Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T08:18:31.787Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 January 2022

David L. Denlinger
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Insect Diapause , pp. 343 - 441
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aak, A., Birkemoe, T., and Leinaas, H.P.. 2011. Phenology and life history of the blowfly Calliphora vicina in stockfish production areas. Ent. Exp. Appl. 139:3546.CrossRefGoogle Scholar
Abarca, M. 2019. Herbivore seasonality responds to conflicting cues: untangling the effects of host, temperature, and photoperiod. PLoS One 14:e0222227.Google Scholar
Abdelrahman, H., Rinehart, J.P., Yocum, G.D., Greenlee, K.J., Helm, B.R., Kemp, W.P., Schulz, C.H., and Bowsher, J.H.. 2014. Extended hypoxia in the alfalfa leafcutting bee, Megachile rotundata, increases survival but causes sub-lethal effects. J. Insect Physiol. 64:8189.CrossRefGoogle ScholarPubMed
Abrieux, A., Xue, Y., Cali, Y., Lewald, K.M., Nguyen, H.N., Zhang, Y., and Chiu, J.C.. 2020. EYES ABSENT and TIMELESS integrate photoperiodic and temperature cues to regulate seasonal physiology in Drosophila. Proc. Nat’l. Acad. Sci., USA 117:1529315304.Google Scholar
Adedokun, T.A. and Denlinger, D.L.. 1985. Metabolic reserves associated with pupal diapause in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 31:229233.CrossRefGoogle Scholar
Adkisson, P.L. 1964. Action of the photoperiod in controlling insect diapause. Am. Nat. 98:357374.CrossRefGoogle Scholar
Adkisson, P.L. 1966. Internal clocks and insect diapause. Science 154:234241.Google Scholar
Agui, N. 1975. Activation of prothoracic glands of brains in vitro. J. Insect Physiol. 21:903913.Google Scholar
Agui, N., Granger, N.A., Gilbert, L.I., and Bollenbacher, W.E.. 1979. Cellular localization of insect prothoracicotropic hormone. Proc. Nat’l. Acad. Sci., USA 76:56845690.CrossRefGoogle ScholarPubMed
Ahmadi, F., Moharramipour, S., and Mikani, A.. 2018. The effect of temperature and photoperiod on diapause induction in pupae of Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). Environ. Ent. 47:13141322.Google Scholar
Akitomo, S., Egi, Y., Nakamura, Y., Suetsugu, Y., Oishi, K., and Sakamoto, K.. 2017. Genome-wide microarray screening of Bombyx mori genes related to transmitting the determination outcome of whether to produce diapause or nondiapause eggs. Insect Sci. 24:187193.Google Scholar
Akkawi, M.M. and Scott, D.R.. 1984. The effect of age of parents on the progeny of diapaused and nondiapaused Heliothis zea. Ent. Exp. Appl. 35:235239.Google Scholar
Ala-Honkola, Q., Kauranen, H., Tyukmaeva, V., Boetzl, F.A., Hoikkala, A., and Schmitt, T.. 2018. Diapause affects cuticular hydrocarbon composition and mating behavior of both sexes in Drosophila montana. Insect Sci. 27:304316.Google Scholar
Al-Anzi, B., Sapin, V., Waters, C., Zinn, K., Wyman, R.J., and Benzer, S.. 2009. Obesity-blocking neurons in Drosophila. Neuron 63:329341.Google Scholar
Allen, M.J. 2007. What makes a fly enter diapause? Fly 1:307310.Google Scholar
Altermatt, F. 2009. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B 277:12811287.CrossRefGoogle ScholarPubMed
Amevoin, K., Glitho, I.A., Monge, J.P., and Huignard, J.. 2005. Why Callosobruchus rhodesianus causes limited damage during storage of cowpea sees in a tropical humid zone in Togo. Ent. Exp. Appl. 116:175182.CrossRefGoogle Scholar
Amouroux, P., Normand, F., Delatte, H., Roques, A., and Nibouche, S.. 2014. Diapause incidence and duration in the pest mango blossom gall midge, Procontrinia mangiferae (Felt), on Reunion Island. Bull. Ent. Res. 104:661670.Google Scholar
Amsalem, E., Galbraith, D.A., Cnaani, J., Teal, P.E.A., and Grozinger, C.M.. 2015. Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens. Mol. Ecol. 24:55965615.Google Scholar
An, Y., Nakajima, T., and Suzuki, K.. 1998. Immunohistochemical demonstration of mammalian- and FMRFamide-like peptides in the gut innervation and endocrine cells of the wild silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) during diapause and post-diapause of pharate first-instar larvae. Eur. J. Ent. 95:185196.Google Scholar
Anchordoguy, T.J. and Hand, S.C.. 1994. Acute blockage of the ubiquitin-mediated proteolytic pathway during invertebrate quiescence. Am. J. Physiol. 267:R895R900.Google Scholar
Anderson, J.F. and Main, A.J.. 2006. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the Northeastern United States. J. Infect. Diseases 194:15771579.CrossRefGoogle ScholarPubMed
Andrade, T.O., Herve, M., Outreman, Y., Krespi, L., and van Baaren, J.. 2013. Winter host exploitation influences fitness traits in a parasitoid. Ent. Exp. Appl. 147:167174.Google Scholar
Andreadis, T.G., Armstrong, P.A., and Bajwa, W.J.. 2010. Studies on hibernating populations of Culex pipiens (Diptera: Culicidae) from a West Nile virus endemic focus in New York City: parity rates and isolation of West Nile virus. Am. J. Mosq. Cont. Assoc. 26:257264.Google Scholar
Andreatta, G., Kyriacou, C.P., Flatt, T., and Costa, R.. 2018. Aminergic signaling controls ovarian dormancy in Drosophila. Sci. Rep. 8:2030.CrossRefGoogle ScholarPubMed
Andreatta, G., Broyart, C., Borghgraef, C., Vadiwala, K., Kozin, V., Polo, A., Bileck, A., Beets, I., Schoofs, L., Gerner, C., and Raible, F.. 2020. Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis. Proc. Nat’l. Acad. Sci., USA 117:10971106.Google Scholar
Andrewartha, H.G. 1952. Diapause in relation to the ecology of insects. Biol. Rev. Camb. Philos. Soc. 27:50107.Google Scholar
Andrews, M.T. 2019. Molecular interactions underpinning the phenotype of hibernation in mammals. J. Exp. Biol. 222: jeb160606.Google Scholar
Anduaga, A.M., Nagy, D., Costa, R., and Kyriaou, C.P.. 2018. Diapause in Drosophila melanogaster – photoperiodicity, cold tolerance and metabolites. J. Insect Physiol. 105:4653.CrossRefGoogle ScholarPubMed
Ankersmit, G.W. 1968. The photoperiod as a control agent against Adoxophyes reticulana (Lepidoptera; Tortricidae). Ent. Exp. Appl. 11:213240.Google Scholar
Appenroth, D., Melum, V.J., West, A.C., Dardente, H., Hazlerigg, D.G., and Wagner, G.C.. 2020. Photoperiodic induction without light-mediated circadian entrainment in a high Arctic resident bird. J. Exp. Biol. 223:jeb220699.Google Scholar
Appleby, J.H. and Credland, P.F.. 2007. The role of temperature and larval crowding in morph determination in a tropical beetle, Callosobruchus subinnotatus. J. Insect Physiol. 53:983993.CrossRefGoogle Scholar
Arbaciauskas, K. 2004. Daphnia. J. Limnol. 63 (Suppl. 1):715.Google Scholar
Arfat, Y., Chang, H., and Ga, Y.. 2018. Stress-responsive miRNAs are involved in re-programming of metabolic functions in hibernators. J. Cell. Physiol. 233:26952704.Google Scholar
Arias-Cordero, E., Ping, L., Reichwald, K., Delb, H., Platzer, M., and Boland, W.. 2012. Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS One 7:e51557.Google Scholar
Armbruster, P.A. 2016. Photoperiodic diapause and the establishment of Aedes albopictus (Diptera: Culicidae) in North America. J. Med. Ent. 53:10131023.CrossRefGoogle ScholarPubMed
Arpagaus, M. 1987. Vertebrate insulin induces diapause termination in Pieris brassicae pupae. Roux’s Arch. Dev. Biol. 196:527530.Google Scholar
Arrese, E.L. and Soulages, J.L.. 2010. Insect fat body: energy, metabolism, and regulation. Ann. Rev. Ent. 55:207225.CrossRefGoogle ScholarPubMed
Asano, W., Munyiri, F.N., Shintani, Y., and Ishikawa, Y.. 2004. Interactive effects of photoperiod and temperature on diapause induction and termination in the yellow-spotted longicorn beetle, Psacothea hilaris. Physiol. Ent. 29:458463.CrossRefGoogle Scholar
van Asch, M. and Visser, M.E.. 2007. Phenology of forest caterpillars and their host trees: the importance of synchrony. Ann. Rev. Ent. 52:3755.Google Scholar
Audusseau, H., Nylin, S., and Janz, N.. 2013. Implications of a temperature increase for host plant range: predictions for a butterfly. Ecol. Evol. 3:30213029.CrossRefGoogle ScholarPubMed
Austin, A.B.M., Tatchell, G.M., Harrington, R., and Bale, J.S.. 1996. Adaptive significance of changes in morph production during the transition from parthenogenetic to sexual reproduction in the aphid Rhopalosiphum padi (Homoptera: Aphididae). Bull. Ent. Res. 86:9399.CrossRefGoogle Scholar
Baik, L.S., Fogle, K.J., Roberts, L., Galschiodt, A.M., Chevez, J.A., Recinos, Y., Nguy, V., and Holmes, T.C.. 2017. CRYPTOCHROME mediates behavioral executive choice in response to UV light. Proc. Nat’l. Acad. Sci., USA 114:776781.CrossRefGoogle ScholarPubMed
Bajgar, A., Doležel, D., and Hodková, M.. 2013a. Endocrine regulation of non-circadian behavior of circadian genes in insect gut. J. Insect Physiol. 59:881886.Google Scholar
Bajgar, A., Jindra, M., and Doležel, D.. 2013b. Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc. Nat’l Acad. Sci., USA 110:44154421.CrossRefGoogle ScholarPubMed
Baker, D.A. and Russell, S.. 2009. Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genomics 10:242.Google Scholar
Baker, K.D. and Thummel, C.S.. 2007. Diabetic larvae and obese flies – emerging studies of metabolism in Drosophila. Cell. Metab. 6:257266.Google Scholar
Bale, J.S. and Hayward, S.A.L.. 2010. Insect overwintering in a changing climate. J. Exp. Biol. 213:980994.Google Scholar
Bao, B. and Xu, W.-H.. 2011. Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera. BMC Genomics 12:224.Google Scholar
Bao, B., Hong, B., Feng, Q.-L., and Xu, W.-H.. 2011. Transcription factor fork head regulates the promoter of diapause hormone gene in the cotton bollworm, Helicoverpa armigera, and the modification of SUMOylation. Insect Biochem. Mol. Biol. 41:670679.CrossRefGoogle ScholarPubMed
Barat, M., Vernon, P., Tarayre, M., and Atlan, A.. 2010. Overwintering strategy of two weevils infesting three gorse species: when cold hardiness meets plant–insect interactions. J. Insect Physiol. 56:170177.Google Scholar
Barberà, M., Mengual, B., Collantes-Alegre, J.M., Cortés, T., González, A., and Martínez-Torres, D.. 2013. Identification, characterization and analysis of expression of genes encoding arylalkylamine N-acetyltransferase in the pea aphid Acyrthosiphon pisum. Insect Mol. Biol. 22:623634.CrossRefGoogle ScholarPubMed
Barberà, M., Collantes-Alegre, J.M., and Martínez-Torres, D.. 2017. Characterization, analysis of expression and localization of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. Insect Biochem. Mol. Biol. 83:5467.Google Scholar
Barberà, M., Escrivá, L., Collantes-Alegre, J.M., Meca, G., Rosato, E., and Martínez-Torres, D.. 2018. Melatonin in the seasonal response of the aphid Acyrthosiphon pisum. Insect Sci.27:224238.CrossRefGoogle ScholarPubMed
Barberà, M., Cañas-Cañas, R., and Martínez-Torres, D.. 2019. Insulin-like peptides involved in photoperiodism in the aphid Acyrthosiphon pisum. Insect Biochem. Mol. Biol. 112:103185.Google Scholar
Barbosa, M. and Fernandes, G.W.. 2019. Moisture stimulates galler emergence from dry season dormancy in the leaf litter. Phytoparasitica 47:629635.CrossRefGoogle Scholar
Batz, Z.A., Goff, A.C., and Armbruster, P.A.. 2017. MicroRNAs are differentially abundant during Aedes albopictus diapause maintenance but not diapause induction. Insect Mol. Biol. 26:721733.Google Scholar
Batz, Z.A. and Armbruster, P.A.. 2018. Diapause-associated changes in the lipid and metabolite profiles of the Asian tiger mosquito, Aedes albopictus. J. Exp. Biol. 221:189480.CrossRefGoogle ScholarPubMed
Batz, Z.A., Brent, C.S., Marias, M.R., Sugijanto, J., and Armbruster, P.A.. 2019. Juvenile hormone III but not 20-hydroxyecdysone regulates the embryonic diapause of Aedes albopictus. Front. Physiol. 10:1352.Google Scholar
Batz, Z.A., Clemento, A.J.,Fitzenwanker, J.,Ring, T.J., Garza, J.C., and Armbruster, P.A.. 2020. Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito. Evolution 74:14511465.Google Scholar
Baumgartner, M.F. and Tarrant, A.M.. 2017. The physiology and ecology of diapause in marine copepods. Ann. Rev. Mar. Sci. 9:387411.Google Scholar
Beach, R. 1978. The required day number and timely induction of diapause in geographic strains of the mosquito Aedes atropalpus. J. Insect Physiol. 24:449455.Google Scholar
Bean, D.W., Dudley, T.L., and Keller, J.C.. 2007a. Seasonal timing of diapause induction limits the effective range of Diorhabda elongate deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarisk spp.). Environ. Ent. 36:1525.CrossRefGoogle Scholar
Bean, D.W., Wang, T., Bartlet, R.J., and Zilkowski, B.W.. 2007b. Diapause in the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae) a biological control agent for tamarisk (Tamarix spp.). Environ. Ent. 36:531540.Google Scholar
Beards, G.W. and Strong, F.E.. 1966. Photoperiod in relation to diapause in Lygus hesperus Knight. Hilgardia 37:345362.Google Scholar
Bebas, P., Cymborowski, B., Kazek, M., and Polanska, M.A.. 2018. Effects of larval diapause and the juvenile hormone analog, fenoxycarb, on testis development and spermatogenesis in the wax moth, Galleria mellonella (Lepidoptera: Pyralidae). Eur. J. Ent. 115:400417.Google Scholar
Beck, S.D. 1968. Insect Photoperiodism. New York: Academic Press.Google Scholar
Beck, S.D. 1980. Insect Photoperiodism, second ed. New York: Academic Press.Google Scholar
Beck, S.D. 1982. Thermoperiodic induction of larval diapause in the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 28:273277.CrossRefGoogle Scholar
Beck, S.D. 1985. Effects of thermoperiod on photoperiodic determination of diapause in Ostrinia nubilalis. J. Insect Physiol. 31:4146.Google Scholar
Beck, S.D. 1987. Thermoperiod–photoperiod interactions in the determination of diapause in Ostrinia nubilalis. J. Insect Physiol. 33:707712.CrossRefGoogle Scholar
Beck, S.D. 1991. Thermoperiodism. In Insects at Low Temperature, ed. Lee, R.E. Jr. and Denlinger, D.L., New York: Chapman & Hall, pp. 199228.Google Scholar
Beck, S.D. and Hanec, W.. 1960. Diapause in the European corn borer, Pyrausta nubilalis (Hbn.). J. Insect Physiol. 4:304318.Google Scholar
Beck, S.D., Shane, J.L., and Garland, J.A.. 1969. Ammonium-induced termination of diapause in the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 15:945951.Google Scholar
Beer, K. and Helfrich-Förster, C.. 2020. Model and non-model insects in chronobiology. Front. Behav. Neurosci. 14:601676.Google Scholar
Belozerov, V.N. 2008. Diapause and quiescence as two main kinds of dormancy and their significance in life cycles of mites and ticks (Chelicerata: Arachnida: Acari). Part 1. Acariformes. Acarina 16:79130.Google Scholar
Bel-Venner, M.-C., Mondy, N., Arthaud, F., Marandet, J., Giron, D., Venner, S., and Menu, F.. 2009. Ecophysiological attributes of adult overwintering in insects: insights from a field study of the nut weevil, Curculio nucum. Physiol. Ent. 34:6170.Google Scholar
Benetta, E.D., Beukeboom, L. W., and van de Zande, L.. 2019. Adaptive differences in circadian clock gene expression patterns and photoperiodic diapause induction in Nasonia vitripennis. Am. Nat. 193:881896.Google Scholar
Bennett, M.M., Rinehart, J.P., Yocum, G.D., Doetkott, C., and Greenlee, K.J.. 2018. Cues for cavity nesters: investigating relevant Zeitgebers for emerging leafcutting bees, Megachile rotundata. J. Exp. Biol. 221:jeb175406.Google ScholarPubMed
Bennett, V.A., Kukal, O., and Lee, R.E. Jr. 1999. Metabolic opportunists: feeding and temperature influence the rate and pattern of respiration in the high arctic woollybear caterpillar Gynaephora groenlandica (Lymantriidae). J. Exp. Biol. 202:4753.Google Scholar
