S., Latif, M. (2012). Impact of the equatorial Atlantic on the El Niño southern oscillation. Climate Dynamics, 38(9–10), 19651972.Google Scholar
Dippe, T., Greatbatch, R. J., Ding, H. (2017). On the relationship between Atlantic Niño variability and ocean dynamics. Climate Dynamics, 51 (1–2), 116.Google Scholar
Domingues, C. M., Maltrud, M. E., Wijffels, S. E., Church, J. A., Tomczak, M. (2007). Simulated Lagrangian pathways between the Leeuwin current system and the upper-ocean circulation of the southeast Indian Ocean. Deep-Sea Research Part II, 54(8), 797817.Google Scholar
Dong, L., Zhou, T. (2014). The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the twentieth century: Competing forcing roles of GHGs and anthropogenic aerosols. Journal of Climate, 27(9), 33483362.Google Scholar
Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., Chereskin, T. K. (2016). Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophysical Research Letters, 43, 1176011767.Google Scholar
Du, Y., Xie, S.-P. (2008). Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophysical Research Letters, 35(8), doi:10.1029/2008GL033631.CrossRefGoogle Scholar
Du, Y., Xie, S.-P., Huang, G., et al. (2009). Role of air-sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. Journal of Climate, 22, 20232038.Google Scholar
Du, Y., Yang, L., Xie, S.-P. (2011). Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño. Journal of Climate, 24, 315322.Google Scholar
Du, Y., Cai, W. J., Wu, Y. L. (2013). A new type of the Indian Ocean Dipole since the mid-1970s. Journal of Climate, 26, 959972.Google Scholar
Durack, P. J., Wijffels, S. E., Matear, R. J. (2012). Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458.Google Scholar
Eisenman, I., Meier, W. N., Norris, J. R. (2014). A spurious jump in the satellite record: Has Antarctic sea ice expansion been overestimated? The Cryosphere, 8, 12891296.Google Scholar
Eldevik, T., Nilsen, J. E. Ø., Iovino, D., Olsson, K. A., Sandø, A. B., Drange, H. (2009). Observed sources and variability of Nordic seas overflow. Nature Geoscience, 2, 406410.Google Scholar
Eldevik, T., Nilsen, J. E. Ø. (2013). The Arctic–Atlantic thermohaline circulation. Journal of Climate, 26, 86988705.Google Scholar
Eldevik, T., Risebrobakken, B., Bjune, A. E., Andersson, C., Birks, H. J. B., Dokken, T. M., Drange, H., Glessmer, M. S., Li, C., Nilsen, J. E. Ø., Otterå, O. H., Richter, K. Skagseth, Ø. (2014). A brief history of climate: The northern seas from the Last Glacial Maximum to global warming. Quaternary Science Reviews, 106, 225246.Google Scholar
Enfield, D. B., Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. Journal of Geophysical Research-Oceans, 102, 929945.Google Scholar
Enfield, D. B., Mestas‐Nuñez, A. M., Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophysical Research Letters, 28(10), 20772080.Google Scholar
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., Santoso, A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4, 222227.CrossRefGoogle Scholar
Eriksen, C. (1987). A review of PEQUOD. In Katz, E. J. and Witte, J. M. (eds.) Further Progress in Equatorial Oceanography. Fort Lauderdale, FL: Nova University Press, pp. 2946.Google Scholar
Fan, M., Schneider, E. K. (2012). Observed decadal North Atlantic tripole SST variability. Part I: Weather noise forcing and coupled response. Journal of the Atmospheric Sciences, 69(1), 3550.Google Scholar
Feng, M., Meyers, G. (2003). Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean Dipole. Deep Sea Research Part II: Topical Studies in Oceanography, 50, 22632284.CrossRefGoogle Scholar
Fogt, R. L., Bromwich, D. H. (2006). Decadal variability of the ENSO teleconnection to the high latitude South Pacific governed by coupling with the Southern Annular Mode. Journal of Climate, 19, 979997.Google Scholar
Foltz, G. R., McPhaden, M. J. (2010). Interaction between the Atlantic meridional and Niño modes. Geophysical Research Letters, 37, L18604.Google Scholar
Foltz, G. R., Brandt, P., Richter, I., Rodríguez-Fonseca, B., et al. (2019). The Tropical Atlantic Observing System. Frontiers in Marine Sciences, 6, doi:10.3389/fmars.2019.00206.Google Scholar
Francis, J. A., Vavrus, S. J. (2015). Evidence for a wavier jet stream in response to rapid Arctic warming. Environment Research Letters, 10, 014005.Google Scholar
Frierson, D. M., Hwang, Y. T., Fučkar, N. S., Seager, R., Kang, S. M., Donohoe, A., Battisti, D. S. (2013). Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nature Geoscience, 6(11), 940944.Google Scholar
Furevik, T., Nilsen, J. Ø. (2005). Large‐scale atmospheric circulation variability and its impacts on the Nordic Seas ocean climate: A review. In Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berge, W. (eds.) The Nordic Seas: An Integrated Perspective, AGU Monograph, vol. 158. Washington, DC: American Geophysical Union, pp. 105136.Google Scholar
Furue, R., Mccreary, J. P., Benthuysen, J., Phillips, H. E., Bindoff, N. L. (2013). Dynamics of the leeuwin current: Part 1. Coastal flows in an inviscid, variable-density, layer model. Dynamics of Atmospheres and Oceans, 63, 2459.Google Scholar
Fyfe, J. C., Saenko, O. A. (2006). Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophysical Research Letters, 33. L06701, doi:10.1029/2005GL025332.Google Scholar
Ganachaud, A., Wunsch, C. (2000). Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457.Google Scholar
García-Herrera, R., Calvo, N., Garcia, R. R., Giorgetta, M. A. (2006). Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. Journal of Geophysical Research, 111, D06101, doi:10.1029/2005JD006061.Google Scholar
García-Serrano, J., Losada, T., Rodríguez-Fonseca, B. (2011). Extratropical atmospheric response to the Atlantic Niño decaying phase. Journal of Climate, 24(6), 16131625.Google Scholar
Gentemann, C. L., Fewings, M. R., García-Reyes, M. (2017). Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophysical Research Letters, 44, 312319.CrossRefGoogle Scholar
Gille, S. T. (2002). Warming of the Southern Ocean since the 1950s. Science, 295, 12751277.Google Scholar
Gille, S. T. (2008). Decadal-scale temperature trends in the Southern Hemisphere ocean. Journal of Climate, 21(18), 47494765.Google Scholar
Gille, S. T. (2014). Meridional displacement of the Antarctic Circumpolar Current. Philosophical Transactions of the Royal Society. A372, 20130273.Google Scholar
Glessmer, M. S.Eldevik, T., Våge, Nilsen, K., Behrens, J. E. Ø., E. (2014). Atlantic origin of observed and modelled freshwater anomalies in the Nordic Seas. Nature Geoscience, 7, 801805.CrossRefGoogle Scholar
Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., Gray, W. M. (2001). The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293(5529), 474479.Google Scholar
Gordon, A. L. Baker, F. W. G. (eds.) (1969). Oceanography: Volume 46 in Annals of the International Geophysical Year. Oxford: Pergamon Press.Google Scholar
Gordon, A. L. (1986). Interocean exchange of thermocline water. Journal of Geophysical Research-Oceans, 91(C4), 50375046.Google Scholar
Gordon, A. L. (2005). The Indonesian seas. Oceanography, 18(4), 1427.Google Scholar
