Published online by Cambridge University Press: 19 March 2020
In this paper some recent topological applications of Riemann surface theory and especially of their associated theta functions (in different geometric incarnations) are surveyed, taking the circle of ideas around geometric quantization as a vantage point. They include classical and quantum monodromy of 2D-integrable systems and the construction of unitary Riemann surface braid group representations (aimed, in particular, at devising a mathematical interpretation of the Laughlin wave functions emerging in condensed matter physics). The noncommutative version of theta functions due to A. Schwarz is briefly discussed, showing in particular its efficacy in Fourier–Mukai–Nahm computations.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.