Benoit, J.B. and Denlinger, D.L.. 2007. Suppression of water loss during adult diapause in the northern house mosquito, Culex pipiens. J. Exp. Biol. 210:217226.Google Scholar
Benoit, J.B., Lopez-Martinez, G., Phillips, Z.P., Patrick, K.R., and Denlinger, D.L.. 2010a. Heat shock proteins contribute to mosquito dehydration tolerance. J. Insect Physiol. 56:151156.Google Scholar
Benoit, J.B., Morton, P.K., Cambron, S.E., Patrick, K.R., and Schemerhorn, B.J.. 2010b. Aestivation and diapause syndromes reduce the water balance requirements for pupae of the Hessian fly, Mayetiola destructor. Ent. Exp. Appl. 136:8996.CrossRefGoogle Scholar
Benoit, J.B., Zhang, Q., Jennings, E.C., Rosendale, A.J., and Denlinger, D.L.. 2015. Suppression of net transpiration by multiple mechanisms conserves water resources during pupal diapause in the corn earworm, Helicoverpa zea. Physiol. Ent. 40:336342.Google Scholar
Benton, F.P. 2015. Insect diapause of very variable duration: the case of the palm nut bruchid Pachymerus nucleorum (Coleoptera: Chrysomelidae). Int’l. J. Ent. 51:1013.Google Scholar
Bentz, B.J. and Hansen, E.M.. 2017. Evidence for a prepupal diapause in the mountain pine beetle (Dendroctonus ponderosae). Environ. Ent. 47:175183.Google Scholar
Bergland, A.O., Agotsch, M., Mathias, D., Bradshaw, W.E., and Holzapfel, C.M.. 2005. Factors influencing the seasonal life history of the pitcher-plant mosquito, Wyeomyia smithii. Ecol. Ent. 30:129137.Google Scholar
Bergonzi, S., Albani, M.C., van Themaat, E.V.L., Nordström, K.J.V., Wang, R., Schneeberger, K., Moerland, P.D., and Coupland, G.. 2013. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:10941097.Google Scholar
Berlinger, M.J. and Ankersmit, G.W.. 1976. Manipulation with photoperiod as a method of control of Adoxophyes orana (Lepidoptera, Tortricidae). Ent. Exp. Appl. 19:96107.Google Scholar
Bertolini, E., Schubert, F.K., Zanini, D., Sehadova, H., Helfrich-Forster, C., and Menegazzi, P.. 2019. Life at high latitudes does not require circadian behavioral rhythmicity under constant darkness. Curr. Biol. 29:19.Google Scholar
Bertossa, R.C., van de Zande, L.W., and Beersma, D.G.M.. 2014. Phylogeny and oscillating expression of period and cryptochrome in short and long photoperiods suggest a conserved function in Nasonia vitripennis. Chronobiol. Inter. 31:749760.CrossRefGoogle Scholar
Biggar, K.K. and Storey, K.B.. 2018. Functional impact of microRNA regulation in models of extreme stress adaptation. J. Mol. Cell Biol. 10:93101.Google Scholar
Bird, L.J. and Akhurst, R.J.. 2005. Fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Nocutidae) on transgenic cotton with reduced levels of Cry1Ac. J. Econ. Ent. 98:13111319.Google Scholar
Biron, D.G., Brunel, E., Tiilikkala, K., Hellqvist, S., and Dixon, P.L.. 2003. Expression of a bimodal emergence pattern in diapausing and nondiapausing Delia floralis: a phenological survival strategy. Ent. Exp. Appl. 107:163166.Google Scholar
Blake, G.M. 1958. Diapause and regulation of development in Anthrenus verbasci (L.)(Col., Dermestidae). Bull. Ent. Res. 49:751775.Google Scholar
Blanckenhorn, W.U. 1998a. Altitudinal differentiation in the diapause response of two species of dung flies. Ecol. Ent. 23:18.CrossRefGoogle Scholar
Blanckenhorn, W.U. 1998b. Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution 52:13941407.Google Scholar
Blanckenhorn, W.U., Henseler, C., Burkhard, D.U., and Briegel, H.. 2001. Summer decline in populations of the yellow dung fly: diapause or quiescence? Physiol. Ent. 26:260265.Google Scholar
Blau, W.S. 1981. Life history variation in the black swallowtail butterfly. Oecologia 48:116122.Google Scholar
Blitvich, B.J., Rayms-Keller, A., Blair, C.D., and Beaty, B.J.. 2001. Identification and sequence determination of mRNAs detected in dormant (diapausing) Aedes triseriatus mosquito embryos. DNA Sequence 12:197202.Google Scholar
de Block, M., McPeek, M.A., and Stoks, R.. 2007. Winter compensatory growth under field conditions partly offsets low energy reserves before winter in a damselfly. Oikos 116:19751982.CrossRefGoogle Scholar
Bloem, S., Carpenter, J.E., and Dorn, S.. 2006. Mobility of mass-reared diapaused and nondiapaused Cydia pomonella (Lepidoptera: Tortricidae): effects of mating status and treatment with gamma radiation. J. Econ. Ent. 99:699706.Google Scholar
Blom, P.E., Fleischer, S.J., and Harding, C.L.. 2004. Modeling colonization of overwintering immigrant Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Environ. Ent. 33:267274.Google Scholar
Bodnaryk, R.P. 1977. Stages of diapause development in the pupa of Mamestra configurata based on β-ecdysone sensitivity index. J. Insect Physiol. 23:537542.CrossRefGoogle Scholar
Bodnaryk, R.P. 1985. Ecdysteroid levels during postdiapause development and 20-hydroxyecdysone induced development in male pupae of Mamestra configurata Wlk. J. Insect Physiol. 31:5358.CrossRefGoogle Scholar
Boivin, T., Bouvier, J.-C., Beslay, D., and Sauphanor, B.. 2004. Variability in diapause propensity within populations of a temperate insect species: interactions between insecticide resistance genes and photoperiodism. Biol. J. 83:341351.Google Scholar
Bonnett, T.R., Robert, J.A., Pitt, C., Fraser, J.D., Keeling, C.I., Bohlmann, J., and Huber, D.P.W.. 2012. Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae. Insect Biochem. Mol. Biol. 42:890901.Google Scholar
Borah, B.K., Renthlei, Z., and Trivedi, A.K.. 2020. Hypothalamus but not liver retains daily expression of clock genes during hibernation in terai tree frog (Polypedates teraiensis). Chronobiol. Int’l. 2020:1726373.Google Scholar
Bosch, J. and Kemp, W.P.. 2003. Effect of wintering duration and temperature on survival and emergence time in males of the orchard pollinator Osmia lignaria (Hymenoptera: Megachilidae). Environ. Ent. 32:711716.Google Scholar
Bosch, J., Sgolastra, F., and Kemp, W.P.. 2010. Timing of eclosion affects diapause development, fat body consumption and longevity in Osmia lignaria, a univoltine, adult-wintering solitary bee. J. Insect Physiol. 56:19491957.Google Scholar
Bosse, T.C. and Veerman, A.. 1996. Involvement of vitamin A in the photoperiodic induction of diapause in the spider mite Tetranychus urticae is demonstrated by rearing an albino mutant on a semi-synthetic diet and without β-carotene or vitamin A. Physiol. Ent. 21:188192.Google Scholar
Boulay, J., Aubernon, C., Ruxton, G.D., Hedouin, V., Deneubourg, J.-L., and Charabidze, D.. 2019. Mixed-species aggregations in arthropods. Insect Sci. 26:219.Google Scholar
Bova, J., Soghigian, J., and Paulson, S.. 2019. The prediapause stage of Aedes japonicas japonicas and the evolution of embryonic diapause in Aedini. Insects 10:222.CrossRefGoogle Scholar
Bowen, M.F. 1992. Patterns of sugar feeding in diapausing and nondiapausing Culex pipiens (Diptera: Culicidae) females. J. Med. Ent. 29:843849.Google Scholar
Bowen, M.F., Bollenbacher, W.E., and Gilbert, L.I.. 1984. In vitro studies on the role of the brain and prothoracic glands in the pupal diapause of Manduca sexta. J. Exp. Biol. 108:924.Google Scholar
Bowers, W.S. 1976. Discovery of insect antiallatotropins. In The Juvenile Hormones, ed. Gilbert, L.I., New York: Plenum, pp. 384408.Google Scholar
Boychuk, E.C., Smiley, J.T., Dahlhoff, E.P., Bernards, M.A., Rank, N.E., and Sinclair, B.J.. 2015. Cold tolerance of the montane Sierra leaf beetle, Chrysomela aeneicollis. J. Insect Physiol. 81:157166.Google Scholar
Boyle, J.H., Rastas, P.M.A., Huang, X., Garner, A.G., Vythilingham, I., and Armbruster, P.A.. 2021. A linkage-based genome assembly for the mosquito Aedes albopictus and identification of chromosomal regions affecting diapause. Insects 12:167.Google Scholar
Bradfield, J.Y. and Denlinger, D.L.. 1980. Diapause development in the tobacco hornworm: a role for ecdysone or juvenile hormone? Gen. Comp. Endocrin. 41:101107.Google Scholar
Bradshaw, W.E. 1969. Major environmental factors inducing the termination of larval diapause in Chaoborus americanus Johannsen (Diptera: Culicidae). Biol. Bull. 136:28.Google Scholar
Bradshaw, W.E. 1973. Homeostasis and polymorphism in vernal development of Chaoborus americanus. Ecology 54:12471259.Google Scholar
Bradshaw, W.E. 1974. Photoperiodic control of development in Chaborus americanus with special reference to photoperiodic action spectra. Biol. Bull. 146:1119.Google Scholar
Bradshaw, W.E. 1976. Geography of photoperiodic response in a diapausing mosquito. Nature 262:384386.Google Scholar
Bradshaw, W.E. 1980. Thermoperiodism and the thermal environment of the pitcher-plant mosquito, Wyeomyia smithii. Oecologia 46:1317.Google Scholar
Bradshaw, W.E. and Lounibos, L.P.. 1972. Photoperiodic control of development in the pitcher-plant mosquito, Wyeomyia smithii. Can. J. Zool. 50:713719.CrossRefGoogle Scholar
Bradshaw, W.E. and Lounibos, L.P.. 1977. Evolution of dormancy and its photoperiodic control in pitcher-plant mosquitoes. Evolution 31:546567.Google Scholar
Bradshaw, W.E., Armbruster, P.A., and Holzapfel, C.M.. 1998. Fitness consequences of hibernal diapause in the pitcher-plant mosquito, Wyeomyia smithii. Ecology 79:14581462.Google Scholar
Bradshaw, W.E. and Holzapfel, C.M.. 2001a. Genetic shift in photoperiodic response correlated with global warming. Proc. Nat’l. Acad. Sci., USA 98:1450914511.Google Scholar
Bradshaw, W.E. and Holzapfel, C.M.. 2001b. Phenotypic evolution and the genetic architecture underlying photoperiodic time measurement. J. Insect Physiol. 47:809820.Google Scholar
Bradshaw, W.E., Quebodeaux, M.C., and Holzapfel, C.M.. 2003a. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: adaptive response to photic environment or correlated response to the seasonal environment? Am. Nat. 161:735748.Google Scholar
Bradshaw, W.E., Quebodeaux, M.C., and Holzapfel, C.M.. 2003b. The contribution of an hourglass timer to the evolution of photoperiodic response in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 57:23422349.Google Scholar
Bradshaw, W.E., Zani, P.A., and Holzapfel, C.M.. 2004. Adaptation to temperate climates. Evolution 58:17481762.Google Scholar
Bradshaw, W.E. and Holzapfel, C.M.. 2007. Evolution of animal photoperiodism. Ann. Rev. Ecol. Evol. Syst. 38:125.Google Scholar
Bradshaw, W.E. and Holzapfel, C.M.. 2008. Genetic response to rapid climate change: it’s seasonal timing that matters. Mol. Ecol. 17:157166.Google Scholar
Bradshaw, W.E. and Holzapfel, C.M.. 2010a. Light, time, and the physiology of biotic response to rapid climate change in animals. Ann. Rev. Physiol. 72:147166.Google Scholar
Bradshaw, W.E. and Holzapfel, C.M.. 2010b. Circadian clock genes, ovarian development and diapause. BMC Biol. 8:115.Google Scholar
Bradshaw, W.E. and Holzapfel, C.M.. 2010c. What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects. J. Biol. Rhyth. 25:155165.Google Scholar
Bradshaw, W.E. and Holzapfel, C.M.. 2010d. Insects at not so low temperature: climate change in the temperate zone and its biotic consequences. In Low Temperature Biology of Insects, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 242275.Google Scholar
Bradshaw, W.E., Emerson, K.J., Catchen, J.M., Cresko, W.A., and Holzapfel, C.M.. 2012. Footprints in time: comparative quantitative trait loci mapping of the pitcher-plant mosquito, Wyeomyia smithii. Proc. R. Soc. Lond., Ser. B 279:45514558.Google Scholar
Bradshaw, W.E. and Holzapfel, C.M.. 2017. Natural variation and genetics of photoperiodism in Wyeomyia smithii. Adv. Gen. 99:3971.Google Scholar
Brady, D., Grapputo, A., Romoli, O., and Sandrelli, F.. 2019. Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int. J. Mol. Sci. 20:5862.Google Scholar
Brent, C.S. 2012. Classification of diapause status by color phenotype in Lygus hesperus. J. Insect Sci. 12:136.Google Scholar
Bresnahan, S.T., Döke, M.A., Giray, T., and Grozinger, C.M.. 2021. Tissue-specific transcriptional patterns underlie seasonal phenotypes in honey bees (Apis mellifera). Mol. Ecol. (in press).Google Scholar
Briers, T. and de Loof, A.. 1981. Moulting hormone activity in the adult Colorado potato beetle, Leptinotarsa decemlineata Say in relation to reproduction and diapause. Int’l. J. Invert. Reprod. 3:145155.Google Scholar
Briers, T., Peferoen, M., and de Loof, A.. 1982. Ecdysteroids and adult diapause in the Colorado potato beetle, Leptinotarsa decemlineata. Physiol. Ent. 7:379386.Google Scholar
Broufas, G. 2002. Diapause induction and termination in the predatory mite Euseius finlandicus in peach orchards in northern Greece. Exp. App. Acarol. 25:921932.Google Scholar
Broufas, G.D. and Koveos, D.S.. 2000. Threshold temperature for post-diapause development and degree-days to hatching of winter eggs of the European red mite (Acari: Tetranychidae) in northern Greece. Environ. Ent. 29:710713.Google Scholar
Broufas, G.D., Pappas, M.L., and Koveos, D.S.. 2006. Effect of cold exposure and photoperiod on diapause termination of the predatory mite Euseius finlandicus (Acari: Phytoseiidae). Environ. Ent. 35:12161221.Google Scholar
Brower, L.P., Calvert, W.H., Hedrick, L.E., and Christian, J.. 1977. Biological observations on an overwintering colony of monarch butterflies (Danaus plexippus, Danaidae) in Mexico. J. Lep. Soc. 31:232242.Google Scholar
Brower, L.P., Kust, D.R., Rendon Salinas, E., Serrano, E.G., Kust, K.R., Miller, J., Fernandez del Rey, C., and Pape, K.. 2004. Catastropic winter storm mortality of monarch butterflies in Mexico during January 2002. In The Monarch Butterfly: Biology and Conservation, ed. Oberhauser, K.M. and Solensky, M., Ithaca: Cornell Univesity Press, pp. 151166.Google Scholar
Brower, L.P., Williams, E.H., Fink, L.S., Slayback, D.A., Ramirez, M.I., Van Limon Garcia, M., Zubieta, R.R., Weiss, S.B., Calvert, W.H., and Zuchowski, W.. 2011. Overwintering clusters of the monarch butterfly coincide with the least hazardous vertical temperatures in the oyamel forest. J. Lep. Soc. 65:2746.Google Scholar
Brown, J.C.L., Chung, D.J., Belgrave, K.R., and Staples, J.F.. 2011. Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302:R15R28.Google Scholar
Brown, J.J. 1980. Haemolymph protein reserves of diapausing and nondiapausing codling moth, Cydia pomonella. J. Insect Physiol. 26:487492.CrossRefGoogle Scholar
Brown, J.J. and Chippendale, G.M.. 1978. Juvenile hormone and a protein associated with the larval diapause of the southwestern corn borer, Diatraea grandiosella. Insect Biochem. 8:359367.Google Scholar
Brown, M.W. and Norris, M.E.. 2004. Survivorship advantage of conspecific necrophay in overwintering boxelder bugs (Heteroptera: Rhopalidae). Ann. Ent. Soc. Am. 97:500503.Google Scholar
Brown, V.K. 1983. Developmental strategies in British Dictyoptera: seasonal variation. In Diapause and Life-Cycle Strategies in Insects, ed. Brown, V.K. and Hodek, I., the Hague: Dr. W. Junk, pp. 111125.Google Scholar
Browning, T.O. 1981. Ecdysteroids and diapause in pupae of Heliothis punctiger. J. Insect Physiol. 27:715719.Google Scholar
Bryon, A., Wybouw, N., Dermauw, W., Tirry, L., and van Leeuwen, T.. 2013. Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genomics 14:815.Google Scholar
Bryon, A., Kurlovs, A.H., van Leeuwen, T. and Clark, R.M.. 2017a. A molecular-genetic understanding of diapause in spider mites: current knowledge and future directions. Physiol. Ent. 42:211224.Google Scholar
Bryon, A., Kurlovs, A.H., Dermauw, W., Greenhalgh, R., Riga, M., Grbic, M., Tirry, L., Osakabe, M., Vontas, J., Clark, R.M., and van Leeuwen, T.. 2017b. Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae. Proc. Nat’l. Acad. Sci., USA 114:E5871E5880.Google Scholar