Griesel, A., Gille, S. T., Sprintall, J., McClean, J. L., LaCasce, J. H., Maltrud, M. E. (2010). Isopycnal diffusivities in the Antarctic Circumpolar Current inferred from Lagrangian floats in an eddying model. Journal of Geophysical Research, 115, C06006, doi:10.1029/2009JC005821.Google Scholar
Gu, D., Philander, S. G. H. (1997). Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807.Google Scholar
Guan, Z. Y., Yamagata, T. (2003). The unusual summer of 1994 in East Asia: IOD teleconnections. Geophysical Research Letters, 30, doi:10.1029/2002GL016831.Google Scholar
Haarsma, R. J., Hazeleger, W. (2007). Extratropical atmospheric response to equatorial Atlantic cold tongue anomalies. Journal of Climate, 20(10), 20762091.Google Scholar
Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., Steur, L., Stewart, K. D., Woodgate, R. (2015). Arctic freshwater export: Status, mechanisms, and prospects. Global Planetary Change, 125, 1335.Google Scholar
Han, W. Q., Vialard, J., McPhaden, M. J., Lee, T., Matsumoto, Y., Feng, M., de Ruijter, W. P. M. (2014). Indian Ocean decadal variability: a review. Bulletin of the American Meteorological Society, 95(11), 16791703.Google Scholar
Hansen, B., Østerhus, S. (2000). North Atlantic–Nordic Seas exchanges. Progress in Oceanography, 45, 109208.Google Scholar
Hansen, B., Turrell, W. R., Østerhus, S. (2001). Decreasing overflow from the Nordic seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature, 411, 928930.Google Scholar
Hartmann, D. L. (2015). Pacific sea surface temperature and the winter of 2014. Geophysical Research Letters, 42, 18941902.Google Scholar
Hayes, S. P., Behringer, D. W., Blackmon, M., Hansen, D. V., Lau, N.-C.; Leetmaa, A., Philander, S. G. H., Pitcher, E. J., Ramage, C. S., Rasmusson, E. M., Sarachik, E. S., Taft, B. A. (1986). The Equatorial Pacific Ocean Climate Studies (EPOCS) plans: 1986–1988, EOS rans. AGU, 67, 442444.Google Scholar
Hayes, S. P., Mangum, L. J., Picaut, J., Sumi, A., Takeuchi, K. (1991). TOTA TAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bulletin of the American Meteorological Society, 72, 339347.Google Scholar
Haumann, F. A., Gruber, N., Münnich, M., Frenger, I., Kern, S. (2016). Sea ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992.Google Scholar
Helland-Hansen, B., Nansen, F. (1909). The Norwegian Sea: Its physical oceanography based upon the Norwegian researchers 1900–1904. In Hjort, J. (ed.), Report on Norwegian Fishery and Marine Investigations, II. Oslo: The Royal Department of Trade, Navigation and Industries.Google Scholar
Hellerman, S., Rosenstein, M. (1983). Normal monthly wind stress over the world ocean with error estimates. Journal of Physical Oceanography, 13(7), 10931104.Google Scholar
Hirst, A. C., Godfrey, J. (1993). The role of Indonesian throughflow in a global ocean GCM. Journal of Physical Oceanography, 23, 10571086.Google Scholar
Hu, K. M., Huang, G., Huang, R. H. (2011). The impact of tropical Indian Ocean variability on summer surface air temperature in China. Journal of Climate, 24, 53655377.Google Scholar
Hu, K. M., Huang, G., Wu, R. (2013). A strengthened influence of ENSO on August high temperature extremes over the southern Yangtze River valley since the late 1980s. Journal of Climate, 26, 22052221.Google Scholar
Hu, Z.-Z., Kumar, A., Jha, B., Zhu, J., Huang, B. (2017). Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–16. Journal of Climate, 30, 689702.Google Scholar
Huang, G., Hu, K. M., Xie, S.-P. (2010). Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. Journal of Climate, 23, 52945304CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269(5224), 676679.Google Scholar
IPCC (2013). Summary for Policymakers. In Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 329.Google Scholar
Iskandar, I., Masumoto, Y., Mizuno, K. (2009). Subsurface equatorial zonal current in the eastern Indian Ocean. Journal of Geophysical Research, 114, C06005.Google Scholar
Izumo, T., Montegut, C. B., Luo, J.-J., Behera, S. K., Masson, S., Yamagata, T. (2008). The role of the Western Arabian Sea upwelling in Indian monsoon rainfall variability. Journal of Climate, 21, 56035623.Google Scholar
Izumo, T., Vialard, J., Lengaigne, J., de Boyer Montegut, M., Behera, C., Luo, S. K., Cravatte, J.-J., Masson, S., Yamagata, S., T. (2010). Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nature Geoscience, 3, 168172.Google Scholar
Jones, J. M., Gille, S. T., Goosse, H., Abram, N. J., Canziani, P. O., Charman, D. J., Clem, K. R., Crosta, X., de Lavergne, C., Eisenman, I., England, M. H., Fogt, R. L., Frankcombe, R. M., Marshall, G. J., Masson-Delmotte, V., Morrison, A. K., Orsi, A. J., Raphael, M. N., Renwick, J. A., Schneider, D. P., Simpkins, G. R., Steig, E. J., Stenni, B., Swingedouw, D., Vance, T. R. (2016). Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change, 6, 917926.Google Scholar
Jouanno, J., Hernandez, O., Sanchez-Gomez, E. (2017). Equatorial Atlantic interannual variability and its relation to dynamic and thermodynamic processes. Earth System Dynamics, 8(4), 10611069.CrossRefGoogle Scholar
Kao, H. Y., Yu, J.-Y. (2009). Contrasting Eastern-Pacific and Central-Pacific types of ENSO. Journal of Climate, 22, 615632.Google Scholar
Karcher, M. J., Gerland, S., Harms, I. H., Iosjpe, M., Heldal, H. E., Kershaw, P. J., Sickel, M. (2004). The dispersion of 99Tc in the Nordic Seas and the Arctic Ocean: A comparison of model results and observations. Journal of Environmental Radioactivity, 74(1–3), 185198.Google Scholar
Karoly, D. J. (1989). Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. Journal of Climate, 2, 12391252.Google Scholar
Kawase, H., Abe, M., Yamada, Y., Takemura, T., Yokohata, T., Nozawa, T. (2010). Physical mechanism of long‐term drying trend over tropical North Africa. Geophysical Research Letters, 37(9), L09706, doi:10.1029/2010GL043038.Google Scholar
Keenlyside, N. S., Latif, M. (2007). Understanding equatorial Atlantic interannual variability. Journal of Climate, 20(1), 131142.Google Scholar
Kerr, R. A. (2000). A North Atlantic climate pacemaker for the centuries. Science, 288(5473), 19841985.Google Scholar
Kessler, W. S., Rothstein, L. M., Chen, D. (1998). The annual cycle of SST in the eastern tropical Pacific, diagnosed in an ocean GCM. Journal of Climate, 11, 777799.Google Scholar
Kiladis, G. N., von Storch, H., van Loon, H. (1989). Origin of the South Pacific Convergence Zone. Journal of Climate, 2, 11851195.Google Scholar
Kim, S. T., Yu, J.-Y. (2012). The two types of ENSO in CMIP5 models, Geophysical Research Letters, 39, L11704, doi:10.1029/2012GL05200.Google Scholar
Klein, S. A., Soden, B. J, Lau, N.-C. (1999). Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate, 12: 917932.Google Scholar
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., Mann, M. E. (2005). A signature of persistent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters, 32(20), L20708, doi:10.1029/2005GL024233.Google Scholar
Kosaka, Y., Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403407.Google Scholar
