Book contents
- Frontmatter
- Contents of Volume 1
- Contents of Volume 2
- Algebraic Geometry: A Celebration of Emma Previato’s 65th Birthday
- 1 Arithmetic Analogues of Hamiltonian Systems
- 2 Algebraic Spectral Curves over Q and their Tau-Functions
- 3 Frobenius Split Anticanonical Divisors
- 4 Halves of Points of an Odd Degree Hyperelliptic Curve in its Jacobian
- 5 Normal Forms for Kummer Surfaces
- 6 σ-Functions: Old and New Results
- 7 Bergman Tau-Function: From Einstein Equations and Dubrovin-Frobenius Manifolds to Geometry of Moduli Spaces
- 8 The Rigid Body Dynamics in an Ideal Fluid: Clebsch Top and Kummer Surfaces
- 9 An Extension of Delsarte, Goethals and Mac Williams Theorem on Minimal Weight Codewords to a Class of Reed-Muller Type Codes
- 10 A Primer on Lax Pairs
- 11 Lattice-Theoretic Characterizations of Classes of Groups
- 12 Jacobi Inversion Formulae for a Curve in Weierstrass Normal Form
- 13 Spectral Construction of Non-Holomorphic Eisenstein-Type Series and their Kronecker Limit Formula
- 14 Some Topological Applications of Theta Functions
- 15 Multiple Dedekind Zeta Values are Periods of Mixed Tate Motives
- 16 Noncommutative Cross-Ratio and Schwarz Derivative
15 - Multiple Dedekind Zeta Values are Periods of Mixed Tate Motives
Published online by Cambridge University Press: 19 March 2020
- Frontmatter
- Contents of Volume 1
- Contents of Volume 2
- Algebraic Geometry: A Celebration of Emma Previato’s 65th Birthday
- 1 Arithmetic Analogues of Hamiltonian Systems
- 2 Algebraic Spectral Curves over Q and their Tau-Functions
- 3 Frobenius Split Anticanonical Divisors
- 4 Halves of Points of an Odd Degree Hyperelliptic Curve in its Jacobian
- 5 Normal Forms for Kummer Surfaces
- 6 σ-Functions: Old and New Results
- 7 Bergman Tau-Function: From Einstein Equations and Dubrovin-Frobenius Manifolds to Geometry of Moduli Spaces
- 8 The Rigid Body Dynamics in an Ideal Fluid: Clebsch Top and Kummer Surfaces
- 9 An Extension of Delsarte, Goethals and Mac Williams Theorem on Minimal Weight Codewords to a Class of Reed-Muller Type Codes
- 10 A Primer on Lax Pairs
- 11 Lattice-Theoretic Characterizations of Classes of Groups
- 12 Jacobi Inversion Formulae for a Curve in Weierstrass Normal Form
- 13 Spectral Construction of Non-Holomorphic Eisenstein-Type Series and their Kronecker Limit Formula
- 14 Some Topological Applications of Theta Functions
- 15 Multiple Dedekind Zeta Values are Periods of Mixed Tate Motives
- 16 Noncommutative Cross-Ratio and Schwarz Derivative
Summary
Recently, the author defined multiple Dedekind zeta values associated to a number K field and a cone C. These objects are number theoretic analogues of multiple zeta values. In this paper we prove that every multiple Dedekind zeta value over any number field K is a period of a mixed Tate motive. Moreover, if K is a totally real number field, then we can choose a cone C so that every multiple Dedekind zeta associated to the pair (K, C) is unramified over the ring of algebraic integers in K. In his related book, the author proves similar statements in the special case of real quadraticfields for a particular type of multiple Dedekind zeta values. The mixed motives are defined over K in terms of the Deligne–Mumford compactification of the moduli space of curves of genus zero with n marked points.
- Type
- Chapter
- Information
- Integrable Systems and Algebraic Geometry , pp. 485 - 498Publisher: Cambridge University PressPrint publication year: 2020