Buckner, J.S., Mardaus, M.C., and Nelson, D.R.. 1996. Cuticular lipid composition of Heliothis virescens and Helicoverpa zea pupae. Comp. Biochem. Physiol. 114:207216.Google Scholar
Bugbee, L.M. and Forte, L.R.. 2004. The discovery of West Nile virus in overwintering Culex pipiens (Diptera: Culicidae) mosquitoes in Lehigh County, Pennsylvania. J. Am. Mosq. Cont. Assoc. 20:326327.Google Scholar
Bünning, E. 1936. Die endogene Tagesrhythmik als Grundlage der Photoperiodioschen Reaktion. Ber. Deut. Bot. Ges. 54:590607.Google Scholar
Bünsow, R.C. 1953. Uber Tages- und Jahresrhythmische Anderugen der Photoperiodischen Lichteropfindlischkeit bie Kalanchoe blossfeldiana und ihre Bezieghugen zuer endogogen Tagesrhythmik. Z. Bot. 41:257276.Google Scholar
Burges, H.D. 1960. Studies on the dermestid beetle Trogoderma granarium Everts-IV. Feeding, growth, and respiration with particular reference to diapause larvae. J. Insect Physiol. 5:317334.Google Scholar
Burke, S., Pullin, A.S., Wilson, R.J., and Thomas, C.D.. 2005. Selection for discontinuous life-history tratits along a continuous thermal gradient in the butterfly Aricia agestis. Ecol. Ent. 30:613619.Google Scholar
Burkett, B.N. and Schneiderman, H.A.. 1974. Roles of oxygen and carbon dioxide in the control of spiracular function in cecropia pupae. Biol. Bull. 147:274293.Google Scholar
Burmester, T. 1999. Evolution and function of the insect hexamerins. Eur. J. Ent. 96:213225.Google Scholar
Bush, G.L. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera: Tephritidae). Evolution 23:237251.Google Scholar
Cabrera, B.J. and Kamble, S.T.. 2001. Effects of decreasing thermophotoperiod on the eastern subterranean termite (Isoptera: Rhinotermitidae). Environ. Ent. 30:166171.Google Scholar
Calle, Z., Schlumpberger, B.O., Piedrahita, L., Leftin, A., Hammer, S.A., Tye, A., and Borchert, R.. 2010. Seasonal variationin daily insolation induces synchronous bud break and flowering in the tropics. Trees: Struc. Funct. 24:865877.Google Scholar
Canard, M. 2005. Seasonal adaptations of green lacewings (Neuroptera: Chrysopidae). Eur. J. Ent. 102:317324.Google Scholar
Canzano, A.A., Jones, R.E., and Seymour, J.E.. 2003. Diapause termination in two species of tropical butterfly, Euploea core (Cramer) and Euploea sylvester (Fabricius)(Lepidoptera: Nymphalidae). Aust. J. Ent. 42:352356.Google Scholar
Canzano, A.A., Krockenberger, A.A., Jones, R.E., and Seymour, J.E.. 2006. Rates of metabolism in diapausing and reproductively active tropical butterflies, Euploea core and Euploea sylvester (Lepidoptera: Nymphalidae). Physiol. Ent. 31:184189.Google Scholar
Cao, L.-J., Song, W, Yue, L, Guo, S.-K., Chen, J.-C., Gong, Y.-J., Hoffmann, A.A., and Wei, S.-J.. 2020. Chromosome-level genome of the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae) provides a resource for evolutionary studies in moths. Mol. Ecol. Resources 21:834848. doi: 10.1111/1755-0998.13288.Google Scholar
Caporale, A., Romanowski, H.P., and Mega, N.O.. 2017. Winter is coming: diapause in the subtropical swallowtail butterfly Euryades corethrus (Lepidoptera, Papilionidae) is triggered by the shortening of day length and reinforced by low temperature. J. Exp. Zool. 327:182188.Google Scholar
Carrière, Y., Roff, D.A., and Deland, J.-P.. 1995. The joint evolution of diapause and insecticide resistance: a test of an optimality model. Ecology 76:14971505.Google Scholar
Carrière, Y., Ellers-Kirk, C., Patin, A.L., Sims, M.A., Meyer, S., Liu, Y.-B., Dennehy, T.J., and Tabashnik, B.E.. 2001. Overwintering cost associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). J. Econ. Ent. 94:935941.Google Scholar
Carton, Y. and Claret, J.. 1982. Adaptive significance of a temperature induced diapause in a cosmopolitan parasitoid of Drosophila. Ecol. Ent. 7:239247.Google Scholar
Černecká, L., Dorková, M., Jarčuška, B., and Kanuch, P.. 2021. Elevational variation in voltinism demonstrates climatic adaptation in the dark bush-cricket. Ecol. Ent. 46:360367.Google Scholar
Ceryngier, P. 2000. Overwintering of Coccinella septempuncata (Coleoptera: Coccinellidae) at different altitudes in the Karkonosze Mts, SW Poland. Eur. J. Ent. 97:323328.Google Scholar
Chambers, R.J., Long, S., and Heyer, N.L.. 1993. Effectiveness of Orius laevigatus (Hem.: Anthocoridae) for the control of Frankliniella occidentalis on cucumber and pepper in the UK. Biocontrol Sci. Tech. 3:295307.Google Scholar
Champlin, D.T. and Truman, J.W.. 1998. Ecdysteroid control of cell proliferation during optic lobe neurogenesis in the moth Manduca sexta. Development 125:269277.Google Scholar
Chang, J., Singh, J., Kim, S., Hockaday, W.C., Sim, C., and Kim, S.J.. 2016. Solid-state NMR reveals differential carbohydrate utilization in diapausing Culex pipiens. Sci. Rep. 6:37350.Google Scholar
Chang, V. and Meuti, M.E.. 2020. Circadian transcription factors differentially regulate features of the adult overwintering diapause in the Northern house mosquito, Culex pipiens. Insect Biochem. Mol. Biol. 121:103365.Google Scholar
Chang, Y.-F., Tauber, M.J., and Tauber, C.A.. 1996. Reproduction and quality of F1 offspring in Chrysoperla carnea: differential influence of quiescence artificially-induced diapause, and natural diapause. J. Insect Physiol. 42:521528.Google Scholar
Chang, Y.-F., Tauber, M.J., Tauber, C.A., and Nyrop, J.P.. 2000. Interpopulation variation in Chrysoperla carnea reproduction: implications for mass-rearing and storage. Ent. Exp. Appl. 95:293302.Google Scholar
Chaplin, S.B. and Wells, P.H.. 1982. Energy reserves and metabolic expenditures of monarch butterflies overwintering in Southern California. Ecol. Ent. 7:249256.Google Scholar
Charlesworth, B., Coyne, J.A., and Barton, N.H.. 1987. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130:113146.Google Scholar
Cheesman, D.F., Lee, W.L., and Zagalsky, P.F.. 1967. Carotenoproteins in invertebrates. Biol. Rev. 42:131160.Google Scholar
Chen, B., Kayukawa, T., Jiang, H., Monteiro, A., Hoshizaki, S., and Ishikawa, Y.. 2005a. DaTrypsin, a novel clip-domain serine proteinase gene up-regulated during winter and summer diapauses of the onion maggot, Delia antiqua. Gene 347:115123.Google Scholar
Chen, B., Kayukawa, T., Monteiro, A., and Ishikawa, Y.. 2005b. The expression of the HSP90 gene in response to winter and summer diapauses and thermal-stress in the onion maggot, Delia antiqua. Insect Mol. Biol. 14:697702.Google Scholar
Chen, B., Kayukawa, T., Monteiro, A., and Ishikawa, Y.. 2006a. Cloning and characterization of the HSP70 gene, and its expression in response to diapauses and thermal stress in the onion maggot, Delia antiqua. J. Biochem. Mol. Biol. 39:749758.Google Scholar
Chen, C., Xia, Q.-W., Chen, Y.-S., Xiao, H.-J., and Xue, F.-S.. 2012. Inheritance of photoperiodic control of pupal diapause in the cotton bollworm, Helicoverpa armigera (Hübner). J. Insect Physiol. 58:15821588.Google Scholar
Chen, C., Wei, X.-T., Xiao, H.J., He, H.-M., Xia, Q.-W., and Xue, F.-S.. 2014a. Diapause induction and termination in Hyphantria cunea (Drury) (Lepidoptera: Arctiinae). PLoS One 9:e98145.Google Scholar
Chen, C., Mahar, R., Merritt, M.E., Denlinger, D.L., and Hahn, D.A.. 2021. ROS and hypoxia signaling regulate arousal during insect dormancy to coordinate glucose, amino acid, and lipid metabolism. Proc. Nat’l. Acad. Sci., USA 118:e2017603118.Google Scholar
Chen, C.-P. and Denlinger, D.L.. 1990. Activation of phosphorylase in response to cold and heat stress in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 36:549553.Google Scholar
Chen, J., Cui, D.-N., Ullah, H., Li, S., Pan, F., Xu, C.-M., Tu, X.-B., and Zhang, Z.-H. 2020. The function of LmPrx6 in diapause regulation in Locusta migratoria through the insulin signaling pathway. Insects 11:0763.Google Scholar
Chen, J.-H. and Yamashita, O.. 1989. Activity changes in guanylate cyclase and cyclic GMP phosphodiesterase related to the accumulation of cyclic GMP in developing ovaries of the silkmoth, Bombyx mori. Comp. Biochem. Physiol. B 93:385390.Google Scholar
Chen, L., Ma, W., Wang, X., Niu, C., and Lei, C.. 2010. Analysis of pupal head proteome and its alteration in diapausing pupae of Helicoverpa armigera. J. Insect Physiol. 56:247252.Google Scholar
Chen, L., Barnett, R.E., Horstmann, M., Bamberger, V., Heberle, L., Krebs, N., Colbourne, J.K., Gomez, R., and Weiss, L.C.. 2018. Mitotic activity patterns and cytoskeletal changes throughout the progression of diapause developmental program in Daphnia. BMC Cell Biol. 19:30.Google Scholar
Chen, M., MacGregor, D.R., Dave, A., Florance, H., Moon, K., Paszkiewicz, K., Smirnoff, N., Graham, I.A., and Penfield, S.. 2014b. Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. Proc. Nat’l Acad. Sci., USA 111:1878718792.Google Scholar
Chen, W. and Xu, W.-H.. 2014. Wnt/β-catenin signaling regulates Helicoverpa armigera pupal development by up-regulating c-Myc and AP-4. Insect Biochem. Mol. Biol. 53:4453.Google Scholar
Chen, W., Liu, Z., Li, T., Zhang, R., Xue, Y., Zhong, Y., Bai, W., Zhou, D., and Zhao, Z.. 2014c. Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nat. Comm. 5:5549.Google Scholar
Chen, X. and Rosbash, M.. 2016. MicroRNA-92a is a circadian modulator of neuronal excitability in Drosophila. Nat. Comm. 8:14707.Google Scholar
Chen, Y.H., Opp, S.B., Berlocher, S.H., and Roderick, G.K.. 2006b. Are bottlenecks associated with colonization? Genetic diversity and diapause variation of native and introduced Rhagoletis completa populations. Oecologia 149:656667.Google Scholar
Chen, Y.-R., Jiang, T., Zhu, J., Xie, Y.-C., Tan, Z.-C.,Chen, Y.-H., Tang, S.-M., Hao, B.-F., Wang, S.-P., Huang, J.-S., and Shen, X.-J.. 2017. Transcriptome sequencing reveals potential mechanisms of diapause preparation in biovoltine silkworm Bombyx mori (Lepidoptera: Bombycidae). Comp. Biochem. Physiol. D 24:6878.Google Scholar
Chen, Y.-S., Chen, C., He, H.-M., Xia, Q.-W., and Xue, F.-S.. 2013. Geographic variation in diapause induction and termination of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). J. Insect Physiol. 59:855862.Google Scholar
Cheng, W., Li, D., Wang, Y., Liu, Y., and Zhu-Salzman, K.. 2016. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana. J. Insect Physiol. 95:6677.Google Scholar
Cheng, W., Long, Z., Zhang, Y., Liang, T., and Zhu-Salzman, K.. 2017. Effects of temperature, soil moisture and photoperiod on diapause termination and post-diapause development of the wheat blossom midge, Sitodiplosis mosellana (Gehen)(Diptera: Cecidomyiidae). J. Insect Physiol. 103:7885.Google Scholar
Cheng, W.-N., Li, X.-L., Yu, F., Li, Y.-P., Li, J.-J., and Wu, J.-X.. 2009. Proteomic analysis of pre-diapause, diapause and post-diapause larvae of the wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). Eur. J. Ent. 106:2935.Google Scholar
Cheng, X., Hoffmann, A.A., Maino, J.L., and Umina, P.A.. 2018. A cryptic diapause strategy in Halotydeus destructor (Tucker)(Trombidiformes: Penthaleidae) induced by multiple cues. Pest. Manag. Sci. 74:26182625.Google Scholar
Cheng, X., Hoffmann, A.A., Maino, J.L., and Umina, P.A.. 2019. Summer diapause intensity influenced by parental and offspring environmental conditions in the pest mite, Halotydeus destructor. J. Insect Physiol. 114:9299.Google Scholar
Cherkasova, V., Ayyadevara, S., Egilmez, N., and Reis, R.S.. 2000. Diverse Caenorhabditis elegans genes that are upregulated in dauer larvae also show elevated transcript levels in long-lived, aged, or starved adults. J. Mol. Biol. 300:433448.Google Scholar
Chernysh, S., Kim, S.I., Bekker, G., Pleskach, V.A., Filatova, N.A., Anikin, V.B., Platonov, V.G., and Bulet, P.. 2002. Antiviral and antitumor peptides from insects. Proc. Nat’l. Acad. Sci., USA 99:1262812632.Google Scholar
Chernysh, S., Irina, K., and Irina, A.. 2012. Anti-tumor activity of immunomodulatory peptide alloferon-1 in mouse tumor transplantation model. Int. Immunopharmacol. 12:312314.Google Scholar
Chippendale, G.M. 1977. Hormonal regulation of larval diapause. Ann. Rev. Ent. 22:121138.Google Scholar
Chippendale, G.M. and Reddy, A.S.. 1972. Diapause of the southwestern corn borer, Diatraea grandiosella: transition from spotted to immaculate mature larvae. Ann. Ent. Soc. Am. 65:882887.Google Scholar
Chippendale, G.M., Reddy, A.S., and Catt, C.L.. 1976. Photoperiodic and thermoperiodic interaction in the regulation of the larval diapause of Diatraea grandiosella. J. Insect Physiol. 22:823828.Google Scholar
Chirumamilla, A., Yocum, G.D., Boetel, M.A., and Dregseth, R.J.. 2008. Multi-year survival of sugarbeet root maggot (Tetanops myopaeformis) larvae in cold storage. J. Insect Physiol. 54:691699.Google Scholar
Cho, J.R., Lee, M., Kim, H.S., and Boo, K.S.. 2007. Effect of the juvenile hormone analog, fenoxycarb on termination of reproductive diapause in Scotinophara lurida (Burmeister) (Heteroptera: Pentatomidae). J. Asia Pac. Entomol. 10:145150.Google Scholar
Christie, A.E., Roncalli, V., and Lenz, P.H.. 2016. Diversity of insulin-like peptide signaling system proteins in Calanus finmarchicus (Crustacea; Copepoda) – possible contributors to seasonal pre-adult diapause. Gen. Comp. Endocrinol. 236:157173.Google Scholar
Cira, T.M., Koch, R.L., Burkness, E.C., Hutchison, W.D., and Venette, R.C.. 2018. Effects of diapause on Halyomorpha halys (Hemiptera: Pentatomidae) cold tolerance. Environ. Ent. 47:9971004.Google Scholar
Claret, J. 1966. Mise en évidence du role photorécepteur du cerveau dans l’induction de la diapause, chez Pieris brassicae (Lepido.). Ann. Endocr. 27:311320.Google Scholar
Claret, J. and Volkoff, N.. 1992. Vitamin A is essential for two processes involved in the photoperiodic reaction in Pieris brassicae. J. Insect Physiol. 38:569574.Google Scholar
Clark, M.S., Thorne, M.A.S., Purac, J., Grubor-Lasjic, G., Kube, M., Reinhardt, R., and Worland, M.R.. 2007. Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus) EST libraries. BMC Genomics 8:475.Google Scholar
Clegg, J.S., Drinkwater, L.E., and Sorgeloos, P.. 1996. The metabolic status of diapause embryos of Artemia franciscana (SFB). Physiol. Zool. 69:4966.Google Scholar
Clemmensen, S.F. and Hahn, D.A.. 2015. Dormancy cues alter insect temperature-size relationships. Oecologia 177:113121.Google Scholar
Cobben, R.H. 1968. Evolutionary trends in Heteroptera. Part I. Eggs, architecture of the shell, gross embryology and eclosion. Meded. Landb. Hogesh. Wageningen 151:1475.Google Scholar
Cogni, R., Kuczynski, C., Koury, S., Lavington, E., Behrman, E.L., O’Brien, K.R., Schmidt, P.S., and Eanes, W.F.. 2013. The intensity of selection acting on the couch potato gene – spatial-temporal variation in a diapause cline. Evolution 68:538548.Google Scholar
Colgan, T.J., Finlay, S., Brown, M.J.F., and Carolan, J.C.. 2019. Mating precedes selective immune priming which is maintained throughout bumblebee queen diapause. BMC Genomics 20:959.Google Scholar
Colgan, T.J., Carolan, J.C., Sumner, S., Blaxter, M.L., and Brown, M.J.F.. 2020. Infection by the castrating parasitic nematode Sphaerularia bombi changes gene expression in Bombus terrestris bumblebee queens. Insect Mol. Biol. 29:170182.Google Scholar
Colinet, H., Muratori, F., and Hance, T.. 2010. Cold-induced expression of diapause in Praon volucre: fitness cost and morpho-physiological characterization. Physiol. Ent. 35:301307.Google Scholar
Colinet, H., Renault, D., Charoy-Guével, B., and Com, E.. 2012. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre. PLoS One 7:e32606.Google Scholar