Kossin, J. P., Vimont, D. J. (2007). A more general framework for understanding Atlantic hurricane variability and trends. Bulletin of the American Meteorological Society, 88(11), 17671782.Google Scholar
Kostov, Y., Armour, K. C., Marshall, J. (2014). Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophysical Research Letters, 41(6), 21082116.Google Scholar
Kostov, Y., Marshall, J., Hausmann, U., Armour, K. C., Ferreira, D., Holland, M. M. (2016). Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Climate Dynamics, 48, 15951609.Google Scholar
Kucharski, F., Bracco, A., Yoo, J. H., Molteni, F. (2007). Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: The “weakening” of the 1980s and 1990s. Journal of Climate, 20(16), 42554266.Google Scholar
Kucharski, F., Bracco, A., Yoo, J. H., Molteni, F. (2008). Atlantic forced component of the Indian monsoon interannual variability. Geophysical Research Letters, 35(4), L04706, doi:10.1029/2007GL033037.Google Scholar
Kucharski, F., Bracco, A., Yoo, J. H., Tompkins, A. M., Feudale, L., Ruti, P., Dell'Aquila, A. (2009). A Gill–Matsuno‐type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quarterly Journal of the Royal Meteorological Society, 135(640), 569579.Google Scholar
Kucharski, F., Ikram, F., Molteni, F., Farneti, R., Kang, I. S., No, H. H., Mogensen, K. (2016). Atlantic forcing of Pacific decadal variability. Climate Dynamics, 46(7–8), 23372351.Google Scholar
Kug, J. S., Li, T., An, S.-I., Kang, I. S., Luo, J. J., Masson, S., Yamagata, T. (2006). Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophysical Research Letters, 33, L09710, doi:10.1029/2005GL024916.Google Scholar
Kug, J.-S., Jin, F.-F., An, S.-I. (2009). Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. Journal of Climate, 22, 14991515.Google Scholar
Kwok, R., Comiso, J. C. (2002). Spatial patterns of variability in Antarctic surface temperature: Connections to the South Hemisphere annular mode and the Southern Oscillation. Geophysical Research Letters, 29, L1705, 10.1029/2002GL015415 .Google Scholar
Lambert, E., Bars, D. L., de Ruijter, W. P. (2016). The connection of the Indonesian Throughflow, South Indian Ocean Countercurrent and the Leeuwin Current. Ocean Science, 12(3), 771780.Google Scholar
Larkin, N. K., Harrison, D. E. (2005). On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophysical Research Letters, 32, L13705, doi:10.1029/2005GL022738.Google Scholar
Latif, M., Barnett, T. P. (1994). Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637.Google Scholar
Lau, N. C., Nath, M. J. (1996). The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. Journal of Climate, 9, 20362057.2.0.CO;2>CrossRefGoogle Scholar
Lee, T. (2004). Decadal weakening of the shallow overturning circulation in the South Indian Ocean. Geophysical Research Letters, 31(18), L18305, doi.org/10.1029/2004GL020884.Google Scholar
Lee, T., McPhaden, M. J. (2008). Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophysical Research Letters, 35, L01605, doi:10.1029/2007GL032419.Google Scholar
Lee, T., McPhaden, M. J. (2010). Increasing intensity of El Niño in the central-equatorial Pacific. Geophysical Research Letters, 37, L14603, doi.org/10.1029/2010GL044007.Google Scholar
Lee, S.-K., Park, W., Baringer, M. O., Gordon, A. L., Huber, B., Liu, Y. (2015). Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8(6), 445449.Google Scholar
Legeckis, R. (1977). Long waves in the eastern equatorial Pacific: A view of a geostationary satellite, Science, 197, 11771181.Google Scholar
Levine, A. F. Z., McPhaden, M. J., Frierson, D. M. W. (2017). The impact of the AMO on multidecadal ENSO variability. Geophysical Research Letters, 44, 38773886.Google Scholar
Li, C., Wu, L., Chang, C.-P. (2011). A far-reaching footprint of the tropical Pacific meridional mode on the summer rainfall over the Yellow River Loop Valley. Journal of Climate, 24, 25852598.Google Scholar
Li, T, Wang, B., Chang, C.-P., Zhang, Y. (2003). A theory for the Indian Ocean dipole–zonal mode. Journal of the Atmospheric Sciences, 60, 21192135.Google Scholar
Li, T., Philander, S. G. H. (1996). On the annual cycle of the eastern equatorial Pacific. Journal of Climate, 9, 29862998.Google Scholar
Li, X., Xie, S.-P., Gille, S. T., Yoo, C. (2016). Atlantic-induced pan-tropical climate change over the past three decades. Nature Climate Change, 6(3), 275.Google Scholar
Li, Y. L., Han, W. Q., Zhang, L. (2017). enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophysical Research Letters, 44(19), 98769884.Google Scholar
Liang, Y.-C., Yu, J.-Y., Saltzman, E. S., Wang, F. (2017). Linking the tropical Northern Hemisphere pattern to the Pacific warm blob and Atlantic cold blob. Journal of Climate, 30, 90419057.Google Scholar
Liebmann, B., Mechoso, C. R. (2011). The South American Monsoon System. The global monsoon system. In Chang, C-P, Ding, Y, Lau, N-C (eds.) The Global Monsoon System: Research and Forecast, 2nd edn. Singapore: World Scientific Publication Company, pp. 137157.Google Scholar
Linkin, M. E., Nigam, S. (2008). The North Pacific Oscillation–West Pacific teleconnection pattern: Mature-phase structure and winter impacts. Journal of Climate, 21, 19791997.Google Scholar
Liu, J., Curry, A. J., Martinson, D. G. (2004). Interpretation of recent Antarctic sea ice variability. Geophysical Research Letters, 31, L02205, doi: 10.1029/2003GL018732.Google Scholar
Liu, Q. Y., Feng, M., Wang, D., Wijffels, S. (2015). Interannual variability of the Indonesian Throughflow transport: A revisit based on 30-year expendable bathythermograph data. Journal of Geophysical Research: Oceans, 120(12), 82708282.Google Scholar
Lique, C., Steele, M. (2012). Where can we find a seasonal cycle of the Atlantic water temperature within the Arctic Basin? Journal of Geophysical Research, 117, C03026 doi:10.1029/2011JC007612.Google Scholar
López‐Parages, J., Rodríguez‐Fonseca, B. (2012). Multidecadal modulation of El Niño influence on the Euro‐Mediterranean rainfall. Geophysical Research Letters, 39(2), L02704, doi: 10.1029/2011GL050049.Google Scholar
Losada, T., Rodríguez-Fonseca, B., Mechoso, C. R., Ma, H.-Y. (2007). Impacts of SST anomalies on the North Atlantic atmospheric circulation: A case study for the northern winter 1995/1996. Climate Dynamics, 29(7–8), 807819.Google Scholar
Losada, T., Rodríguez-Fonseca, B., Polo, I., Janicot, S., Gervois, S., Chauvin, F., Ruti, P. (2010). Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Climate Dynamics, 35(1), 4552.Google Scholar
Losada, T., Rodríguez‐Fonseca, B., Kucharski, F. (2012). Tropical influence on the summer Mediterranean climate. Atmospheric Science Letters, 13(1), 3642.Google Scholar
Losada, T., Rodríguez-Fonseca, B. (2016). Tropical atmospheric response to decadal changes in the Atlantic Equatorial Mode. Climate Dynamics, 47 (3–4), 12111224.Google Scholar
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A., de Jong, M. F., de Steur, L., Fischer, J., Gary, S. F., Greenan, B. J. W. (2019). A sea change in our view of overturning in the subpolar North Atlantic. Science, 363(6426), 516521.Google Scholar
Luo, J. J., Sasaki, W., Masumoto, Y. (2012). Indian Ocean warming modulates Pacific climate change. Proceedings of the National Academy of Sciences, 109(46), 1870118706.Google Scholar
