Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgements
- Chapter 1 The IPM paradigm: concepts, strategies and tactics
- Chapter 2 Economic impacts of IPM
- Chapter 3 Economic decision rules for IPM
- Chapter 4 Decision making and economic risk in IPM
- Chapter 5 IPM as applied ecology: the biological precepts
- Chapter 6 Population dynamics and species interactions
- Chapter 7 Sampling for detection, estimation and IPM decision making
- Chapter 8 Application of aerobiology to IPM
- Chapter 9 Introduction and augmentation of biological control agents
- Chapter 10 Crop diversification strategies for pest regulation in IPM systems
- Chapter 11 Manipulation of arthropod pathogens for IPM
- Chapter 12 Integrating conservation biological control into IPM systems
- Chapter 13 Barriers to adoption of biological control agents and biological pesticides
- Chapter 14 Integrating pesticides with biotic and biological control for arthropod pest management
- Chapter 15 Pesticide resistance management
- Chapter 16 Assessing environmental risks of pesticides
- Chapter 17 Assessing pesticide risks to humans: putting science into practice
- Chapter 18 Advances in breeding for host plant resistance
- Chapter 19 Resistance management to transgenic insecticidal plants
- Chapter 20 Role of biotechnology in sustainable agriculture
- Chapter 21 Use of pheromones in IPM
- Chapter 22 Insect endocrinology and hormone-based pest control products in IPM
- Chapter 23 Eradication: strategies and tactics
- Chapter 24 Insect management with physical methods in pre- and post-harvest situations
- Chapter 25 Cotton arthropod IPM
- Chapter 26 Citrus IPM
- Chapter 27 IPM in greenhouse vegetables and ornamentals
- Chapter 28 Vector and virus IPM for seed potato production
- Chapter 29 IPM in structural habitats
- Chapter 30 Fire ant IPM
- Chapter 31 Integrated vector management for malaria
- Chapter 32 Gypsy moth IPM
- Chapter 33 IPM for invasive species
- Chapter 34 IPM information technology
- Chapter 35 Private-sector roles in advancing IPM adoption
- Chapter 36 IPM: ideals and realities in developing countries
- Chapter 37 The USA National IPM Road Map
- Chapter 38 The role of assessment and evaluation in IPM implementation
- Chapter 39 From IPM to organic and sustainable agriculture
- Chapter 40 Future of IPM: a worldwide perspective
- Index
- References
Chapter 1 - The IPM paradigm: concepts, strategies and tactics
Published online by Cambridge University Press: 01 September 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgements
- Chapter 1 The IPM paradigm: concepts, strategies and tactics
- Chapter 2 Economic impacts of IPM
- Chapter 3 Economic decision rules for IPM
- Chapter 4 Decision making and economic risk in IPM
- Chapter 5 IPM as applied ecology: the biological precepts
- Chapter 6 Population dynamics and species interactions
- Chapter 7 Sampling for detection, estimation and IPM decision making
- Chapter 8 Application of aerobiology to IPM
- Chapter 9 Introduction and augmentation of biological control agents
- Chapter 10 Crop diversification strategies for pest regulation in IPM systems
- Chapter 11 Manipulation of arthropod pathogens for IPM
- Chapter 12 Integrating conservation biological control into IPM systems
- Chapter 13 Barriers to adoption of biological control agents and biological pesticides
- Chapter 14 Integrating pesticides with biotic and biological control for arthropod pest management
- Chapter 15 Pesticide resistance management
- Chapter 16 Assessing environmental risks of pesticides
- Chapter 17 Assessing pesticide risks to humans: putting science into practice
- Chapter 18 Advances in breeding for host plant resistance
- Chapter 19 Resistance management to transgenic insecticidal plants
- Chapter 20 Role of biotechnology in sustainable agriculture
- Chapter 21 Use of pheromones in IPM
- Chapter 22 Insect endocrinology and hormone-based pest control products in IPM
- Chapter 23 Eradication: strategies and tactics
- Chapter 24 Insect management with physical methods in pre- and post-harvest situations
- Chapter 25 Cotton arthropod IPM
- Chapter 26 Citrus IPM
- Chapter 27 IPM in greenhouse vegetables and ornamentals
- Chapter 28 Vector and virus IPM for seed potato production
- Chapter 29 IPM in structural habitats
- Chapter 30 Fire ant IPM
- Chapter 31 Integrated vector management for malaria
- Chapter 32 Gypsy moth IPM
- Chapter 33 IPM for invasive species
- Chapter 34 IPM information technology
- Chapter 35 Private-sector roles in advancing IPM adoption
- Chapter 36 IPM: ideals and realities in developing countries
- Chapter 37 The USA National IPM Road Map
- Chapter 38 The role of assessment and evaluation in IPM implementation
- Chapter 39 From IPM to organic and sustainable agriculture
- Chapter 40 Future of IPM: a worldwide perspective
- Index
- References
Summary
Pests compete with humans for food, fiber and shelter and may be found within a broad assemblage of organisms that includes insects, plant pathogens and weeds. Some insect pests serve as vectors of diseases caused by bacteria, filarial nematodes, protozoans and viruses. Densities of many pests are regulated by density-independent factors, particularly under fluctuating environmental extremes (e.g. temperature, precipitation). Biotic components within a pest's life system also may serve as important population regulation factors, such as interactions with predators and parasitoids. Some ecologists have theorized that competition (interspecific and/or intraspecific) for resources ultimately limits the densities and distributions of organisms, including those that are anthropocentrically categorized as pests.
Historical perspectives
Humans have been in direct competition with a myriad of pests from our ancestral beginnings. Competition with pests for food intensified when humans began to cultivate plants and domesticate animals at the beginnings of agriculture, 10 000 to 16 000 years ago (Perkins, 2002; Thacker, 2002; Bird, 2003). As humans became more competent in producing crops used for food and fiber, human densities began to increase and were organized in larger groupings such as villages. This increased concentration of humans in close proximity to their livestock is believed to have facilitated the mutation and spread of diseases across species in some instances. The earliest attempts at agricultural pest control were likely very direct and included handpicking and crushing insects, pulling or cutting weeds and discarding rotting food sources.
- Type
- Chapter
- Information
- Integrated Pest ManagementConcepts, Tactics, Strategies and Case Studies, pp. 1 - 13Publisher: Cambridge University PressPrint publication year: 2008
References
- 6
- Cited by