Colinet, H., Pineau, C., and Com, E.. 2017. Large scale phosphoprotein profiling to explore Drosophila cold acclimation regulatory mechanisms. Sci. Rep. 7:1713.Google Scholar
Colinet, H., Rinehart, J.P., Yocum, G.D., and Greenlee, K.J.. 2018. Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance. J. Exp. Biol. 221:164806.Google Scholar
Collantes-Alegre, J.M., Mattenberger, F., Barbera, M., and Martinez-Torres, D.. 2018. Characterisation, analysis of expression and localization of the opsin gene repertoire from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. J. Insect Physiol. 104:4859.Google Scholar
Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, L., and Leopold, P.. 2003. A nutrient sensor mechanism controls Drosophila growth. Cell 114:739749.Google Scholar
Convey, P. 2010. Life-history adaptations to polar and alpine environments. In Low Temperature Biology of Insects, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 297321.Google Scholar
Cook, S.C., Eubanks, M.D., Gold, R.E., and Behmer, S.T.. 2016. Summer and fall ants have different physiological responses to food macronutrient content. J. Insect Physiol. 87:3544.Google Scholar
Cook, S.J., Balmanno, K., Garner, A., Millar, T., Taverner, C., and Todd, D.. 2000. Regulation of cell cycle re-entry by growth, survival and stress signaling pathways. Biochem. Soc. Trans. 28:233240.Google Scholar
Copeland, R.S. and Craig, G.B. Jr. 1989. Winter cold influences the spatial and age distributions of the North American treehole mosquito Anopheles barberi. Oecologia 79:287292.Google Scholar
Corn, J.G., Story, J.M., and White, L.J.. 2009. Comparison of larval development and overwintering stages of the spotted knapweed biological control agent Agapeta zoegana (Lepidoptera: Tortricidae) and Cyphocleonus achates (Coleoptera: Curculionidae) in Montana versus eastern Europe. Environ. Ent. 38:971976.Google Scholar
Cornette, R. and Kikawada, T.. 2011. The induction of anhydrobiosis in the sleeping chironomid: current status of our knowledge. Int’l. Union Biochem. Mol. Biol. Life 63:419429.Google Scholar
Costa, C.P., Duennes, M.A., Fisher, K., Der, J.P., Watrous, K.M., Okamoto, N., Yamanaka, N., and Woodward, S.H.. 2020. Transcriptome analysis reveals nutrition- and age-related patterns of gene expression in the fat body of pre-overwintering bumble bee queens. Mol. Ecol. 29:720737.Google Scholar
Courteau, L.A., Storey, K.B., and Morin, P.J.. 2012. Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis. Cryobiology 65:210-214.Google Scholar
Cox, G.K. and Gillis, T.E.. 2020. Surviving anoxia: the maintenance of energy production and tissue integrity during anoxia and reoxygenation. J. Exp. Biol. 223:207613.Google Scholar
Crossley, M.S. and Hogg, D.B.. 2015. Potential overwintering locations of soybean aphid (Hemiptera: Aphididae) colonizing soybean in Ohio and Wisconsin. Environ. Ent. 44:210222.Google Scholar
Crosthwaite, J.C., Sobek, S., Lyons, D.B., Bernards, M.A., and Sinclair, B.J.. 2011. The overwintering physiology of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). J. Insect Physiol. 57:166173.Google Scholar
Crozier, A.J.G. 1979. Supradian and infradian cycles of oxygen uptake in diapausing pupae of Pieris brassicae. J. Insect Physiol. 25:575582.Google Scholar
Cruz-Bustos, J., Montoya, P., Pérez-Lachaud, G., Valle-Mora, J., and Liedo, P.. 2020. Biological attributes of diapausing and non-diapausing Doryctobracon areolatus (Hymenoptera, Braconidae), a parasitoid of Anastrepha spp. (Diptera, Tephritidae) fruit flies. J. Hymen. Res. 78:4156.Google Scholar
Cui, D.-N., Tu, X.-B., Hao, K., Raza, A., Chen, J., McNeill, M., and Zhang, Z.-H.. 2019. Identification of diapause-associated proteins in migratory locust, Locusta migratoria L. (Orthoptera: Acridoidea) by label-free quantification analysis. J. Integrat. Agric. 18:25792588.Google Scholar
Cui, X., Urita, S., Imanishi, S., Nagasawa, T., and Suzuki, K.. 2009. Isolation and characterization of a 41 kDa sericin from the wild silkmoth Antheraea yamamai. J. Insect Biotech. Ser. 78:1116.Google Scholar
Czypionka, T., Fields, P.D., Routtu, J., van den Berg, E., Ebert, D., and De Meester, L.. 2018. The genetic architecture underlying diapause termination in a planktonic crustacean. Mol. Ecol. 28:9981008.Google Scholar
Dai, L., Ye, S., Li, H.-W., Chen, D.-F., Want, H.-L., Jia, S.-N., Lin, C., Yang, J.-S., Yang, F., Ngasawa, H., and Yang, W.-J.. 2017. SETD4 regulates cell quiescence and catalyzes the trimethylation of H4K20 during diapause formation in Artemia. Mol. Cell. Biol. 37:e00453.Google Scholar
Dalin, P., Bean, D.W., Dudley, T.L., Carney, V.A., Eberts, D., Gardner, K.T., Hebertson, E., Jones, E.N., Kazmer, D.J., Michels, G.J. Jr., O’Meara, S.A., and Thompson, D.C.. 2010. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.). Environ. Ent. 39:16661675.Google Scholar
Dalin, P. and Nylin, S.. 2012. Host-plant quality adaptively affects the diapause threshold: evidence from leaf beetles in willow plantations. Ecol. Ent. 37:490499.Google Scholar
Damos, P.T. and Savopoulou-Soultani, M.. 2010. Synchronized diapause termination of the peach twig borer Anarsia lineatella (Lepidoptera: Gelechiidae): Brownian motion with drift? Physiol. Ent. 35:6475.Google Scholar
Dancau, T., Mason, P.G., and Cappuccino, N.. 2018. Elusively overwintering: a review of diamondback moth (Lepidoptera: Plutellidae) cold tolerance and overwintering strategy. Can. Ent. 150:156173.Google Scholar
Danforth, B.N. 1999. Emergence dynamics and bet hedging in a desert bee, Perdita portalis. Proc. R. Soc. Lond. B 266:19851994.Google Scholar
Danforth, B.N., Minckley, R.L., and Neff, J.L.. 2019. The Solitary Bees, Biology, Evolution and Conservation. Princeton: Princeton University Press.Google Scholar
Danilevskii, A.S. 1965. Photoperiodism and Seasonal Development of Insects. London: Oliver & Boyd (English translation).Google Scholar
Danks, H.V. 1987. Insect Dormancy: An Ecological Perspective. Ottawa: Biological Survey of Canada.Google Scholar
Danks, H.V. 2000. Dehydration in dormant insects. J. Insect Physiol. 46:837852.Google Scholar
Danks, H.V. 2002. The range of insect dormancy responses. Eur. J. Ent. 99:127142.Google Scholar
Danks, H.V. 2004a. Seasonal adaptations in Arctic insects. Integr. Comp. Biol. 44:8594.Google Scholar
Danks, H.V. 2004b. The roles of insect cocoons in cold conditions. Eur. J. Ent. 101:433437.Google Scholar
Danks, H.V. 2005. How similar are daily and seasonal biological clocks? J. Insect Physiol. 51:609619.Google Scholar
Danneels, E.L., Formesyn, E.M., Hahn, D.A., Denlinger, D.L., Cardoen, D., Verleyen, P., Wenseleers, T., Schoofs, L., and de Graaf, D.C.. 2013. Early changes in the pupal transcriptome of the flesh fly Sarcophaga crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. Insect Biochem. Mol. Biol. 43:11891200.Google Scholar
Dao, A., Yaro, A.S., Diallo, M., Timbine, S., Huestis, D.L., Kassogue, Y., Traore, A.I., Sanogo, Z.L., Samake, D., and Lehmann, T.. 2014. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature 516:387390.Google Scholar
Datta, M.S., Almada, A.A., Baumgartner, M.F., Mincer, T.J., Tarrant, A.M., and Polz, M.F.. 2018. Inter-individual variability in copepod microbiomes reveals bacterial networks linked to host physiology. ISME J. 12:21032113.Google Scholar
Davies, A.B., Eggleton, P., van Rensburg, B.J. and Parr, C.L.. 2015. Seasonal activity patterns of African savanna termites vary across a rainfall gradient. Insect Soc. 62:157165.Google Scholar
Davis, D.E. 1945. The annual cycle of plants, mosquitoes, birds, and mammals in two Brazilian forests. Ecol. Monogr. 15:243295.Google Scholar
Dean, C.A.E., Teets, N.M., Koštál, V., Šimek, P., and Denlinger, D.L.. 2016. Enhanced stress responses and metabolic adjustments linked to diapause and onset of migration in the large milkweed bug Oncopeltus fasciatus. Physiol. Ent. 41:152161.Google Scholar
Deans, C. and Maggert, K.A.. 2015. What do you mean, “Epigenetic”? Genetics 199:887896.Google Scholar
Deichmann, U. 2016. Epigenetics: the origins and evolution of a fashionable topic. Dev. Biol. 416:249254.Google Scholar
Delanoue, R., Meschi, E., Agrawal, N., Mauri, A., Tsatskis, Y., McNeill, H., and Léopold, P.. 2016. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor. Science 353:15531556.Google Scholar
Delany, C.E., Chen, A.T., Graniel, J.V., Dumas, K.D., and Hu, P.J.. 2017. A histone H4 lysine 20 methyltransferase couples environmental cues to sensory neuron control of developmental plasticity. Development 144:12731282.Google Scholar
Delisle, J., Royer, L., Bemier-Cardou, M., Bauce, E., and Labrecque, A.. 2009. The combined effect of photoperiod and temperature on egg dormancy in an island and a mainland population of the hemlock looper, Lambdina fiscellaria. Ent. Exp. Appl. 133:232243.Google Scholar
Demont, M. and Blanckenhorn, W.U.. 2008. Genetic differentiation in diapause response along a latitudinal cline in European yellow dung fly populations. Ecol. Ent. 33:197201.Google Scholar
Denlinger, D.L. 1971. Embryonic determination of pupal diapause induction in the flesh fly Sarcophaga crassipalpis Macquart. J. Insect Physiol. 17:18151822.Google Scholar
Denlinger, D.L. 1972a. Seasonal phenology of diapause in the flesh fly Sarcophaga bullata. Ann. Ent. Soc. Am. 65:410414.Google Scholar
Denlinger, D.L. 1972b. Induction and termination of pupal diapause in Sarcophaga (Diptera: Sarcophagidae). Biol. Bull. 142:1124.Google Scholar
Denlinger, D.L. 1974. Diapause potential in tropical flesh flies. Nature 252:223224.Google Scholar
Denlinger, D.L. 1976. Preventing insect diapause with hormones and cholera toxin. Life Sci. 19:14851490.Google Scholar
Denlinger, D.L. 1978. The developmental response of flesh flies (Diptera: Sarcophagidae) to tropical seasons: variation in generation time and diapause in East Africa. Oecologia 35:105107.CrossRefGoogle ScholarPubMed
Denlinger, D.L. 1979. Pupal diapause in tropical flesh flies: environmental and endocrine regulation, metabolic rate and genetic selection. Biol. Bull. 156:3146.Google Scholar
Denlinger, D.L. 1980. Seasonal and annual variation of insect abundance in the Nairobi National Park, Kenya. Biotropica 12:100106.Google Scholar
Denlinger, D.L. 1981. Basis for a skewed sex ratio in diapause-destined flesh flies. Evolution 35:12471248.Google Scholar
Denlinger, D.L. 1985. Hormonal control of diapause. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, ed. Kerkut, G.A. and Gilbert, L.I., Vol. 8, Oxford: Pergamon Press, pp. 353412.Google Scholar
Denlinger, D.L. 1986. Dormancy in tropical insects. Ann. Rev. Ent. 31:239264.Google Scholar
Denlinger, D.L. 1991. Relationship between cold-hardiness and diapause. In Insects at Low Temperature, ed. Lee, R.E. Jr. and Denlinger, D.L., New York: Chapman & Hall, pp. 174198.Google Scholar
Denlinger, D.L. 1994. The beetle tree. Am. Ent. Fall 1994:168171.Google Scholar
Denlinger, D.L. 1998. Maternal control of fly diapause. In Maternal Effects as Adaptations, ed. Mousseau, T.A. and Fox, C.W., Oxford: Oxford University Press, pp. 275287.Google Scholar
Denlinger, D.L. 2001. Interrupted development: the impact of temperature on insect diapause. In Environment of Animal Development: Genes, Life Histories and Plasticity, ed. Atkinson, D. and Thorndyke, M., Oxford: BIOS Scientific Publishers, pp. 235250.Google Scholar
Denlinger, D.L. 2002. Regulation of diapause. Ann. Rev. Ent. 47:93122.Google Scholar
Denlinger, D.L. 2008. Why study diapause? Ent. Res. 38:19.Google Scholar
Denlinger, D.L. 2021. Exploiting tools for manipulating insect diapause. Bull. Ent. Res. (in press).Google Scholar
Denlinger, D.L., Willis, J.H., and Fraenkel, G.. 1972. Rates and cycles of oxygen consumption during pupal diapause in Sarcophaga flesh flies. J. Insect Physiol. 18:871882.Google Scholar
Denlinger, D.L. and Wingard, P.. 1978. Cyclic GMP breaks pupal diapause in the flesh fly Sarcophaga crassipalpis. J. Insect Physiol. 24:715719.Google Scholar
Denlinger, D.L., Campbell, J.J., and Bradfield, J.Y.. 1980. Stimulatory effect of organic solvents on initiating development in diapausing pupae of the flesh fly Sarcophaga crassipalpis and the tobacco hornworm Manduca sexta. Physiol. Ent. 5:715.Google Scholar
Denlinger, D.L. and Bradfield, J.Y.. 1981. Duration of pupal diapause in the tobacco hornworm is determined by number of short days received by the larva. J. Exp. Biol. 91:331337.Google Scholar
Denlinger, D.L., Shukla, M., and Faustini, D.L.. 1984. Juvenile hormone involvement in pupal diapause of the flesh fly Sarcophaga crassipalpis: regulation of infradian cycles of O2 consumption. J. Exp. Biol. 109:191199.Google Scholar
Denlinger, D.L., Chen, C.‑P., and Tanaka, S.. 1988a. The impact of diapause on the evolution of other life history traits in flesh flies. Oecologia 77:350356.Google Scholar
Denlinger, D.L., Giebultowicz, J., and Adedokun, T.. 1988b. Insect diapause: dynamics of hormone sensitivity and vulnerability to environmental stress. In Endocrinological Frontiers in Physiological Insect Ecology, ed. Sehnal, F., Zabża, A., and Denlinger, D.L., Wroclaw: Wroclaw Technical University Press, pp. 309324.Google Scholar
Denlinger, D.L. and Tanaka, S.. 1989. Cycles of juvenile hormone esterase activity during the juvenile hormone-driven cycles of oxygen consumption in pupal diapause of flesh flies. Experientia 45:474476.Google Scholar
Denlinger, D.L., Tanaka, S., Downes, W.L., Wolda, H., and Guardia, M.. 1991. Does lack of diapause result in less insect seasonality? Oecologia 87:152154.Google Scholar
Denlinger, D.L., Rinehart, J.P., and Yocum, G.D.. 2001. Stress proteins: a role in insect diapause? In Insect Timing: Circadian Rhythmicity to Seasonality, ed. Denlinger, D.L., Giebultowicz, J.M., and Saunders, D.S., Amsterdam: Elsevier, pp. 155171.Google Scholar
Denlinger, D.L., Yocum, G.D., and Rinehart, J.P.. 2005. Hormonal control of diapause. In Comprehensive Molecular Insect Science, ed. Gilbert, L.I., Iatrou, K., and Gill, S.S., Vol. 3, Oxford: Elsevier, pp. 615650.Google Scholar
Denlinger, D.L. and Lee, R.E. Jr., eds. 2010. Low Temperature Biology of Insects, Cambridge: Cambridge University Press.Google Scholar
Denlinger, D.L., Yocum, G.D., and Rinehart, J.P.. 2012. Hormonal control of diapause. In Insect Endocrinology, ed. Gilbert, L.I., San Diego: Academic Press, pp. 430463.Google Scholar
Denlinger, D.L. and Armbruster, P.A.. 2014. Mosquito diapause. Ann. Rev. Ent. 59:7393.Google Scholar
Denlinger, D.L. and Armbruster, P.A.. 2016. Molecular physiology of mosquito diapause. In Advances in Insect Physiology, ed. Raikhel, A.S., Vol. 51, San Diego: Elsevier, pp. 329361.Google Scholar
Denlinger, D.L., Hahn, D.A., Merlin, C., Holzapfel, C.M., and Bradshaw, W.E.. 2017. Keeping time without a spine: what can the insect clock teach us about seasonal adaptation? Phil. Trans. R. Soc. B 371:20160257.Google Scholar
De Souza, K., Holt, J., and Colvin, J.. 1995. Diapause, migration and pyrethroid-resistance dynamics in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Ecol. Ent. 20:333342.Google Scholar
Des Marteaux, L.E. and Hallett, R.H.. 2019. Swede midge (Diptera: Cecidomyiidae) diapause initiation under stable conditions: not a family affair. Can. Ent. 151:465474.Google Scholar
Deveson, E.D. and Woodman, J.D.. 2014. Embryonic diapause in the Australian plague locust relative to parental experience of cumulative photophase decline. J. Insect Physiol. 70:17.Google Scholar
Dewhurst, C.F., Page, W.W., and Rose, D.J.W.. 2001. The relationship between outbreaks, rainfall and low density populations of the African armyworm, Spodoptera exempta, in Kenya. Ent. Exp. Appl. 98:285294.Google Scholar