Lübbecke, J. F., Rodríguez‐Fonseca, B., Richter, I., Martín‐Rey, M., Losada, T., Polo, I., Keenlyside, N. S. (2018). Equatorial Atlantic variability: Modes, mechanisms, and global teleconnections. Wiley Interdisciplinary Reviews: Climate Change, 9(4), e527.Google Scholar
Ma, C.-C., Mechoso, C. R., Robertson, A. W., Arakawa, A. (1996). Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. Journal of Climate, 9, 16351645.Google Scholar
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957), 12561260.Google Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 10691079.Google Scholar
Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., Roeckner, E. (2006). The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. Journal of Climate, 19, 38633881.Google Scholar
Marshall, G. J. (2003). Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, 16, 41344143.Google Scholar
Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A., Dickson, R., et al. (2001). North Atlantic climate variability: Phenomena, impacts and mechanisms. International Journal of Climatology, 21(15), 18631898.Google Scholar
Marshall, J., Donohoe, A., Ferreira, D., McGee, D. (2014). The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dynamics, 42(7–8), 19671979.Google Scholar
Martín-Rey, M., Rodríguez-Fonseca, B., Polo, I., Kucharski, F. (2014). On the Atlantic–Pacific Niños connection: A multidecadal modulated mode. Climate Dynamics, 43(11), 31633178.Google Scholar
Martín-Rey, M., Polo, I., Rodríguez-Fonseca, B., Losada, T., Lazar, A. (2018). Is there evidence of changes in tropical Atlantic variability modes under AMO phases in the observational record? Journal of Climate, 31, 515536.Google Scholar
Mauritzen, C. (1996). Production of dense overflow waters feeding the North Atlantic across the Greenland–Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep Sea Research, 43, 769806.Google Scholar
McCreary, J. P., Lu, P. (1994). On the interaction between the subtropical and the equatorial oceans: The subtropical cell. Journal of Physical Oceanography, 24, 466497.Google Scholar
McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield, M., Jin, F.-F., Chikamoto, Y. (2014). Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4(10), 888.Google Scholar
McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J. R., Gage, K. S., Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G. T., Niiler, P. P., Picaut, J., Reynolds, R. W., Smith, N., Takeuchi, K. (1998). The Tropical Ocean-Global Atmosphere (TOGA) observing system: A decade of progress. Journal of Geophysical Research, 103, 1416914240.Google Scholar
McPhaden, M. J., Zhang, D. (2002). Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603608.Google Scholar
McPhaden, M. J., Zhang, D. (2004). Pacific Ocean circulation rebounds. Geophysical Research Letters, 31 , L18301, doi: 10.1029/2004GL020727.Google Scholar
McPhaden, M. J., Cronin, M. F., McClurg, D. C. (2008). Meridional structure of the surface mixed layer temperature balance on seasonal time scales in the eastern tropical Pacific. Journal of Climate, 21, 32403260.Google Scholar
McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murty, V. S. N., Ravichandran, M., Syamsudin, F., Vialard, J., Yu, L., Yu, W. (2009). RAMA: The research moored array for African-Asian-Australian monsoon analysis and prediction. Bulletin of the American Meteorological Society, 90, 459480.Google Scholar
McPhaden, M. J., Busalacchi, A. J., Anderson, D. L. T. (2010). A TOGA retrospective. Oceanography, 23, 86103.Google Scholar
McPhaden, M. J., Lee, T., McClurg, D. (2011). El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophysical Research Letters, 38, L15709, doi.org/10.1029/2011GL048275.Google Scholar
McPhaden, M. J. Nagura, M. (2014). Indian Ocean Dipole interpreted in terms of Recharge Oscillator theory. Climate Dynamics, 42, 15691586.Google Scholar
McPhaden, M. J., Wang, Y., Ravichandran, M. (2015). Volume transports of the Wyrtki Jets and their Relationship to the Indian Ocean Dipole. Journal of Geophysical Research, 120, 53025317.Google Scholar
Mechoso, C. R., Lyons, S. W., Spahr, J. A. (1990). The impact of sea surface temperature anomalies on the rainfall over northeast Brazil. Journal of Climate, 3, 812826.Google Scholar
Mechoso, C. R., Lyons, S. W. (1988). On the atmospheric response to SST anomalies associated with the Atlantic warm event during 1984. Journal of Climate, 1, 422428.Google Scholar
Medred, C. (2014). Unusual species in Alaska waters indicate parts of Pacific warming dramatically. Alaska Dispatch News, September 14, 2014, www.adn.com/article/20140914/unusual-speciesalaska-waters-indicate-parts-pacific-warming-dramatically.Google Scholar
Meehl, G. A., Arblaster, J. M. (2001). The tropospheric biennial oscillation and Indian monsoon rainfall. Geophysical Research Letters, 28, 17311734.Google Scholar
Meehl, G. A., Aixue, H., Santer, B. D., Xie, S.-P. (2016). Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nature Climate Change, 6, 10051008.Google Scholar
Meredith, M. P. Hogg, A. M. (2006). Circumpolar response of Southern Ocean eddy activity to changes in the Southern Annular Mode. Geophysical Research Letters, 3, L16608, doi.org/10.1029/2006GL026499.Google Scholar
Meyers, G., Bailey, R. J., Worby, A. P. (1995). Geostrophic transport of Indonesian throughflow. Deep Sea Research, 42(7), 11631174.Google Scholar
Minobe, S. (1999). Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophysical Research Letters, 26, 855858.Google Scholar
Miyama, T., McCreary, J. P. Jr., Jensen, T. G., Loschnigga, J., Godfrey, S., Ishida, A. (2003). Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep Sea Research Part II: Topical Studies in Oceanography, 50(12–13), 20232047.Google Scholar
Mo, K. C., Livezey, R. E. (1986). Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter. Monthly Weather Review, 114, 24882515.Google Scholar
Mo, K. C. (2000). Relationships between interdecadal variability in the Southern Hemisphere and sea surface temperature anomalies. Journal of Climate, 13, 35993610.Google Scholar
Mohino, E., Janicot, S., Bader, J. (2011). Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dynamics, 37(3–4), 419440.CrossRefGoogle Scholar
Murakami, H., Vecchi, G. A., Delworth, T. L., Wittenberg, A. T., Underwood, S., Gudgel, R., Yang, X., Jia, L., Zeng, F., Paffendorf, K., Zhanga, W. (2017). Dominant role of subtropical Pacific warming in extreme eastern Pacific hurricane seasons: 2015 and the future. Journal of Climate, 30, 243264.Google Scholar
Myers, T. A., Mechoso, C. R., Cesana, G. V., DeFlorio, M. J., Waliser, D. E. (2018). Cloud feedback key to marine heatwave off Baja California. Geophysical Research Letters, 45, doi:10.1029/2018GL078242.Google Scholar
Newman, M., Shin, S.-I., Alexander, M. A. (2011). Natural variation in ENSO flavors. Geophysical Research Letters, L14705, doi:10.1029/2011GL047658.Google Scholar
Newman, M., Alexander, M. A., Aultc, T. R., Cobb, K. M., Clara Deser, C., Di Lorenzo, E., Mantua, N. J., Miller, A. J., Minobe, S., Nakamura, H., Schneider, N., Vimontk, D. J., Phillips, A. S., Scott, J. D., Smith, C. A. (2016). The Pacific decadal oscillation, revisited. Journal of Climate, 29, 43994427.Google Scholar
Ng, B., Cai, W., Walsh, K. (2014). The role of the SST-thermocline relationship in Indian Ocean Dipole skewness and its response to global warming. Science Reports, 4, 6034.Google Scholar
Niiler, P. P., Sybrandy, A., Bi, K., Poulain, P., Bitterman, D. (1995). Measurements of the water-following capability of Holey-sock and TRISTAR drifters. Deep Sea Research, Part I, 42, 19511964.Google Scholar
Nilsen, J. E. Ø., Falck, E. (2006). Variations of mixed layer properties in the Norwegian Sea for the period 1948–1999. Progress in Oceanography, 70(1), 5890.Google Scholar
Nnamchi, H. C., Li, J., Anyadike, R. N. (2011). Does a dipole mode really exist in the South Atlantic Ocean? Journal of Geophysical Research, 116(D15), 104, doi:10.1029/2010JD015579.Google Scholar
Nnamchi, H. C., Li, J., Kucharski, F., Kang, I. S., Keenlyside, N. S., Chang, P., Farneti, R. (2015). Thermodynamic controls of the Atlantic Niño. Nature Communications, 6, 8895.Google Scholar
Nnamchi, H. C., Li, J., Kucharski, F., Kang, I. S., Keenlyside, N. S., Chang, P., Farneti, R. (2016). An equatorial–extratropical dipole structure of the Atlantic Niño. Journal of Climate, 29(20), 72957311.Google Scholar
Nnamchi, H. C., Kucharski, F., Keenlyside, N. S., Farneti, R. (2017). Analogous seasonal evolution of the South Atlantic SST dipole indices. Atmospheric Science Letters, 18(10), 396402.Google Scholar
Nobre, P., Shukla, J. (1996). Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. Journal of Climate, 9(10), 24642479.Google Scholar
Nøst, O. A., Isachsen, P. E. (2003). The large‐scale time‐mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics. Journal of Marine Research, 61, 175210.Google Scholar
Okumura, Y., Xie, S.-P. (2004). Interaction of the Atlantic equatorial cold tongue and the African monsoon. Journal of Climate, 17(18), 35893602.Google Scholar
Okumura, Y. M. Deser, C. (2010). Asymmetry in the duration of El Niño and La Niña. Journal of Climate, 23, 58265843.Google Scholar
Olsen, S.M., Hansen, B., Quadfasel, D., Østerhus, S. (2008). Observed and modelled stability of overflow across the Greenland–Scotland ridge. Nature, 455, 519522.Google Scholar
Onarheim, I., Eldevik, T., Smedsrud, L. H. and Stroeve, J. C., J. C. (2018). Seasonal and regional manifestation of Arctic sea ice loss. Journal of Climate, 31(12), 49174932.Google Scholar
Orsi, A. H., Whitworth, T., Nowlin, W. D. (1995). On the Meridional Extent and Fronts of the Antarctic Circumpolar Current. Deep-Sea Research I, 42(5), 641673.CrossRefGoogle Scholar
Overland, J. E., Wang, M., Salo, S. (2008). The recent Arctic warm period. Tellus, 60A, 589597.Google Scholar
Overland, J. E., Francis, J. A., Hall, R., Hanna, E., Kim, S.-J., Vihma, T. (2015). The melting Arctic and midlatitude weather patterns: Are they connected? Journal of Climate, 28, 79177932.Google Scholar
Overland, J., Dunlea, E., Box, J. E., Corell, R., Forsius, M., Kattsov, V., Olsen, M., Pawlak, J., Reiersen, L.-O., Wang, M. (2019). The urgency of Arctic change. Polar Science, doi:10.1016/j.polar.2018.11.008.CrossRefGoogle Scholar
Østerhus, Woodgate, S., Valdimarsson, R., Turrell, H., de Steur, B., Quadfasel, L., Olsen, D., Moritz, S. M., Lee, M., Larsen, C. M., Jónsson, K. M. H., Johnson, S., Jochumsen, C., Hansen, K., Curry, B., Cunningham, B., Berx, S., B. (2019). Arctic Mediterranean exchanges: A consistent volume budget and trends in transports from two decades of observations. Ocean Science, 15, 379399, doi:10.5194/os-15-379-2019.Google Scholar
Paek, H., Yu, J.-Y., Qian, C. (2017). Why were the 2015/16 and 1997/98 Extreme El Niños different? Geophysical Research Letters, 44, 18481856.Google Scholar
Palóczy, A., Gille, S. T., McClean, J. L. (2018). Oceanic heat delivery to the Antarctic continental shelf: Large‐scale, Low‐frequency variability. Journal of Geophysical Research: Oceans, 123 (11), 76787701.Google Scholar
Paolo, F. S., Fricker, H. A., Padman, L. (2015). Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327331.Google Scholar
Paolo, F. S., Padman, L., Fricker, H. A., Adusumilli, S., Howard, S., Siegfried, M. R. (2018). Response of Pacific-sector Antarctic ice shelves to the El Niño /Southern oscillation. Nature Geoscience, 11, 121126.Google Scholar
Peterson, B. J., McClelland, J., Curry, R., Holmes, R. M., Walsh, J. E., Aagaard, K. (2006). Trajectory shifts in the Arctic and Subarctic freshwater cycle. Science, 313, 10611066.Google Scholar
Peterson, W., Robert, M., Bond, N. (2015). The warm Blob continues to dominate the ecosystem of the northern California Current. PICES Press, 23(2), North Pacific Marine Science Organization, Sidney, BC, Canada, 4446, www.pices.int/publications/pices_press/volume23/PPJuly2015.pdf.Google Scholar
Philander, S. G. H., Gu, D., Halpern, D., Lambert, G., Lau, N.-C., Li, T., Pacanowski, R. C. (1996). Why the ITCZ is mostly north of the equator. Journal of Climate, 9, 29582972.Google Scholar
Polo, I., Rodríguez-Fonseca, B., Losada, T., García-Serrano, J. (2008). Tropical Atlantic variability modes (1979–2002). Part I: Time-evolving SST modes related to West African rainfall. Journal of Climate, 21(24), 64576475.Google Scholar
Polvani, L. M., Waugh, D. W., Correa, G. J. P. Son, S.-W. (2011). Stratospheric ozone depletion: The main drive of twentieth-century atmospheric circulation changes in the Southern Hemisphere. Journal of Climate, 24, 795812.Google Scholar
Polyakov, I., et al. (2005). One more step toward a warmer Arctic. Journal of Geophysical Research, 32, L17605, doi:10.1029/2005GL023740.Google Scholar
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., Yulin, A. (2017). Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356, 285291.Google Scholar
Pritchard, H. D., Ligtenberg, S. R., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., Padman, L. (2012). Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505.Google Scholar
Qu, X., Huang, G. (2012). Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. International Journal of Climatology, 32, 20732080.Google Scholar
Rao, S. A., Dhakate, A. R., Saha, S. K., Mahapatra, S., Chaudhari, H. S., Pokhrel, S., Sahu, S., K. (2012). Why is Indian Ocean warming consistently? Climatic Change, 110(3–4), 709719.Google Scholar
Rahul, S., Gnanaseelan, C. (2013). Net heat flux over the Indian Ocean: Trends, driving mechanisms, and uncertainties. IEEE Geoscience Remote Sensing, 10(4), 776780.Google Scholar
Raphael, M. N., Marshall, G. J., Turmer, J., Fogt, R. L., Schneider, D., Dixon, D. A., Hosking, J. S., Jones, J. M., Hobbs, W. R. (2016). The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bulletin of the American Meteorological Society, 97, 111121.Google Scholar
Rasmusson, E. M., Carpenter, T. H. (1982). Variations in tropical sear surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Monthly Weather Review, 110, 354384.Google Scholar
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108, 4407.Google Scholar