Dhillon, M.K., Hasan, F., Tanwar, A.K., Jaba, J., Singh, N., and Sharma, H.C.. 2020. Genetic regulation of diapause and associated traits in Chilo partellus (Swinhoe). Sci. Rep. 10:1793.Google Scholar
Diaz, M.D.C. and Peck, D.C.. 2007. Overwintering of annual bluegrass weevils, Listronotus maculicollis, in the golf course landscape. Ent. Exp. Appl. 125:259268.Google Scholar
Dickson, R.C. 1949. Factors governing the induction of diapause in the oriental fruit moth. Ann. Ent. Soc. Am. 42:511537.Google Scholar
Dillon, M.E. and Lozier, J.D.. 2019. Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. Curr. Opin. Insect Sci. 36:131139.Google Scholar
Dillwith, J.W., Goodman, C. L., and Chippendale, G.M.. 1985. An immunological study of the diapause-associated protein of the southwestern corn borer, Diatraea grandiosella. Insect Biochem. 15:711722.Google Scholar
Ding, L., Li, Y., and Goto, M.. 2003. Physiological and biochemical changes in summer and winter diapause and non-diapause pupae of the cabbage armyworm, Mamestra brassicae L. during long-term cold acclimation. J. Insect Physiol. 49:11531159.Google Scholar
Dingemanse, N.J. and Kalkman, V.J.. 2008. Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecol. Ent. 33:394402.Google Scholar
Dingle, H. 1974. Diapause in a migrant species, the milkweed bug Oncopeltus fasciatus (Dallas)(Hemiptera: Lygaeidae). Oecologia 1:110.Google Scholar
Dingle, H., Zalucki, M.P., and Rochester, W.A.. 1999. Season-specific directional movement in migratory Australian butterflies. Aust. J. Ent. 38:323329.Google Scholar
Diniz, D.F.A., de Albuquerque, C.M.R., Oliva, L.O., de Melo-Santos, M.A.V., and Ayres, C.F.J.. 2017. Diapause and quiescence: dormancy mechanisms that contribute to the geographic expansion of mosquitoes and their evolutionary success. Parasit. Vect. 10:310.Google Scholar
Ditrich, T. and Koštál, V.. 2011. Comparative analysis of overwintering physiology in nine species of semi-aquatic bugs (Heteroptera: Gerromorpha). Physiol. Ent. 36:261270.Google Scholar
Ditrich, T., Janda, V., Vanečková, H., and Doležel, D.. 2018. Climatic variation of supercooling point in the linden bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Insects 9:144.Google Scholar
Dockx, C. 2007. Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba. Biol. J. Linn. Soc. 92:605616.Google Scholar
Doellman, M.M., Ragland, G.J., Hood, G.R., Meyers, P.J., Egan, S.P., Powell, T.H.Q., Lazorchak, P., Glover, M.M., Tait, C., Schuler, H., Hahn, D.A., Berlocher, S.H., Smith, J.J., Nosil, P., and Feder, J.L.. 2018. Genomic differentiation during speciation-with-gene-flow: comparing geographic and host-related variation in divergent life history adaptation in Rhagoletis pomonella. Genes 9:262.Google Scholar
Dogan, C., Hänniger, S., Heckel, D.G., Coutu, C., Hegedus, D.D., Crubaugh, L., Groves, R.L., Bayram, S., and Toprak, U.. 2020. Two calcium-binding chaperones from the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) involved in diapause. Arch. Insect Biochem. Physiol. 106:e21755.Google Scholar
Doherty, J.-F., Guay, J.-F., and Cloutier, C.. 2018. Embryonic stage obligatory diapause and effects of abiotic conditions on egg hatching in the balsam twig aphid, Mindarus abietinus. Ent. Exp. Appl. 166:628637.Google Scholar
Doležel, D., Vanečková, H., Šauman, I., and Hodková, M.. 2005. Is period gene causally involved in the photoperiodic regulation of reproductive diapause in the linden bug, Pyrrhocoris apterus? J. Insect Physiol. 51:655659.Google Scholar
Doležal, P., Habuštová, O., and Sehnal, F.. 2007. Effects of photoperiod and temperature on the rate of larval development, food conversion efficiency, and imaginal diapause in Leptinotarsa decemlineata. J. Insect Physiol. 53:849857.Google Scholar
Doležel, D., Zdechovanova, L., Šauman, I., and Hodková, M.. 2008. Endocrine-dependent expression of circadian clock genes in insects. Cell. Mol. Life Sci. 65:964969.Google Scholar
Dolfi, L., Ripa, R., Antebi, A., Valenzano, D.R., and Cellerino, A.. 2019. Cell cycle dynamics during diapause entry and exit in an annual killifish revealed by FUCCI technology. EvoDevo 10:29.Google Scholar
Dong, L., Udaka, H., Numata, H., and Ito, C.. 2021. Regulation of Krüppel homologue 1 expression by photoperiod in the bean bug, Riptortus pedestris. Physiol. Ent. 46:8793.Google Scholar
Dong, Y.-C., Chen, Z.-Z., Clarke, A.R., and Niu, C.-Y.. 2019. Changes in energy metabolism trigger pupal diapause transition of Bactrocera minax after 20-hydroxyecysone application. Front. Physiol. 10:1288.Google Scholar
Dopman, E.B., Pérez, L., Bogdanowicz, S.M., and Harrison, R.G.. 2005. Consequences of reproductive barriers for genealogical discordance in the European corn borer. Proc. Nat’l. Acad. Sci., USA 102:1470614711.Google Scholar
Dopman, E.B., Robbins, P.S., and Seaman, A.. 2010. Components of reproductive isolation between North American pheromone strains of the European corn borer. Evolution 64:881902.Google Scholar
Dos Santos, C.F., Acosta, A.L., Nunes-Silva, P., Saraiva, A.M., and Blochtein, B.. 2015. Climate warming may threaten reproductive diapause of a highly eusocial bee. Environ. Ent. 44:11721181.Google Scholar
Dostálková, S., Dobeš, P., Kunc, M., Hurychová, J., Škrabišová, M., Petrivalsky, M., Titera, D., Havlík, J., Hyršl, P., and Danihlík, J.. 2021. Winter honeybee (Apis mellifera) populations show greater potential to induce immune responses than summer populations after immune stimuli. J. Exp. Biol. 224:232595.Google Scholar
Douglas, A.E. 2000. Reproductive diapause and the bacterial symbiosis in the sycamore aphid Drepanosiphum platanoidis. Ecol. Ent. 25:256261.Google Scholar
Dowle, E.J., Powell, T.H.Q., Doellman, M.M., Meyers, P.J., Calvert, M.B., Walden, K.K.O., Robertson, H.M., Berlocher, S.H., Feder, J.L., Hahn, D.A., and Ragland, G.J.. 2020. Genome-wide variation and transcriptional changes in diverse developmental processes underlying the rapid evolution of seasonal adaptation. Proc. Nat’l. Acad. Sci., USA 117:2396023969.Google Scholar
Dowling, D.K. and Simmons, L.W.. 2009. Reactive oxygen species as universal constraints in life-history evolution. Proc. Roy. Soc. B 276:17371745.Google Scholar
Dreyer, D., el Jundi, B., Kishkinev, D., Suchentrunk, C., Campostrini, L., Frost, B.J., Zechmeister, T., and Warrant, E.J.. 2018. Evidence for a southward autumn migration of nocturnal noctuid moths in Central Europe. J. Exp. Biol. 221:179218.Google Scholar
Duan, T.-F., Li, L., Tan, Y., Li, Y.-Y., and Pang, B.-P.. 2021. Identification and functional analysis of microRNAs in the regulation of summer diapause in Galeruca daurica. Comp. Biochem. Physiol. D 37:100786.Google Scholar
Dubowy, C. and Sehgal, A.. 2017. Circadian rhythms and sleep in Drosophila melanogaster. Genetics 205:13731397.Google Scholar
Dulcis, D., Davis, N.T., and Hildebrand, J.G.. 2001. Neuronal control of heart reversal in the hawkmoth Manduca sexta. J. Comp. Physiol. A 187:837849.Google Scholar
Du Merle, P. 1999. Egg development and diapause: ecophysiological and genetic basis of phenological polymorphism and adaptation to varied hosts in the green oak tortrix, Tortrix viridana L. (Lepidoptera: Tortricidae). J. Insect Physiol. 45:599611.Google Scholar
Duman, J.G., Walters, K.R., Sforo, T., Carrasco, M.A., Nickell, P.K., Lin, X., and Barnes, B.M.. 2010. Antifreeze and ice-nucleator proteins. In Low Temperature Biology of Insects, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 5990.Google Scholar
Duplouy, A., Minard, G., Lahteenaro, M., Rytteri, S., and Saastamoinen, M.. 2018. Silk properties and overwinter survival in gregarious butterfly larvae. Ecol. Evol. 8:1244312455.Google Scholar
Dupuis, J.R., Mori, B.A., and Sperling, F.A.H.. 2016. Trogus parasitoids of Papilio butterflies undergo extended diapause in western Canada (Hymenoptera, Ichneumonidae). J. Hymenop. Res. 50:179190.Google Scholar
Durak, R., Dampc, J., Dampc, J., Bartoszewski, S., and Michalik, A.. 2020. Uninterrupted development of two aphid species belonging to Cinara genus during winter diapause. Insects 11:150.Google Scholar
Durant, D.R., Berens, A.J., Toth, A.L., and Rehan, S.M.. 2016. Transcriptional profiling of overwintering gene expression in the small carpenter bee, Ceratina calcarata. Apidologie 47:572582.Google Scholar
van Dyck, H. and Wiklund, C.. 2002. Seasonal butterfly design: morphological plasticity among three developmental pathways related to sex, flight and thermoregulation. J. Evol. Biol. 15:216225.Google Scholar
Dzerefos, C.M., Erasmus, B.F.N., Witkowski, E.T.F., and Guo, D.. 2015. Modelling the current and future dry-season distribution of the edible stinkbug Encosternum delegorguei in sub-Saharan Africa. Ent. Exp. Appl. 156:113.Google Scholar
Eddy, S.F., McNally, J.D., and Storey, K.B.. 2005. Up-regulation of a thioredoxin peroxidase-like protein, proliferation-associated gene, in hibernating bats. Arch. Biochem. Biophys. 435:103111.Google Scholar
Egan, S.P., Ragland, G.J., Assour, L., Powell, T.H.Q., Hood, G.R., Emrich, S., Nosil, P., and Feder, J.L.. 2015. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecol. Letters 18:817825.Google Scholar
Egi, Y., Tsubouchi, H., and Sakamoto, K.. 2016. Does DNA methylation play a role in photoperiodic diapause of moths? J. Ent. Stud. 4:458460.Google Scholar
Eizaguirre, M., López, C., Asin, L., and Albajes, R.. 1994. Thermoperiodism, photoperiodism and sensitive stage in the diapause induction of Sesamia nonagrioides (Lepidoptera: Noctuidae). J. Insect Physiol. 40:113119.Google Scholar
Eizaguirre, M., Schafellner, C., López, C., and Sehnal, F.. 2005. Relationship between an increase in juvenile hormone titer in early instars and the induction of diapause in fully grown larvae of Sesamia nonagrioides. J. Insect Physiol. 51:11271134.Google Scholar
Eizaguirre, M., López, C., and Albajes, R.. 2008. Factors affecting the natural duration of diapause and post-diapause development in the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae). J. Insect Physiol. 54:10571063.Google Scholar
Ellers, J. and van Alphen, J.J.M.. 2002. A trade-off between diapause duration and fitness in female parasitoids. Ecol. Ent. 27:279284.Google Scholar
Emerson, K.J., Letaw, A.D., Bradshaw, W.E., and Holzapfel, C.M.. 2008. Extrinsic light:dark cycles, rather than endogenous circadian cycles, affect the photoperiodic counter in the pitcher-plant mosquito, Wyeomyia smithii. J. Comp. Physiol. A 194:611615.Google Scholar
Emerson, K.J., Dake, S.J., Bradshaw, W.E., and Holzapfel, C.M.. 2009a. Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii. J. Comp. Physiol. A 195:385391.Google Scholar
Emerson, K.J., Bradshaw, W.E., and Holzapfel, C.M.. 2009b. Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends Gen. 25:217225.Google Scholar
Emerson, K.J., Uyemura, A.M., McDaniel, K.L., Schmidt, P.S., Bradshaw, W.E., and Holzapfel, C.M.. 2009c. Environmental control of ovarian dormancy in natural populations of Drosophila melanogaster. J. Comp. Physiol. A 195:825829.Google Scholar
Emerson, K.J., Bradshaw, W.E., and Holzapfel, C.M.. 2010. Microarrays reveal early transcriptional events during the termination of larval diapause in natural populations of the mosquito, Wyeomyia smithii. PLoS One 5:e9574.Google Scholar
Endo, K., Fujimoto, Y., Kondo, M., Yamanaka, A., Watanabe, M., Weihua, K., and Kumagai, K.. 1997. Stage-dependent changes of the prothoracicotropic hormone (PTTH) activity of brain extracts and of the PTTH sensitivity of the prothoracic glands in the cabbage armyworm, Mamestra brassicae, before and during winter and aestival pupal diapause. Zool. Sci. 14:127133.Google Scholar
Epstein, N.R., Saez, K., Polat, A., Davis, S.R., and Aardema, M. L.. 2021. The urban-adapted underground mosquito, Culex molestus, maintains exogenously influenced circadian rhythms despite an absence of photoperiodically induced dormancy. J. Exp. Biol. 224:jeb242231.Google Scholar
Erickson, P.A., Weller, C.A., Song, D.Y., Bangerter, A.S., Schmidt, P., and Bergland, A.O.. 2020. Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLoS Genet. 16:e1009110.Google Scholar
Eriksson, M., Janz, N., Nylin, S., and Carlsson, M.A.. 2020. Structural plasticity of olfactory neuropils in relation to insect diapause. Ecol. Evol. 10:1332314434.Google Scholar
Erion, R. and Sehgal, A.. 2013. Regulation of insect behavior via the insulin-signaling pathway. Front. Physiol. 4:353.Google Scholar
Esperk, T., Stefanescu, C., Teder, T., Wiklund, C., Kaasik, A., and Tammaru, T.. 2013. Distinguishing between anticipatory and responsive plasticity in a seasonally polyphenic butterfly. Evol. Ecol. 27:315332.Google Scholar
Evenden, M.L., Armitage, G., and Lau, R.. 2007. Effects of nutrition and methoprene treatment upon reproductive diapause in Caloptilia fraxinella (Lepidoptera: Gracillariidae). Physiol. Ent. 32:275282.Google Scholar
Everman, E.R., Freda, P.J., Brown, M., Schieferecke, A.J., Ragland, G.J., and Morgan, T.J.. 2018. Ovary development and cold tolerance of the invasive pest Drosophila suzukii (Matsumura) in the central plains of Kansas, United States. Environ. Ent. 47:10131023.Google Scholar
Evison, S.E.F., Gallagher, J.D., Thompson, J.J.W., Siva-Jothy, M.T., and Armitage, S.A.O.. 2017. Cuticular colour reflects underlying architecture and is affected by a limiting resource. J. Insect Physiol. 98:713.Google Scholar
Fan, W., Zhong, Y., Qin, B., Lin, F., Chen, H., Li, W., and Lin, J.. 2017. Differentially expressed miRNAs in diapausing versus HCl-treated Bombyx embryos. PLoS One 12:e0180085.Google Scholar
Fantinou, A.A. and Kagkou, E.A.. 2000. Effect of thermoperiod on diapause induction of Sesamia nonagrioides (Lepidoptera-Nocutuidae). Environ. Ent. 29:489494.Google Scholar
Fantinou, A.A., Chatzoglou, C.S., and Kagkou, E.A.. 2002. Thermoperiodic effects on diapause of Sesamia nonagrioides (Lepidoptera: Noctuidae). Eur. J. Ent. 99:421425.Google Scholar
Fantinou, A.A., Kourti, A.T., and Saitanis, C.J.. 2003. Photoperiodic and temperature effects on the intensity of larval diapause in Sesamia nonagrioides. Physiol. Ent. 28:8287.Google Scholar
Fantinou, A.A., Perdikis, D.C., and Zota, K.. 2004. Reproductive responses to photoperiod and temperature by diapausing and nondiapausing populations of Sesamia nonagrioides Lef. (Lepidoptera-Noctuidae). Physiol. Ent. 29:169173.Google Scholar
Faraji, A. and Gaugler, R.. 2015. Experimental host preference of diapause and non-diapause induced Culex pipiens pipiens (Diptera: Culicidae). Parasit. Vect. 8:389.Google Scholar
Farajollahi, A., Crans, W.J., Bryant, P., Wolf, B., Burkhalter, K.L., Godsey, M.S., Aspen, S.E., and Nasci, R.S.. 2005. Detection of West Nile viral RNA from an overwintering pool of Culex pipiens pipiens (Diptera: Culicidae) in New Jersey, 2003. J. Med. Ent. 42:490494.Google Scholar
Farooqui, T. and Farooqui, A.A. (eds.). 2012. Oxidative Stress in Vertebrates and Invertebrates. Hobokon: Wiley-Blackwell.Google Scholar
Fauser, A., Sandrock, C., Neumann, P., and Sadd, B.M.. 2017. Neonicotinoids override a parasite exposure impact on hibernation success of a key bumblebee pollinator. Ecol. Ent. 42:306314.Google Scholar
Feder, J.L., Xie, X.F., Rull, J., Velez, S., Forbes, A., Leung, B., Dambrowski, H., Filchak, K.E., and Aluia, M.. 2005. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proc. Nat’l. Acad. Sci., USA 102:65736580.Google Scholar