Reppin, J., Schott, F. A., Fischer, J., Quadfasel, D. (1999). Equatorial currents and transports in the upper central Indian Ocean: Annual cycle and interannual variability. Journal of Geophysical Research, 104, 1549515514.Google Scholar
Rignot, E., Jacobs, S. S. (2002). Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines. Science, 296, 20202023.Google Scholar
Rignot, E., Bamber, J. L., van den Broeke, M. R., Davis, C., Li, Y., van de Berg, W. J., van Meijgaard, E. (2008). Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1, 106110.Google Scholar
Rignot, E., Jacobs, S., Mouginot, J., Scheuchl, B. (2013). Ice-shelf melting around Antarctica, Science, 341, 266270.Google Scholar
Rodriguez, A., Mazloff, M., Gille, S. T. (2016). An oceanic heat transport pathway to the Amundsen Sea Embayment. Journal of Geophysical Research: Oceans, 121, 33373349.Google Scholar
Rodríguez-Fonseca, B., Polo, I., García-Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., Kucharski, F. (2009). Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophysical Research Letters, 36, L20705, doi:10.1029/2009GL040048.Google Scholar
Rodríguez‐Fonseca, B., Janicot, S., Mohino, E., Losada, T., Bader, J., Caminade, C., Fontaine, F. C. B., García‐Serrano, J., Gervois, S., Joly, M., Polo, I., Ruti, P., Roucou, P., Voldoire, A. (2011). Interannual and decadal SST‐forced responses of the West African monsoon. Atmospheric Science Letters, 12(1), 6774.Google Scholar
Rodríguez-Fonseca, B., Mohino, E., Mechoso, C. R., Caminade, C., Biasutti, M., Gaetani, M., et al. (2015). Variability and predictability of West African droughts: A review on the role of sea surface temperature anomalies. Journal of Climate, 28(10), 40344060.Google Scholar
Roemmich, D, Church, J, Gilson, J, Monselesan, D, Sutton, P, Wijffels, S. (2015). Unabated planetary warming and its ocean structure since 2006. Nature Climate Change, 5, 240245.Google Scholar
Rogers, J. C. (1981) The North Pacific Oscillation. International Journal of Climatology, 1, 3957.Google Scholar
Ropelewski, C. F. Halpert, M. C. (1986). North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 114, 23522362.Google Scholar
Ruiz-Barradas, A., Carton, J. A., Nigam, S. (2000). Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. Journal of Climate, 13(18), 32853297.Google Scholar
Ruprich-Robert, Y., Msadek, R., Castruccio, F., Yeager, S., Delworth, T., Danabasoglu, G. (2017). Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2. 1 and NCAR CESM1 global coupled models. Journal of Climate, 30(8), 27852810.Google Scholar
Ruprich-Robert, Y., Delworth, T., Msadek, R., Castruccio, F., Yeager, S., Danabasoglu, G. (2018). Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. Journal of Climate, 31(9), 36793700.Google Scholar
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.Google Scholar
Sassi, F., Kinnison, D., Boville, B. A., Garcia, R. R., Roble, R. (2004). Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. Journal of Geophysical Research, 109, D17108, doi:10.1029/2003JD004434.Google Scholar
Schmidtko, S., Heywood, K. J., Thompson, A. F., Aoki, S. (2014). Multidecadal warming of Antarctic waters. Science, 346, 12271231.Google Scholar
Schneider, D. P., Okumura, Y., Deser, C. (2012). Observed Antarctic interannual climate variability and tropical linkages. Journal of Climate, 25, 40484066.Google Scholar
Schott, F. A., McCreary, J. P., Johnson, G. C. (2004). Shallow overturning circulations of the tropical‐subtropical oceans. Earth's Climate, 147, 261304.Google Scholar
Schott, F. A., Xie, S.-P., McCreary, J. P. (2009). Indian Ocean circulation and climate variability. Reviews of Geophysics, 47(1), doi.org/10.1029/2007RG000245.Google Scholar
Seager, R., Hoerling, M., Schubert, S., Wang, H., Lyon, B., Kumar, , Nakamura, J., Henderson, N. (2014). Causes and predictability of the 2011–14 California drought. Assessment Rep., NOAA/OAR/Climate Program Office, 42 pp., http://cpo.noaa.gov/MAPP/californiadroughtreport.Google Scholar
Seager, R., Hoerling, M., Schubert, S., Wang, H., Lyon, B., Kumar, , Nakamura, J., Henderson, N. (2015). Causes of the 2011–14 California drought. Journal of Climate, 28, 69977024.Google Scholar
Servain, J., Wainer, I., McCreary, J. P., Dessier, A. (1999). Relationship between the equatorial and meridional modes of climate variability in the tropical Atlantic. Geophysical Research Letters, 26, 458488.Google Scholar
Shao, A., Gille, S. T., Mecking, S., Thompson, L. (2015). Properties of the Subantarctic Front and Polar Front from the skewness of sea level anomaly. Journal of Geophysical Research - Oceans, 120, 51795193.Google Scholar
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken, B., Sandø, A. B., Semenov, V. A., Sorokina, S. A. (2013). The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics, 51, 415449.Google Scholar
Smith, T. M., Reynolds, R. W., Peterson, T. C., Lawrimore, J. (2008). Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). Journal of Climate, 21(10), 22832296.Google Scholar
Sokolov, S., Rintoul, S. R. (2009). Circumpolar structure and distribution of the Antarctic circumpolar current fronts: 1. Mean circumpolar paths. Journal of Geophysical Research, 114, C11018, doi:10.1029/2008JC005108.Google Scholar
Spall, M. A., Pickart, R. S. (2001). Where does dense water sink? A subpolar gyre example. Journal of Physical Oceanography, 31, 810825.Google Scholar
SpallM. A. (2011On the role of eddies and surface forcing in the heat transport and overturning circulation in marginal seas. Journal of Climate, 24, 48444858.Google Scholar
Speer, K., Rintoul, S. R., Sloyan, B. (2000). The Diabatic Deacon Cell. Journal of Physical Oceanography, 30, 32123222.Google Scholar
Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X., Rind, D. (2008). Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research, 108, C03S90, doi:10.1029/2007JC004269.Google Scholar
Stewart, A. L. Thompson, A. F. (2015). Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic shelf break. Geophysical Research Letters, 42, 432440.Google Scholar
Straneo, F. (2006). On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. Journal of Physical Oceanography, 36, 18221840.Google Scholar
Sultan, B., Janicot, S. (2003). The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. Journal of Climate, 16(21), 34073427.Google Scholar
Sutton, R. T., Hodson, D. L. (2005). Atlantic Ocean forcing of North American and European summer climate. Science, 309(5731), 115118.Google Scholar
Svendsen, L., Hetzinger, S., Keenlyside, N., Gao, Y. (2014). Marine‐based multiproxy reconstruction of Atlantic multidecadal variability. Geophysical Research Letters, 41(4), 12951300.Google Scholar
Swain, D. L., Tsiang, M., Haugen, M., Singh, D., Charland, A., Rajaratnam, B., Diffenbaugh, N. S. (2014). The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bulletin of the American Meteorological Society, 95, S3S7.Google Scholar
Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., Jahn, A. (2015). Influence of internal variability on Arctic sea-ice trends. Nature Climate Change, 5 (2), 8689.Google Scholar
Swart, N. C., Gille, S. T., Fyfe, J. C., Gillett, N. (2018). Drivers of Southern Ocean warming and freshening. Nature Geosciences, 11, 836841.Google Scholar