Feder, J.L., Powell, T.H.Q., Filchak, K., and Leung, B.. 2010. The diapause response of Rhagoletis pomonella to varying environmental conditions and its significance for geographic and host plant-related adaptation. Ent. Exp. Appl. 136:3144.Google Scholar
Feder, M.E. and Hofmann, G.E.. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann. Rev. Physiol. 61:243282.Google Scholar
Ferenz, H.J. 1975. Photoperiodic and hormonal control of reproduction in male beetles, Pterostichus nigrita. J. Insect Physiol. 21:331341.Google Scholar
Ferguson, L.V., Kortet, R., and Sinclair, B.J.. 2018a. Eco-immunology in the cold: the role of immunity in shaping the overwintering survival of ectotherms. J. Exp. Biol. 221:jeb163873.Google Scholar
Ferguson, L.V., Dhakal, P., Lebenzon, J.E., Heinrichs, D.E., Bucking, C., and Sinclair, B.J.. 2018b. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 32:23572368.Google Scholar
Fielenbach, N. and Antebi, A.. 2008. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22:21492165.Google Scholar
Fischer, K. and Fiedler, K.. 2001. Sexual differences in life-history traits in the butterfly Lycaena tityrus: a comparison between direct and diapause development. Ent. Exp. Appl. 100:325330.Google Scholar
Fischer, K. and Fiedler, K.. 2002. Life-history plasticity in the butterfly Lycaena hippothoe: local adaptations and trade-offs. Biol. J. Linn. Soc. 75:173185.Google Scholar
Fischer, S., De Majo, M.S., Di Battista, C.M., Montini, P., Loetti, V., and Campos, R.E.. 2019. Adaptation to temperate climates: evidence of photoperiodic-induced embryonic dormancy in Aedes aegypti in South America. J. Insect Physiol. 117:103887.Google Scholar
Fischman, B.J., Pitts-Singer, T.L., and Robinson, G.E.. 2017. Nutritional regulation of phenotypic plasticity in a solitary bee (Hymenoptera: Megachilidae). Environ. Ent. 46:10701079.Google Scholar
Flannagan, R.D., Tammariello, S.P., Joplin, K.H., Cikra-Ireland, R.A., Yocum, G.D., and Denlinger, D.L.. 1998. Diapause specific gene expression in pupae of the flesh fly, Sarcophaga crassipalpis. Proc. Nat’l. Acad. Sci., USA 95:56165620.Google Scholar
Foerster, L.A. and Doetzer, A.K.. 2006. Cold storage of the egg parasitoids Trissolcus basalis (Wollaston) and Telenomus podisi Ashmead (Hymenoptera: Scelionidae). Biol. Cont. 36:232237.Google Scholar
Forbes, A.A., Pelz-Stelinski, K.S., and Isaacs, R.. 2010. Transfer of life-history phenology from mothers to progeny in a solitary univoltine parasitoid. Physiol. Ent. 35:192195.Google Scholar
Förster, T.D. and Hetz, S.K.. 2010. Spiracle activity in moth pupae – the role of oxygen and carbon dioxide revisited. J. Insect Physiol. 56:492501.Google Scholar
Fraenkel, G. and Hsiao, C.. 1968. Morphological and endocrinological aspects of pupal diapause in a flesh fly, Sarcophaga argyrostoma (Robineau-Desvoidy). J. Insect Physiol. 14:707718.Google Scholar
Frago, E., Guara, M., Pujade-Villar, J., and Selfa, J.. 2010. Winter feeding leads to a shifted phenology in the browntail moth Euproctis chrysorrhoea on the evergreen strawberry tree Arbutus unedo. Agric. Forest Ent. 12:381388.Google Scholar
Franc, A. and Luong-Skovmand, M.H.. 2009. Life cycle, reproductive maturation, and wing color changes in Nomadacris septemfasciata (Orthoptera: Acrididae) in Madagascar. Environ. Ent. 38:569576.Google Scholar
Frank, J.H. 1967. The effect of pupal predators on a population of winter moth, Operophtera brumata (L.) (Hydriomenidae). J. Animal Ecol. 36:611621.Google Scholar
Fraser, J.D., Bonnett, T.R., Keeling, C.I., and Huber, D.P.W.. 2017. Seasonal shifts in accumulation of glycerol biosynthetic gene transcripts in mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), larvae. PeerJ 5:e3284.Google Scholar
Freedman, M.G., Dingle, H., Tabuloc, C.A., Chiu, J.C., Yang, L.H., and Zalucki, M.P.. 2018. Non-migratory monarch butterflies, Danaus plexippus (L.), retain developmental plasticity and a navigational mechanism associated with migration. Biol. J. Linn. Soc. 123:265278.Google Scholar
Frentiu, F.D., Yuan, F., Savage, W.K., Bernard, G.D., Mullen, S.P., and Briscoe, A.D.. 2015. Opsin clines in butterflies suggest novel roles for insect photopigments. Mol. Biol. Evol. 32:368379.Google Scholar
Frey, D.F. and Leong, K.L.H.. 1993. Can microhabitat selection or differences in catchability explain male-biased sex ratios in overwintering populations of monarch butterflies. Animal Behav. 45:10251027.Google Scholar
Friberg, M., Dahlerus, J., and Wiklund, C.. 2012. Strategic larval decision-making in a bivoltine butterfly. Oecologia 169:623635.Google Scholar
Friedlander, M. and Reynolds, S.. 1992. Intratesticular ecdysteriod titres and the arrest of sperm production during pupal diapause in the tobacco hornworm, Manduca sexta. J. Insect Physiol. 38:693703.Google Scholar
Froy, O., Gotter, A.L., Casselman, A.L., and Reppert, S.M.. 2003. Illuminating the circadian clock in monarch butterfly migration. Science 300:13031305.Google Scholar
Fu, D., Dai, L., Gao, H., Sun, Y., Liu, B., and Chen, H.. 2019. Identification, expression patterns and RNA interference of aquaporins in Dendroctonus aramandi (Coleoptera: Scolytinae) larvae during overwintering. Front. Physiol. 10:967.Google Scholar
Fujita, K., Shimomura, K., Yamamoto, K.-I., Yamashita, T., and Suzuki, K.. 2006. A chitinase structurally related to the glycoside hydrolase family 48 is indispensable for the hormonally induced diapause termination in a beetled. Biochem. Biophys. Res. Com. 345:502507.Google Scholar
Fujiwara, H., Jindra, M., Newirtt, R., Palli, S.R., Hiruma, K., and Riddiford, L.M.. 1995. Cloning of an ecdysone receptor homologue from Manduca sexta and the developmental profile of its mRNA in wings. Insect Biochem. Mol. Biol. 25:845856.Google Scholar
Fujiwara, Y. and Shiomi, K.. 2006. Distinct effects of different temperatures on diapause termination, yolk morphology and MAPK phosphorylation in the silkworm, Bombyx mori. J. Insect Physiol. 52:11941201.Google Scholar
Fujiwara, Y., Shindome, C., Takeda, M., and Shiomi, K.. 2006a. The roles of ERK and p38 MAPK signaling cascades on embryonic diapause initiation and termination of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 36:4753.Google Scholar
Fujiwara, Y., Tanaka, Y., Iwata, K.-I., Rubio, R.O., Yaginuma, T., Yamashita, O., and Shiomi, K.. 2006b. ERK/MAPK regulates ecdysteroid and sorbitol metabolism for embryonic diapause termination in the silkworm, Bombyx mori. J. Insect Physiol. 52:569575.Google Scholar
Fujiwara, Y. and Denlinger, D.L.. 2007. High temperature and hexane break pupal diapause in the flesh fly, Sarcophaga crassipalpis, by activating ERK/MAPK. J. Insect Physiol. 53:12761282.Google Scholar
Fukuda, S. 1951. Factors determining the production of non-diapausing eggs in the silkworm. Proc. Jap. Acad. 27:582586.Google Scholar
Fukumoto, E., Numata, H., and Shiga, S.. 2006. Effects of temperature of adults and eggs on the induction of embryonic diapause in the band-legged ground cricket, Dianemobius nigrofasciatus. Physiol. Ent. 31:211217.Google Scholar
Gäde, G., Šimek, P., and Marco, H.G.. 2020. The adipokinetic peptides in Diptera: structure, function, and evolutionary trends. Front. Physiol. 11:153.Google Scholar
Gadenne, C., Varjas, L., and Mauchamp, B.. 1990. Effects of the non-steroidal ecdysone mimic, RH-5849, on diapause and non-diapause larvae of the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 36:555559.Google Scholar
Gadenne, C., Dufour, M.-C., Rossignol, F., Bécard, J.-M., and Couillaud, F.. 1997. Occurrence of non-stationary larval moults during diapause in the corn-stalk borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). J. Insect Physiol. 43:425431.Google Scholar
Gallot, A., Rispe, C., Leterme, N., Gauthier, J.-P., Jaubert-Possamai, S., and Tagu, D.. 2010. Cuticular proteins and seasonal photoperiodism in aphids. Insect Biochem. Mol. Biol. 40:235240.Google Scholar
Gao, N., von Schantz, M., Foster, R., and Hardie, J.. 1999. The putative brain photoperiodic photoreceptors in the vetch aphid, Megoura viciae. J. Insect Physiol. 45:10111019.Google Scholar
Gao, Q., Wei, B.-X., Liu, W., Wang, J.-L., Zhou, X.-M., and Wang, X.-P.. 2019. Differences in the development of internal reproductive organs, feeding amount and nutrient storage between pre-diapause and pre-reproductive Harmonia axyridis adults. Insects 10:243.Google Scholar
Garcia-Rogers, E.M., Lubzens, E., Fontaneto, D., and Serra, M.. 2019. Facing adversity: dormant embryos in rotifers. Biol. Bull. 237:119144.Google Scholar
Gariepy, V., Boivin, G., and Brodeur, J.. 2015. Why two species of parasitoids showed promise in the laboratory but failed to control the soybean aphid under field conditions. Biol. Cont. 80:17.Google Scholar
Gaston, K.J. 2018. Lighting up the nighttime. Science 362:744746.Google Scholar
Ge, F., Chen, F.-J., Parajulee, M.N., and Yardim, E.N.. 2005. Quantification of diapausing fourth generation and suicidal fifth generation cotton bollworm, Helicoverpa armigera, in cotton and corn in northern China. Ent. Exp. Appl. 116:17.Google Scholar
van Geffen, K.G., van Grunsven, R.H.A., van Ruijven, J., Berendse, F., and Veenendaal, E.M.. 2014. Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth. Ecol. Evol. 4:20822089.Google Scholar
Gehrken, U. and Doumbia, Y.O.. 1996. Diapause and quiescence in eggs of a tropical grasshopper Oedaleus senegalensis (Krauss). J. Insect Physiol. 42:483491.Google Scholar
Gelman, D.B. and Woods, C.W.. 1983. Haemolymph ecdysteroid titers of diapause- and nondiapause-bound fifth instars and pupae of the European corn borer, Ostrinia nubilalis (Hubner). Comp. Biochem. Physiol. A 76:367375.Google Scholar
Gelman, D.B., Thyagaraja, B.S., Kelly, T.J., Masler, E.P., Bell, R.A., and Borkovec, A.B.. 1992. Prothoracicotropic hormone levels in brains of the European corn borer, Ostrinia nubilalis: diapause vs. the non-diapause state. J. Insect Physiol. 38:383375.Google Scholar
Gerling, D., Erel, E., Guershon, M., and Inbar, M.. 2009. Bionomics of Encarsia scapeata Rivnay (Hymenoptera: Aphelinidae), tritrophic relationships and host-induced diapause. Biol. Cont. 49:201206.Google Scholar
Ghosh, E. and Ballal, C.R.. 2018. Maternal influence on diapause induction: an approach to improve long-term storage of Trichogramma chilonis. Phytoparasitica 46:383389.Google Scholar
Gibbens, Y.Y., Warren, J.T., Gilbert, L.I., and O’Connor, M.B.. 2011. Neuroendocrine regulation of Drosophila metamorphosis requires TGFbeta/activin signaling. Development 138:26932703.Google Scholar
Gibbs, D. 1975. Reversal of pupal diapause in Sarcophaga argyrostoma by temperature shifts after puparium formation. J. Insect Physiol. 21:11791186.Google Scholar
Giebultowicz, J.M. 2001. Peripheral clocks and their role in circadian timing: insights from insects. Phil. Trans. R. Soc. Lond. B 356:17911799.Google Scholar
Giebultowicz, J.M. and Denlinger, D.L.. 1986. Role of the brain and ring gland in relation to pupal diapause in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 32:161166.Google Scholar
Gillespie, M., Hodkinson, I.D., Cooper, E.J., Bird, J.M., and Jónsdóttir, I.S.. 2007. Life history and host–plant relationships of the rare endemic Arctic aphid Acyrthosiphon calvulus in a changing environment. Ent. Exp. Appl. 123:229237.Google Scholar
Gkouvitsas, T., Kontogiannatos, D., and Kourti, A.. 2008. Differential expression of two small Hsps during diapause in the corn stalk borer Sesamia nonagrioides (Lef.). J. Insect Physiol. 54:15031510.Google Scholar
Gkouvitsas, T., Kontogiannatos, D., and Kourti, A.. 2009a. Cognate Hsp70 gene is induced during deep diapause in the moth Sesamia nonagrioides. Insect Mol. Biol. 14:697702.Google Scholar
Gkouvitsas, T., Kontogiannatos, D., and Kourti, A.. 2009b. Expression of the Hsp83 gene in response to diapause and thermal stress in the moth Sesamia nonagrioides. Insect Mol. Biol. 18:759768.Google Scholar
Glitho, I.A., Lenga, A., Pierre, D., and Huignard, J.. 1996. Changes in the responsiveness during two phases of diapause termination in Bruchidius atrolineatus Pic (Coleoptera: Bruchidae). J. Insect Physiol. 42:953960.Google Scholar
Glockner, M.O., Madi, A., Mikkat, S., Koy, C., Ringel, B., and Thiesen, H.J.. 2008. Mass spectrometric proteome analysis suggests anaerobic shift in metabolism of dauer larvae of Caenorhabditis elegans. Biochim. Biophys. Acta Proteins Proteom. 1784:17631770.Google Scholar
Gnagey, A.L. and Denlinger, D.L.. 1984. Photoperiodic induction of pupal diapause in the flesh fly, Sarcophaga crassipalpis: embryonic sensitivity. J. Comp. Physiol. B 154:9196.Google Scholar
Godlewski, J., Kłudkiewicz, B., Grzelak, K., and Cymborowski, B.. 2001. Expression of larval hemolymph proteins (Lhp) genes and protein synthesis in the fat body of greater wax moth (Galleria mellonella) larvae during diapause. J. Insect Physiol. 47:759766.Google Scholar
Goehring, L. and Oberhauser, K.S.. 2002. Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecol. Ent. 27:674685.Google Scholar
Goldson, S.L., McNeill, M.R., and Proffitt, J.R.. 1993. Effect of host condition and photoperiod on the development of Microctonus hyperodae Loan, a parasitoid of the Argentine stem weevil (Listronotus bonariensis (Kuschel)). N. Zealand J. Zool. 20:8994.Google Scholar
Golec, J.R. and Hu, X.P.. 2015. Preoverwintering copulation and female ratio bias: life history characteristics contributing to the invasiveness and rapid spread of Megacopta cribraria (Heteroptera: Plataspidae). Environ. Ent. 44:411417.Google Scholar
Gomi, T. and Takeda, M.. 1996. Changes in life-history traits in the fall webworm within half a century of introduction to Japan. Funct. Ecol. 10:384389.Google Scholar
Gomi, T., Nagasaka, M., Fukuda, T., and Hagihara, H.. 2007. Shifting of the life cycle and life-history traits of the fall webworm in relation to climate change. Ent. Exp. Appl. 125:179184.Google Scholar
Gong, J., Zheng, X., Zhao, S., Yang, L., Xue, Z., Fan, Z., and Tang, M.. 2020. Early molecular events during onset of diapause in silkworm eggs revealed by transcriptome analysis. Int’l. J. Mol. Sci. 21:6180.Google Scholar
Goto, M., Li, Y.-P., Kayaba, S., Outani, S., and Suzuki, K.. 2001. Cold hardiness in summer and winter diapause and post-diapause pupae of the cabbage armyworm, Mamestra brassicae L. under temperature acclimation. J. Insect Physiol. 47:709714.Google Scholar
Goto, S.G. 2009. Genetic analysis of diapause capacity and association between larval and pupal photoperiodic responses in the flesh fly Sarcophaga similis. Physiol. Ent. 34:4651.Google Scholar
Goto, S.G. 2013. Roles of circadian clock genes in insect photoperiodism. Ent. Sci. 16:116.Google Scholar
Goto, S.G., Yoshida, K.M., and Kimura, M.T.. 1998. Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. J. Insect Physiol. 44:10091015.Google Scholar
Goto, S.G. and Denlinger, D.L.. 2002. Short-day and long-day expression patterns of genes involved in the flesh fly clock mechanism: period, timeless, cycle and cryptochrome. J. Insect Physiol. 48:803816.Google Scholar
Goto, S.G., Han, B., and Denlinger, D.L.. 2006. A nondiapausing variant of the flesh fly, Sarcophaga bullata, that shows arrhythmic adult eclosion and elevated expression of two circadian clock genes, period and timeless. J. Insect Physiol. 52:12131218.Google Scholar
Goto, S.G., Doi, K., Nakayama, S., and Numata, H.. 2008. Maternal control of cold and desiccation tolerance in eggs of the band-legged ground cricket Dianemobius nigrofasciatus in relation to embryonic diapause. Ent. Res. 38:1723.Google Scholar