Talley, L. D. (2011). Descriptive Physical Oceanography: An Introduction. Oxford: Academic Press.Google Scholar
Tamsitt, V., Drake, H., Morrison, A. K., Talley, L. D., Dufour, C. O., Gray, A. R., Griffies, S. M., Mazloff, M. R., Sarmiento, J. L., Wang, J., Weijer, W. (2017). Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nature Communications, 8(1), 172. doi: 10.1038/s41467-017-00197-0.Google Scholar
Terray, L. (2012). Evidence for multiple drivers of North Atlantic multi‐decadal climate variability. Geophysical Research Letters, 39(19), L19712, doi: 10.1029/2012GL053046.Google Scholar
Thompson, D. W. J., Wallace, J. M., Hegerl, G. C. (2000). Annular modes in the extratropical circulation. Part II: Trends. Journal of Climate, 13, 10181036.Google Scholar
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., Karoly, D. J. (2011). Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, Nature Geoscience, 4(11), 741749.Google Scholar
Thompson, A. F., Sallee, J. B. (2012). Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. Journal of Physical Oceanography, 42, 956972.Google Scholar
Thompson, R. O. (1984). Observations of the Leeuwin current off Western Australia. Journal of Physical Oceanography, 14(3), 623628.Google Scholar
Ting, M., Kushnir, Y., Seager, R., Li, C. (2009). Forced and internal twentieth-century SST trends in the North Atlantic. Journal of Climate, 22(6), 14691481.Google Scholar
Tokinaga, H., Xie, S.-P. (2011). Weakening of the equatorial Atlantic cold tongue over the past six decades. Nature Geoscience, 4(4), 222.Google Scholar
Tozuka, T., Luo, J., Masson, S., et al. (2007). Decadal modulations of the Indian Ocean Dipole in the SINTEX-F1 coupled GCM. Journal of Climate, 20, 28812894.Google Scholar
Torralba, V., Rodríguez-Fonseca, B., Mohino, E., Losada, T. (2015). The non-stationary influence of the Atlantic and Pacific Niños on North Eastern South American rainfall. Frontiers in Earth Science, 3, 55, doi:10.3389/feart.2015.00055.Google Scholar
Trenberth, K. E., (2005). Uncertainty in hurricanes and global warming. Science, 308(5729), 17531754.Google Scholar
Trenberth, K. E. (2015). Has there been a hiatus? Science, 349, 691692.Google Scholar
Tulloch, R., Ferrari, R., Jahn, O., Klocker, A., LaCasce, J., Ledwell, J. R., Marshall, J., Messias, , Speer, M., Watson, A. (2014). Direct estimate of lateral eddy diffusivity upstream of Drake passage. Journal of Physical Oceanography, 44, 25932616.Google Scholar
Ummenhofer, C. C., England, M. H., McIntosh, P. C., et al. (2009). What causes southeast Australia's worst droughts? Geophysical Research Letters, 36 (4), L04706, doi: 10.1029/2008GL036801.Google Scholar
Ummenhofer, C. C., Biastoch, A., Böning, C. W. (2017). Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. Journal of Climate, 30, 17391751.Google Scholar
Vecchi, G. A., Clement, A., Soden, B. J. (2008). Examining the tropical Pacific’s response to global warming. EOS Trans Am Geophys Union, 89, 8183Google Scholar
Vellinga, M., Wood, R. A. (2002). Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54(3), 251267.Google Scholar
Venegas, S. A., Mysak, L. A., Straub, D. N. (1997). Atmosphere–ocean coupled variability in the South Atlantic. Journal of Climate, 10(11), 29042920.Google Scholar
Vihma, T. (2014). Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surveys in Geophysics, 35, 11751214.Google Scholar
Villamayor, J., Ambrizzi, T., Mohino, E. (2018). Influence of decadal sea surface temperature variability on northern Brazil rainfall in CMIP5 simulations. Climate Dynamics, 51(1–2), 563579.Google Scholar
Vinayachandran, P. N., Saji, N. H., Yamagata, T. (1999). Response of the equatorial Indian Ocean to an unusual wind event during 1994. Geophysical Research Letters, 26: 16131616Google Scholar
Walker, G. T., Bliss, E. W. (1932). World weather V. Memoirs of the Royal Meteorological Society, 4, 5384.Google Scholar
Wallace, J. M., Gutzler, D. S. (1981). Teleconnections in the potential height field during the Northern Hemisphere winter. Monthly Weather Review, 109, 784812.Google Scholar
Wang, T., Du, Y., Liao, X. (2017). The regime shift in the 1960s and associated atmospheric change over the southern Indian Ocean. Acta Oceanologica Sinica, 36(1), 18.Google Scholar
Wang, Y., McPhaden, M. J. (2017). Seasonal cycle of cross-equatorial flow in the central Indian Ocean. Journal of Geophysical Research, 122(5). 38173827.Google Scholar
Webster, P. J., Moore, A. M., Loschnigg, J. P., Leben, R. R. (1999). Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.Google Scholar
Woodgate, R. A.Aagaard, K., Weingartner, T. J. (2005). A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990–1991. Deep Sea Research, Part II, 52, 31163149.Google Scholar
Woodgate, R. A., Weingartner, T., Lindsay, R, (2010). The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophysical Research Letters, 37, L01602, doi:10.1029/2009GL041621.Google Scholar
Wu, B., Li, T., Zhou, T. J. (2010). Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western north Pacific anomalous anticyclone during the El Niño decaying summer. Journal of Climate, 23, 29742986.Google Scholar
Wu, R., Kirtman, B. P., Krishnamurthy, V. (2008). An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. Journal of Geophysical Research Atmospheres, 113, D05104, doi:10.1029/2007JD009316Google Scholar
Wu, R., Yeh, S. W. (2010). A further study of the tropical Indian Ocean asymmetric mode in boreal spring. Journal of Geophysical Research, 115, D08101, doi:10.1029/2009JD012999Google Scholar
Wyrtki, K. (1973). An equatorial jet in the Indian Ocean. Science, 181(4096), 262264.Google Scholar
Wyrtki, K. (1981). An estimate of equatorial upwelling in the Pacific. Journal of Physical Oceanography, 11, 12051214.Google Scholar
Xie, S.-P., Philander, S. G. H. (1994). A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350.Google Scholar
Xie, S.-P., Annamalai, H., Schott, F. A., McCreary, J. P. (2002). Structure and mechanisms of south Indian Ocean climate variability. Journal of Climate, 15, 867878.Google Scholar
Xie, S.-P., Hu, K., Hafner, J., Tokinaga, H., Du, Y., Huang, G., Sampe, T. (2009). Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. Journal of Climate, 22, 730747.Google Scholar
Xie, S.-P., Kosaka, Y., Du, Y., Hu, K. M., Chowdary, J., Huang, G. (2016). Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Advances in Atmospheric Sciences, 33, 411432.Google Scholar
Xie, S.-P., Kosaka, Y. (2017). What caused the global surface warming hiatus of 1998–2013? Current Climate Change Reports, 3, 128140.Google Scholar
Xue, Y., Balmaseda, M. A., Boyer, T., Ferry, N., Good, S., Ishikawa, I., Kumar, A., Rienecker, M., Rosati, A. J., Yin, Y. (2012). A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. Journal of Climate, 25(20), 69056929.Google Scholar
Yang, J., Pratt, L. J. (2013). On the effective capacity of the dense-water reservoir for the Nordic Seas overflow: Some effects of topography and wind stress. Journal of Physical Oceanography, 43, 418431.Google Scholar