Goto, S.G. and Numata, H.. 2009. Possible involvement of distinct photoreceptors in the photoperiodic induction of diapause in the flesh fly Sarcophaga similis. J. Insect Physiol. 55:401407.Google Scholar
Goto, S.G., Shiga, S., and Numata, H.. 2010. Photoperiodism in insects: perception of light and the role of clock genes. In Photoperiodism, the Biological Calendar, ed. Nelson, R.J., Denlinger, D.L., and Somers, D.E., Oxford: Oxford University Press, pp. 258286.Google Scholar
Gotthard, K., Nylin, S., and Wiklund, C.. 1999. Seasonal plasticity in two satyrine butterflies: state-dependent decision making in relation to daylength. Oikos 84:453462.Google Scholar
Gotthard, K. and Berger, D.. 2010. The diapause decision as a cascade switch for adaptive developmental plasticity in body mass in a butterfly. J. Evol. Biol. 23:11291137.Google Scholar
Gotthard, K. and Wheat, C.W.. 2019. Diapause: circadian clock genes are at it again. Curr. Biol. 29:R1245.Google Scholar
Goymann, W., Helm, B., Jensen, W., Schwabl, I., and Moore, I.T.. 2012. A tropical bird can use the equatorial change in sunrise and sunset times to synchronize its circannual clock. Proc. Roy. Soc. B 279:35273534.Google Scholar
Grabenweger, G. 2004. Poor control of the horse chestnut leafminer, Cameraria ohridella (Lepidoptera: Gracillariidae), by native European parasitoids: a synchronization problem. Eur. J. Ent. 101:189192.Google Scholar
Graf, B., Höhn, H., Höpli, H.U., and Kuske, S.. 2018. Predicting the phenology of codling moth, Cydia pomonella, for sustainable pest management in Swiss apple orchards. Ent. Exp. Appl. 166:L618L627.Google Scholar
Graham, D.H., Holmes, J.L., Beaty, B.J., and Black IV, W.C.. 2003. Quantitative trait loci conditioning transovarial transmission of La Crosse virus in the eastern treehole mosquito, Ochlerotatus triseriatus. Insect Mol. Biol. 12:307318.Google Scholar
Gray, D.R., Ravlin, F.W., and Braine, J.A.. 2001. Diapause in the gypsy moth: a model of inhibition and development. J. Insect Physiol. 47:173184.Google Scholar
Green, D.A. and Kronforst, M.R.. 2019. Monarch butterflies use an environmentally sensitive, internal timer to control overwintering dynamics. Mol. Ecol. 28:36423655.Google Scholar
Greenberg, S.M., Sappington, T.W., Setamou, M., Armstrong, J.S., Coleman, R.J., and Liu, T.-X.. 2007. Reproductive potential of overwintering, F1, and F2 female boll weevils (Coleoptera: Curculionidae) in the lower Rio Grande Valley of Texas. Environ. Ent. 36:256262.Google Scholar
Greenfield, M.D. and Pener, M.P.. 1992. Alternative schedules of male reproductive diapause in the grasshopper Anacridium aegyptium (L.): effects of the corpora allata on sexual behavior (Orthoptera: Acrididae). J. Insect Behav. 5:245261.Google Scholar
Gregg, P.C., Roberts, B., and Wentworth, S.L.. 1987. Levels of ecdysteroids in diapause and non-diapause eggs of the Australian plague locust, Chortoicetes terminifera (Walker). J. Insect Physiol. 33:237242.Google Scholar
Grewal, S.S. 2009. Insulin/TOR signaling in growth and homeostasis: a view from the fly world. J. Biochem. Cell Biol. 41:10061010.Google Scholar
Grüner, C. and Masaki, S.. 1994. Summer diapause in the polymorphic life cycle of the noctuid moth Mamestra brassicae. In Insect Life-cycle Polymorphism, ed. by Danks, H.V., pp. 191204, Amsterdam: Kluwer Academic.Google Scholar
Gu, S.-H., Hsieh, H.-Y. and Lin, P.-L.. 2017. Regulation of protein phosphatase 2A during embryonic diapause process in the silkworm, Bombyx mori. J. Insect Physiol. 103:117124.Google Scholar
Gu, S.-H., Lin, P.-L., and Hsieh, H.-Y.. 2019. Bombyxin/Akt signaling in relation to the embryonic diapause process of the silkworm, Bombyx mori. J. Insect Physiol. 116:3240.Google Scholar
Gu, S.-H., Chen, C.-H., Hsieh, H.-Y., and Lin, P.-L.. 2020. Expression of protein kinase C in relation to the embryonic diapause process in the silkworm, Bombyx mori. J. Insect Physiol. 121:104010.Google Scholar
Gu, S.-H., Chen, C.-H., and Lin, P.-L.. 2021. Expression of protein tyrosine phosphatases and Bombyx embryonic development. J. Insect Physiol. 130:104198.Google Scholar
Guidetti, R., Altiero, T., and Rebecchi, L.. 2011. On dormancy strategies in tardigrades. J. Insect Physiol. 57:567576.Google Scholar
Güney, G., Toprak, U., Hegedus, D.D., Bayram, S., Coutu, C., Bekkaoui, D., Baldwin, D., Heckel, D.G., Hänniger, S., Cedden, D., Mutlu, D.A., and Suludere, Z.. 2020. A look into Colorado potato beetle lipid metabolism through the lens of lipid storage droplet proteins. Insect Biochem. Mol. Biol. 133:103473. doi: 10.1016/j.ibmb.2020.103473Google Scholar
Guo, F., Holla, M., Diaz, M.M., and Rosbash, M.. 2018. A circadian output circuit controls sleep-wake arousal in Drosophila. Neuron 100:624635.Google Scholar
Guo, S., Sun, D., tian, Z., Liu, W., Zhu, F., and Wang, X.-P.. 2019. The limited regulatory roles of juvenile hormone degradation pathways in reproductive diapause preparation of the cabbage beetle, Colaphellus bowringi. J. Insect Physiol. 119:103967.Google Scholar
Guo, S., Tian, Z., Wu, Q.-W., King-Jones, K., Liu, W., Zhu, F., and Wang, X.-P.. 2021. Steroid hormone ecdysone deficiency stimulates preparation for photoperiodic reproductive diapause. PLoS Genet. 17:e1009352.Google Scholar
Guven, O., Golluoglu, H., and Ceryngier, P.. 2015. Aestivo-hibernation of Coccinella septempunctata (Coleoptera: Coccinellidae) in a mountainous area in southern Turkey: is dormancy at high altitudes adaptive? Eur. J. Ent. 112:4148.Google Scholar
Guz, N., Toprak, U., Dageri, A., Gurkan, M.O., and Denlinger, D.L.. 2014. Identification of a putative antifreeze protein gene that is highly expressed during preparation for winter in the sunn pest, Eurygaster maura. J. Insect Physiol. 68:3035.Google Scholar
Hadley, N.F. 1994. Water Relationships of Terrestrial Arthropods. New York: Academic Press.Google Scholar
Hafker, N.S., Teschke, M., Huppe, L., and Meyer, B.. 2018. Calanus finmarchicus diel and seasonal rhythmicity in relation to endogenous timing under extreme polar photoperiods. Mar. Ecol. Prog. Ser. 603:7992.Google Scholar
Hagen, K.S. 1962. Biology and ecology of predaceous Coccinellidae. Ann. Rev. Ent. 7:289326.Google Scholar
Hahn, D.A. and Denlinger, D.L.. 2007. Meeting the energetic demands of insect diapause: nutrient storage and utilization. J. Insect Physiol. 53:760773.Google Scholar
Hahn, D.A. and Denlinger, D.L.. 2011. Energetics of insect diapause. Ann. Rev. Ent. 56:103121.Google Scholar
Hairston, N.G.J. 1987. Diapause as a predator-avoidance adaptation. In Predation: Direct and Indirect Impacts on Aquatic Communities, ed. Kerfoot, W.C. and Sih, A., Hanover: University Press of New England, pp. 281290.Google Scholar
Halbritter, D.A. 2020. Exposed Neophasia terlooii (Lepidoptera: Pieridae) eggs are resistant to desiccation during quiescence. Environ. Ent. 49:918923.Google Scholar
Hall, J.C. 2003. Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48:1280.Google Scholar
Hallworth, M.T., Marra, P.P., McFarland, K.P., Zahendra, S., and Studds, C.E.. 2018. Tracking dragons: stable isotopes reveal the annual cycle of a long-distance migratory insect. Biol. Lett. 14:20180741.Google Scholar
Hamedi, N., Moharramipour, S., and Barzegar, M.. 2013. Temperature-dependent chemical components accumulation in Hippodamia variegata (Coleoptera: Coccinellidae) during overwintering. Environ. Ent. 42:375380.Google Scholar
Hamel, M., Geri, C., and Auger-Rozenberg, A.. 1998. The effects of 20-hydroxyecdysone on breaking diapause of Diprion pini L. (Hym., Diprionidae). Physiol. Ent. 23:337346.Google Scholar
Hammell, C.M., Karp, X., and Ambros, V.. 2009. A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc. Nat’l. Acad. Sci., USA 106:1866818673.CrossRefGoogle ScholarPubMed
Han, B. and Denlinger, D.L.. 2009a. Length variation in a specific region of the period gene correlates with differences in pupal diapause incidence in the flesh fly, Sarcophaga bullata. J. Insect Physiol. 55:415418.Google Scholar
Han, B. and Denlinger, D.L.. 2009b. Mendelian inheritance of pupal diapause in the flesh fly, Sarcophaga bullata. J. Heredity 100:251255.CrossRefGoogle ScholarPubMed
Hand, S.C., Menze, M.A., Borcar, A., Patil, Y., Covi, J.A., Reynolds, J.A., and Toner, M.. 2011. Metabolic restructuring during energy-limited states: insights from Artemia franciscana embryos and other animals. J. Insect Physiol. 57:584594.Google Scholar
Hand, S.C., Denlinger, D.L., Podrabsky, J.E., and Roy, R.. 2016. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310:R1193R1211.Google Scholar
Hand, S.C., Moore, D.S., and Patil, Y.. 2018. Challenges during diapause and anhydrobiosis: mitochondrial bioenergetics and desiccation tolerance. Int’l. Union Biochem. Mol. Biol. 9999:19.Google Scholar
Hanski, I. 1988. Four kinds of extra long diapause in insects: a review of theory and observations. Ann. Zool. Fennici 25:3753.Google Scholar
Hao, K., Tu, X., Ullah, H., McNeill, M.R., and Zhang, Z.. 2019. Novel Lom-dh genes play potential role in promoting egg diapause of Locusta migratoria L. Front. Physiol. 10:767.Google Scholar
Hao, Y., Zhang, Y., Si, F., Fu, D., He, Z., and Chen, B.. 2016. Insight into the possible mechanism of the summer diapause of Delia antiqua (Diptera: Anthomyiidae) through digital gene expression analysis. Insect Sci. 23:438451.Google Scholar
Hao, Y.-J., Li, W.-S., He, Z.-B., Si, F.-L., Ishikawa, YU., and Chen, B.. 2012. Differential gene expression between summer and winter diapause pupae of the onion maggot Delia antiqua, detected by suppressive subtractive hybridization. J. Insect Physiol. 58:14441449.Google Scholar
Harada, T., Nitta, S., and Ito, K.. 2005. Photoperiodic changes according to global warming in wing-form determination and diapause induction of a water strider, Aquarius paludum (Heteroptera: Gerridae). Appl. Ent. Zool. 40:461466.Google Scholar
Hardie, J. 2010. Photoperiodism in insects: aphid polyphenism. In Photoperiodism, the Biological Calendar, ed. Nelson, R.J., Denlinger, D.L., and Somers, D.E., Oxford: Oxford University Press, pp. 342363.Google Scholar
Hardin, P.E. 2005. The circadian timekeeping system of Drosophila. Curr. Biol. 15:R714R722.Google Scholar
Härkönen, L. and Kaitala, A.. 2013. Months of asynchrony in offspring production but synchronous adult emergence: the role of diapause in an ectoparasite’s life cycle. Environ. Ent. 42:14081414.Google Scholar
Hartman, M.J. and Hynes, C.D.. 1980. Embryonic diapause in Tipula simplex and the action of photoperiod in its termination (Diptera: Tipulidae). Pan-Pacific Entomol. 56:207212.Google Scholar
Harvey, G.T. 1961. Second diapause in spruce budworm from eastern Canada. Can. Ent. 93:594602.Google Scholar
Harvey, W.R. and Williams, C.M.. 1961. The injury metabolism of the Cecropia silkworm – -I. Biological amplification of the effects of localized injury. J. Insect Physiol. 7:8199.Google Scholar
Hasan, F., Ansari, M.S., Dhillon, M.K., Muslim, M., Bhadauriya, A.S., Tanwar, A.K., and Ahmad, S.. 2018. Diapause regulation in Zygogramma bicolorata (Coleoptera: Chrysomelidae), a biocontrol agent of Parthenium hysterophorus. Int’l. J. Trop. Insect Sci. 38:145158.Google Scholar
Hasanvand, H., Izadi, H., and Mohammadzadeh, M.. 2020. Overwintering physiology and cold tolerance of the sunn pest, Eurygaster integriceps, an emphasis on the role of cryoprotectants. Front. Physiol. 11:321.Google Scholar
Hasebe, M. and Shiga, S.. 2021. Oviposition-promoting pars intercerbralis neurons show period-dependent photoperiodic changes in their firing activity in the bean bug. Proc. Nat’l. Acad. Sci., USA 118:e2018823118.CrossRefGoogle ScholarPubMed
Hasegawa, K. 1951. Studies in voltinism in the silkworm, Bombyx mori L., with special reference to the organs concerning determination of voltinism (a preliminary note). Proc. Jap. Acad. 27:667671.Google Scholar
Hasegawa, K. and Shimizu, I.. 1987. In vivo and in vitro photoperiodic induction of diapause using isolated brain-subesophageal ganglion complexes of the silkworm, Bombyx mori. J. Insect Physiol. 33:959966.Google Scholar
Hausmann, C., Smietz, J., and Dorn, S.. 2004a. Monitoring the dynamics of orchard colonization by Anthonomus pomorum in spring. Ent. Exp. Appl. 110:207216.Google Scholar
Hausmann, C., Samietz, J., and Dorn, S.. 2004b. Significance of shelter traps for spring monitoring of Anthonomus pomorum in apple orchards. Ent. Exp. Appl. 112:2936.Google Scholar
Hausmann, C., Samietz, J., and Dorn, S.. 2005. Thermal orientation of Anthonomus pomorum (Coleoptera: Curculionidae) in early spring. Physiol. Ent. 30:4853.Google Scholar
Hawley, W.A., Reiter, P., Copeland, R.S., Pumpuni, C.B., and Craig, G.B. Jr. 1987. Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236:11141116.CrossRefGoogle ScholarPubMed
Hayes, D.K., Sullivan, W.N., Oliver, M.Z., and Schechter, M.S.. 1970. Photoperiod manipulation of insect diapause: a method of pest control? Science 169:382383.Google Scholar
Hayes, D.K., Cawley, B.M., Sullivan, W.N., Adler, V.E., and Schechter, M.S.. 1974. The effect of added light pulses on overwintering and diapause, under natural lights and temperature conditions, of four species of Lepidoptera. Environ. Ent. 3:863865.Google Scholar
Hayward, S.A.L., Pavlides, S.C., Tammariello, S.P., Rinehart, J.P., and Denlinger, D.L.. 2005. Temporal expression patterns of diapause-associated genes in flesh fly pupae from the onset of diapause through post-diapause quiescence. J. Insect Physiol. 51:631640.Google Scholar
Hayward, S.A.L., Rinehart, J.P., Sandro, L.H., Lee, R.E. Jr., and Denlinger, D.L.. 2007. Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge, Belgica antarctica. J. Exp. Biol. 210:836844.Google Scholar
He, H.-M., Xian, Z.-H., Huang, F., Liu, X.-P., and Xue, F.-S.. 2009. Photoperiodism of diapause induction in Thyrassia penangae (Lepidoptera: Zygaenidae). J. Insect Physiol. 55:10031008.Google Scholar
Heestand, B., Simon, M., Frenk, S., Titov, D., and Ahmed, S.. 2018. Transgenerational sterility of Piwi mutants represents a dynamic form of adult reproductive diapause. Cell Rep. 23:156171.Google Scholar
Hejnikova, M., Paroulek, M., and Hodková, M.. 2016. Decrease in Methoprene tolerant and Taiman expression reduces juvenile hormone effects and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus. J. Insect Physiol. 93–94:7280.Google Scholar
Held, C. and Spieth, H.. 1999. First evidence of pupal summer diapause in Pieris brassicae L.: the evolution of local adaptedness. J. Insect Physiol. 45:587598.Google Scholar
Helfrich-Förster, C. 2003. The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc. Res. Tech. 62:94102.Google Scholar
Helfrich-Förster, C. 2006. The neural basis of Drosophila’s circadian clock. Sleep Biol. Rhythms 4:224234.Google Scholar
Helfrich-Förster, C., Edwards, T., Yasuyama, K., Wisotzki, B., Schneuwly, S., Stanewsky, R., Meinertzhagen, I.A., and Hofbauer, A.. 2002. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J. Neurosci. 22:92559266.Google Scholar
Hemmati, C., Moharramipour, S., and Talebi, A.A.. 2017. Diapause induced by temperature and photoperiod affects fatty acid compositions and cold tolerance of Phthorimaea operculella (Lepidoptera: Gelechiidae). Environ. Ent. 46:14561463.Google Scholar
Henneguy, L.F. 1904. Les Insectes. Morphologie, Reproduction, Embryogenie. Paris: Masson.Google Scholar
Henrich, V.C. and Denlinger, D.L.. 1982a. A maternal effect that eliminates pupal diapause in progeny of the flesh fly, Sarcophaga bullata. J. Insect Physiol. 28:881884.CrossRefGoogle Scholar
Henrich, V.C. and Denlinger, D.L.. 1982b. Selection for late pupariation affects diapause incidence and duration in the flesh fly, Sarcophaga bullata. Physiol. Ent. 7:407411.Google Scholar