Yang, S., Li, Z., Yu, J.-Y., Hu, X., Dong, W., He, S. (2018). El Niño–Southern Oscillation and its impact in the Changing Climate. National Science Review, nwy046.Google Scholar
Yang, Y., Li, J. P., Wu, L. X., Kosaka, Y., Du, Y., Sun, C., Xie, F., Feng, J. (2017). Decadal Indian Ocean dipolar variability and its relationship with the tropical Pacific. Advances in Atmospheric Science, 34, 12821289.Google Scholar
Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., Kirtman, B. P., Jin, F.-F. (2009). El Niño in a changing climate. Nature, 461, 511514.Google Scholar
Yashayaev, I., Seidov, D. (2015). The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas. Progress in Oceanography, 132, 68127.Google Scholar
Yeh, S.-W., Cai, W., Min, S.-K., McPhaden, M.J., Dommenget, D., Dewitte, B., Collins, M., Ashok, K., An, S.-I., Yim, B.-Y., and Kug, J.-S., 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206. doi:10.1002/2017RG000568.Google Scholar
Yeo, S.-R., Kim, K. Y. (2015). Decadal changes in the Southern Hemisphere sea surface temperature in association with El Niño–Southern Oscillation and Southern Annular Mode. Climate Dynamics, 45(3–4), 32273242.Google Scholar
Yit, S., Bull, C., Van Sebille, E. (2016). Sources, fate, and pathways of Leeuwin Current water in the Indian Ocean and Great Australian Bight: A Lagrangian study in an eddy‐resolving ocean model. Journal of Geophysical Research-Oceans, 121(3), 16261639.Google Scholar
You, Y., Furtado, J. C. (2017). The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophysical Research Letters, 44 (14), 74387446.Google Scholar
Yu., J.-Y., Mechoso, C. R. (1999). Links between annual variations of Peruvian stratocumulus clouds and of SSTs in the eastern equatorial Pacific. Journal of Climate, 12, 33053318.Google Scholar
Yu, J. Y., Mechoso, C. R., McWilliams, J. C. (2002). Impacts of the Indian Ocean on the ENSO cycle. Geophysical Research Letters, 29, 461464.Google Scholar
Yu, J.-Y., Lau, K. M. (2004). Contrasting Indian Ocean SST variability with and without ENSO influence: A coupled atmosphere-ocean GCM study. Meteorology and Atmospheric Physics, 90, 179191.Google Scholar
Yu, J.-Y., Kao, H.-Y., Lee, T. (2010). Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. Journal of Climate, 23, 28692884.Google Scholar
Yu, J.-Y., Lu, M. M., Kim, S. T. (2012a). A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environmental Research Letters, 7, 034025.Google Scholar
Yu, J.-Y., Zou, Y., St. Kim, T., Lee, T. (2012b). The Changing Impact of El Niño on US Winter Temperatures. Geophysical Research Letters, 39, L15702, doi:10.1029/2012GL052483.Google Scholar
Yu, J.-Y., Kao, P.-K., Paek, H., Hsu, H.-H., Hung, C.-W., Lu, M.-M., An, S.-I., (2015a). Linking emergence of the Central-Pacific El Niño to the Atlantic multi-decadal Oscillation. Journal of Climate, 28, 651662.Google Scholar
Yu, J.-Y., Paek, H., Saltzman, E. S., Lee, T. (2015b). The early-1990s change in ENSO-PSA-SAM relationships and its impact on Southern Hemisphere climate. Journal of Climate, 28, 93939408.Google Scholar
Yu, J.-Y., Wang, X. Yang, S., Paek, H., Chen, M. (2017). Changing El Niño–Southern Oscillation and associated climate extremes. In Wang, S.-Y., Yoon, J.-H., Funk, C., Gillies, R. R. (ed.) Climate Extremes: Patterns and Mechanisms, vol. 226. AGU Geophysical Monograph Series, pp. 3–38.Google Scholar
Yu, J.-Y. Fang, S. W. (2018). The distinct contributions of the seasonal footprinting and charged-discharged mechanisms to ENSO complexity. Geophysical Research Letters, 45, 66116618.Google Scholar
Yu, L. S., Rienecker, M. M. (1999). Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophysical Research Letters, 26, 735738.Google Scholar
Yuan, D., Liu, H. (2009). Long-wave dynamics of sea level variations during Indian Ocean Dipole events. Journal of Physical Oceanography, 39, 11151132.Google Scholar
Yuan, D., Zhou, H., Zhao, X. (2013). Interannual climate variability over the Tropical Pacific Ocean induced by the Indian Ocean Dipole through the Indonesian throughflow. Journal of Climate, 26, 28452861.Google Scholar
Yuan, X., Li, C. (2008). Climate modes in southern high latitudes and their impacts on Antarctic sea ice. Journal of Geophysical Research, 113, C06S91, doi:10.1029/2006JC004067.Google Scholar
Yuan, Y., Yang, H., Zhou, W. (2008). Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. International Journal of Climatology, 28, 18491859.Google Scholar
Zaba, K. D., Rudnick, D. L. (2016). The 2014–2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophysical Research Letters, 43, 12411248.Google Scholar
Zebiak, S., 1993: Air–sea interaction in the equatorial Atlantic region. Journal of Climate, 6, 15671586.Google Scholar
Zhan, R., Wang, Y., Lei, X. (2011). Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. Journal of Climate, 24, 509521.Google Scholar
Zhang, H., Clement, A., Di Nezio, P. (2014). The South Pacific meridional mode: A mechanism for ENSO-like variability. Journal of Climate, 27, 769783.Google Scholar
Zhang, J., Steele, M., Rothrock, D. A., Lindsay, R. W. (2004). Increasing exchanges at Greenland–Scotland Ridge and their links with the North Atlantic Oscillation and Arctic sea ice. Geophysical Research Letters, 31, L09307, doi:10.1029/2003GL019304.Google Scholar
Zhang, R., Delworth, T. L. (2005). Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18(12), 18531860.Google Scholar
Zhang, R., Delworth, T. L. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33(17), doi.org/10.1029/2006GL026267.Google Scholar
Zhang, R., Sutton, R., Danabasoglu, G., Delworth, T. L., Kim, W. M., Robson, J., Yeager, S. G. (2016). Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation.” Science, 352(6293), 15271527.Google Scholar
Zhang, W., Vecchi, G. A., Murakami, H., Villarini, G., Jia, L. (2016). The Pacific meridional mode and the occurrence of tropical cyclones in the Western North Pacific. Journal of Climate, 29, 381398.Google Scholar
Zhang, W., Villarini, G., Vecchi, G. A. (2017). Impacts of the Pacific meridional mode on June–August precipitation in the Amazon River Basin. Quarterly Journal of the Royal Meteorological Society, 143, 19361945.Google Scholar
Zhang, Y., Feng, M., Du, Y., Phillips, H. E., Bindoff, N. L., McPhaden, M. J. (2018). Strengthened Indonesian throughflow drives decadal warming in the southern Indian Ocean. Geophysical Research Letters, 45, 61676175.Google Scholar
Zhao, X., Yuan, D., Yang, G., Zhou, H., Wang, J. (2016). Role of the oceanic channel in the relationships between the basin/dipole mode of SST anomalies in the tropical Indian Ocean and ENSO transition. Advances in Atmospheric Sciences, 33, 13861400.Google Scholar
Zhang, L., Karnauskas, K. B. (2017). The role of tropical interbasin SST gradients in forcing Walker circulation trends. Journal of Climate, 30(2), 499508.Google Scholar
Zhang, Y., Wallace, J. M., Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900–93. Journal of Climate, 10, 10041020.Google Scholar
Zheng, X., Xie, S.-P., Vecchi, G. A., Liu, Q., Hafner, J. (2010). Indian Ocean dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. Journal of Climate, 23, 12401253.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×