Henrich, V.C. and Denlinger, D.L.. 1983. Genetic differences in pupal diapause incidence between two selected strains of the flesh fly. J. Heredity 74:371374.Google Scholar
Hetz, S.K. and Bradley, T.J.. 2005. Insects breathe discontinuously to avoid oxygen toxicity. Nature 433:516519.Google Scholar
Hickner, P.V., Mori, A., Zeng, E., Tan, J.C., and Severson, D.W.. 2015. Whole transcriptome responses among females of the filariasis and arbovirus vector mosquito Culex pipiens implicates TGF-β signaling and chromatin modification as key drivers of diapause induction. Funct. Integr. Genomics 15:439447.CrossRefGoogle ScholarPubMed
Higaki, M. 2006. Repeated cycles of chilling and warming effectively terminate prolonged larval diapause in the chestnut weevil, Curculio sikkimensis. J. Insect Physiol. 52:514519.Google Scholar
Higaki, M. 2016. Prolonged diapause and seed predation by the acorn weevil, Curculio robustus, in relation to masting of the deciduous oak Quercus acutissima. Ent. Exp. Appl. 159:338346.Google Scholar
Higaki, M. and Ando, Y.. 2005. Effects of temperature during chilling and pre-chilling periods on diapause and post-diapause development in a katydid, Eobiana engelhardti subtropica. J. Insect Physiol. 51:709716.Google Scholar
Higaki, M., Ihara, F., Toyama, M., and Mishiro, K.. 2010. Thermal response and reversibility of prolonged larval diapause in the chestnut weevil, Curculio sikkimensis. J. Insect Physiol. 56:616621.CrossRefGoogle ScholarPubMed
Higaki, M. and Toyama, M.. 2012. Evidence for reversible change in intensity of prolonged diapause in the chestnut weevil Curculio sikkimensis. J. Insect Physiol. 58:5660.Google Scholar
Hiiesaar, K., Kaart, T., Williams, I.H., Luik, A., Metspalu, L., Ploomi, A., Kruss, E., Jogar, K., and Mand, M.. 2018. Dynamics of supercooling ability and cold tolerance of the alder beetle (Coleoptera: Chrysomelidae). Environ. Ent. 47:10241029.Google Scholar
Hinton, H.E. 1951. A new chironomid from Africa, the larva of which can be dehydrated without injury. Proc. Zool. Soc. Lond. 121:371280.Google Scholar
Hiraga, S. 2006. Interactions of environmental factors influencing pupal coloration in swallowtail butterfly Papilio xuthus. J. Insect Physiol. 52:826838.Google Scholar
Hirai, T., Shibayama, N., Akashi, S., and Park, S.Y.. 2008. Crystal structures of the clock protein EA4 from the silkworm Bombyx mori. J. Mol. Biol. 377:630635.Google Scholar
Hiroyoshi, S., Reddy, G.V.P., and Mitsuhashi, J.. 2017. Effects of juvenile hormone analogue (methoprene) and 20-hydroxyecdysone on reproduction in Polygonia c-aureum (Lepidoptera: Nymphalidae) in relation to adult diapause. J. Comp. Physiol. A 203:635647.Google Scholar
Ho, D.H. and Burggren, W.W.. 2010. Epigenetics and transgenerational transfer: a physiological perspective. J. Exp. Biol. 213:316.Google Scholar
Hoback, W.W. and Stanley, D.W.. 2001. Insects in hypoxia. J. Insect Physiol. 47:533542.Google Scholar
Hoban, J., Duan, J.J., and Hough-Goldstein, J.. 2016. Effects of temperature and photoperiod on the reproductive biology and diapause of Oobius agrili (Hymenoptera: Encyrtidae), an egg parasitoid of emerald ash borer (Coleoptera: Buprestidae). Environ. Ent. 45:726731.Google Scholar
Hockham, L.R., Graves, J.A., and Ritchie, M.G.. 2001. Variable maternal control of facultative egg diapause in the bushcricket Ephippiger ephippiger. Ecol. Ent. 26:143147.Google Scholar
Hodek, I. 1968. Diapause in females of Pyrrhocoris apterus L. (Heteroptera). Acta Ent. Bohemoslov. 65:422435.Google Scholar
Hodek, I. 1971a. Sensitivity to photoperiod in Aelia acuminate (L.) after adult diapause. Oecologia 6:152155.Google Scholar
Hodek, I. 1971b. Termination of adult diapause in Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae) in the field. Ent. Exp. Appl. 14:212222.Google Scholar
Hodek, I. 2002. Controversial aspects of diapause development. Eur. J. Ent. 99:163173.Google Scholar
Hodek, I. 2003. Role of water and moisture in diapause development (a review). Eur. J. Ent. 100:223232.Google Scholar
Hodek, I. 2012. Diapause/Dormancy. In Ecology and Behaviour of the Ladybird Beetles (Coccinellidae), ed. Hodek, I., van Emden, H.F., and Honek, A.. Oxford: Blackwell, pp. 275342.Google Scholar
Hodek, I. and Hodková, M.. 1986. Diapause development and photoperiodic activation in starving females of Pyrrhocoris apterus (Heteroptera). J. Insect Physiol. 32:615621.Google Scholar
Hodek, I. and Hodková, M.. 1988. Multiple role of temperature during insect diapause: a review. Ent. Exp. Appl. 49:153165.Google Scholar
Hodek, I. and Ceryngier, P.. 2000. Sexual activity in Coccinelidae (Coleoptera): a review. Eur. J. Ent. 97:449456.Google Scholar
Hodkinson, I.D. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80:489513.Google Scholar
Hodková, M. 1976. Nervous inhibition of corpora allata by photoperiod in Pyrrhocoris apterus. Nature 263:521523.Google Scholar
Hodková, M. 1992. Storage of the photoperiodic information within the implanted neuroendocrine complexes in females of the linden bug, Pyrrhocoris apterus (L.)(Heteroptera). J. Insect Physiol. 38:357363.Google Scholar
Hodková, M. 1994. Photoperiodic regulation of mating behavior in the linden bug Pyrrhocoris apterus, is mediated by a brain inhibitory factor. Experientia 50:742744.Google Scholar
Hodková, M. 2008. Tissue signaling pathways in the regulation of life-span and reproduction in females of the linden bug, Pyrrhocoris apterus. J. Insect Physiol. 54:508517.Google Scholar
Hodková, M. 2015. Why is the number of days required for induction of adult diapause in the linden bug Pyrrhocoris apterus fewer in the larval than in the adult stage? J. Insect Physiol. 77:3944.Google Scholar
Hodková, M. and Hodek, I.. 1987. Photoperiodic summation is temperature-dependent in Pyrrhocoris apterus (L.)(Heteroptera). Experientia 43:454456.Google Scholar
Hodková, M., Okuda, T., and Wagner, R.. 2001. Regulation of corpora allata in females of Pyrrhocoris apterus (Heteroptera). Cell. Dev. Biol. 37:560563.Google Scholar
Hodková, M., Syrova, Z., Doležel, D., and Sauman, I.. 2003. Period gene expression in relation to seasonality and circadian rhythms in the linden bug, Pyrrhocoris apterus (Heteroptera). Eur. J. Ent. 100:267273.Google Scholar
Hodková, M. and Hodek, I.. 2004. Photoperiod, diapause and cold-hardiness. Eur. J. Ent. 101:445458.Google Scholar
Hodková, M. and Socha, R.. 2006. Endocrine regulation of the reproductive arrest in the long-winged females of a flightless bug, Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur. J. Ent. 103:523529.Google Scholar
Hodková, M. and Okuda, T.. 2019. Three kinds of regulatory signals for production of juvenile hormone in females of the linden bug, Pyrrhocoris apterus. J. Insect Physiol. 113:1723.Google Scholar
Hoffmann, E.J., Vanderjagt, J., and Whalon, M.E.. 2007. Pyriproxyfen activates reproduction in pre-diapause northern strain plum curculio (Conotrachelus nenuphar Herbst). Pest Manag. Sci. 63:835840.Google Scholar
Hogan, T.W. 1962. The effect of ammonia on the rate of termination of diapause in eggs of Acheta commodus (Walk.) (Orthoptera: Gryllidae). Aust. J. Biol. Sci. 15:538542.Google Scholar
Hogan, T.W. 1964. Further data on the effect of ammonia on the termination of diapause in eggs of Teleogryllus commodus (Walk.)(Orthoptera: Gryllidae). Aust. J. Biol. Sci. 17:752757.Google Scholar
Holmstrup, M., Bayley, M., Pedersen, S.A., and Zachariassen, K.E.. 2010. Interactions between cold, desiccation and environmental toxins. In Low Temperature Biology of Insects, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 166187.Google Scholar
Holzapfel, C.M. and Bradshaw, W.E.. 1981. Geography of larval dormancy in the tree-hole mosquito, Aedes triseriatus (Say). Can. J. Zool. 59:10141021.Google Scholar
Homma, T., Watanabe, K., Tsurumaru, S., Kataoka, H., Imai, K., Kamba, M., Niimi, T., Yamashita, O., and Yaginuma, T.. 2006. G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem. Biophy. Res. Comm. 344:386393.Google Scholar
Hondelmann, P. and Poehling, H.-M.. 2007. Diapause and overwintering of the hoverfly Episyrphus balteatus. Ent. Ent. Appl. 124:189200.Google Scholar
Honnen, A.-C., Kypke, J.L., Hölker, F., and Monaghan, M.T.. 2019. Artificial light at night influences clock-gene expression, activity, and fecundity in the mosquito Culex pipiens f. molestus. Sustainability 11:6220.Google Scholar
Hood, G.R., Forbes, A.A., Powell, T.H.Q., Egan, S.P., Hamerlinck, G., Smith, J.J., and Feder, J.L.. 2015. Sequential divergence and the multiplicative origin of community diversity. Proc. Nat’l. Acad. Sci., USA 112:e5980e5989.Google Scholar
Horie, Y., Kanda, T., and Mochida, Y.. 2000. Sorbitol as an arrester of embryonic development in diapausing eggs of the silkworm, Bombyx mori. J. Insect Physiol. 46:10091016.Google Scholar
van Houten, Y.M. 1989. Photoperiodic control of adult diapause in the predacious mite, Amblyseius potentillae: repeated diapause induction and termination. Physiol. Ent. 14:341348.Google Scholar
Hoy, M.A. 1977. Rapid response to selection for a non-diapausing gypsy moth. Science 196:14621463.Google Scholar
Hu, C.-K., Wang, W., Brind’Amour, J., Singh, P.P., Reeves, G.A., Lorincz, M.C., Alvarado, A.S., and Brunet, A.. 2020. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science 367:870874.Google Scholar
Hu, G., Lim, K.S., Horvitz, N., Clark, S.J., Reynolds, D.R., Sapir, N., and Chapman, J.W.. 2016. Mass seasonal bioflows of high-flying insect migrants. Science 354:15841587.Google Scholar
Hu, G., Stefanescu, C., Oliver, T.H., Roy, D.B., Brereton, T., Van Swaay, C., Reynolds, D.R., and Chapman, J.W.. 2021. Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proc. Nat’l. Acad. Sci., USA 118:e2102762118.Google Scholar
Hua, A., Yang, D., Wu, S., and Xue, F.-S.. 2005a. Photoperiodic control of diapause in Pseudopidorus fasciata (Lepidoptera: Zygaenidae) based on a qualitative time measurement. J. Insect Physiol. 51:12611267.Google Scholar
Hua, A., Xue, F.-S., Xiao, H.-J., and Zhu, X.-F.. 2005b. Photoperiodic counter of diapause induction in Pseudopidorus fasciata (Lepidoptera: Zygaenidae). J. Insect Physiol. 51:12871294.Google Scholar
Huang, H., Chen, C., Yao, F., Li, X., Wang, Y., Shao, Y., Wang, X., Zhang, X., Jiang, T., and Hou, L.. 2019. Investigation of the possible role of RAD9 in post-diapaused embryonic development of the brine shrimp Artemia sinica. Genes 10:768.Google Scholar
Huang, L., Xue, F., Wang, G., Han, R., and Ge, F.. 2005. Photoperiodic response of diapause induction in the pine caterpillar, Dendrolimus punctatus. Ent. Exp. Appl. 117:127133.Google Scholar
Huang, L.-L., Chen, C., Xiao, L., Xia, Q., Hu, L.-T., and Xue, F.. 2013. Geographic variation and inheritance of the photoperiodic response controlling larval diapause in two distinct voltine ecotypes of the Asian cornborer Ostrinia furnacalis. Physiol. Ent. 38:126132.Google Scholar
Huang, X., Poelchau, M.F., and Armbruster, P.A.. 2015. Global transcriptional dynamics of diapause induction in non-blood-fed and blood-fed Aedes albopictus. PLoS Negl. Trop. Dis. 9:e0003724.Google Scholar
Huestis, D.L. and Marshall, J.L.. 2006. Interaction between maternal effects and temperature affects diapause occurrence in the cricket Allonemobius socius. Oecologia 146:513520.Google Scholar
Huey, R.B., Ma, L., Levy, O., and Kearney, M.R.. 2021. Three questions about the eco-physiology of overwintering underground. Ecol. Lett. 24:170185.Google Scholar
Hufbauer, R.A. 2002. Evidence for nonadaptive evolution in parasitoid virulence following a biological control introduction. Ecol. Appl. 12:6678.Google Scholar
van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., and Vantomme, P.. 2013. Edible insects: future prospects for food and feed security. FAO Forestry Paper 171, Rome.Google Scholar
Hunt, J.H. and Amdam, G.V.. 2005. Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308:264267.Google Scholar
Hunt, J.H., Kensinger, B.J., Kossuth, J.A., Henshaw, M.T., Norberg, K., Wolschin, F., and Amdam, G.V.. 2007. A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proc. Nat’l. Acad. Sci., USA 104:1402014025.Google Scholar
Hunt, J.H., Wolschin, F., Henshaw, M.T., Newman, T.C., Toth, A.L., and Amdam, G.V.. 2010. Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp. PLoS One 5:e10674.Google Scholar
Hunter, M.D. and McNeil, J.N.. 1997. Host-plant quality influences diapause and voltinism in a polyphagous insect herbivore. Ecology 78:977986.Google Scholar
Hut, R.A. 2011. Photoperiodism: shall EYA compare thee to a summer’s day? Curr. Biol. 21:R22R25.Google Scholar
Hut, R.A., Paolucci, S., Dor, R., Kyriacou, C.P., and Daan, S.. 2013. Latitudinal clines: an evolutionary view of biological rhythms. Proc. Roy. Soc. B. 280:20130433.Google Scholar
Ichikawa, T., Hasegawa, K., Shimizu, I., Katsuno, K., Kataoka, H., and Suzuki, A.. 1995. Structure of neurosecretory cells with immunoreactive diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. Zool. Sci. 12:703712.Google Scholar
Iga, M., Nakaoka, T., Suzuki, Y., and Kataoka, H.. 2014. Pigment dispersing factor regulates ecdysone biosynthesis via Bombyx neuropeptide G protein coupled receptor-B2 in the prothoracic glands of Bombyx mori. PLoS One 9:e103239.Google Scholar
Iiams, S.E., Lugena, A.B., Zhang, Y., Hayden, A.N., and Merlin, C.. 2019. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc. Nat’l. Acad. Sci., USA 116:2521425221.Google Scholar
Ikeda, K., Numata, H., and Shiga, S.. 2005. Roles of the mushroom bodies in olfactory learning and photoperiodism in the blow fly Protophormia terraenovae. J. Insect Physiol. 51:669680.Google Scholar
Ikeda, M., Su, Z.-H., Saito, H., Imai, K., Sato, Y., Isobe, M., and Yamashita, O.. 1993. Induction of embryonic diapause and stimulation of ovary trehalase activity in the silkworm, Bombyx mori, by synthetic diapause hormone. J. Insect Physiol. 39:889895.Google Scholar
Ikeda-Kikue, K. and Numata, H.. 1994. Effect of low temperature on the termination of photoperiodic and food-meidated diapause in the cabbage bug, Eurydema rugosa Motshulsky (Heteroptera: Pentatomidae). Appl. Ent. Zool. 29:229236.Google Scholar
Ikeda-Kikue, K. and Numata, H.. 2001. Timing of diapause induction in the cabbage bug Eurydema rugosum (Heteroptera: Pentatomidae) on different host plants. Acta Soc. Zool. Bohem. 65:197205.Google Scholar
Ikeno, T., Numata, H., and Goto, S.. 2008. Molecular characterization of the circadian clock genes in the bean beetle, Riptortus pedestris, and their expression patterns under long- and short-day conditions. Gene 419:5661.Google Scholar
Ikeno, T., Tanaka, S., Numata, H., and Goto, S.. 2010. Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol. 8:116.Google Scholar
Ikeno, T., Katagiri, C., Numata, H., and Goto, S.G.. 2011a. Causal involvement of mammalian-type cryptochrome in the circadian cuticule deposition rhythm in the bean bug Riptortus pedestris. Insect Mol. Biol. 20:409415.Google Scholar
Ikeno, T., Numata, H., and Goto, S.G.. 2011b. Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochem. Biophys. Res. Com. 410:394397.Google Scholar
Ikeno, T., Numata, H., and Goto, S.G.. 2011c. Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. J. Insect Physiol. 57:935938.Google Scholar
Ikeno, T., Ishikawa, K., Numata, H., and Goto, S.G.. 2013. Circadian clock gene Clock is involved in the photoperiodic response of the bean bug Riptortus pedestris. Physiol. Ent. 38:157162.Google Scholar
Ikeno, T., Numata, H., Goto, S.G., and Shiga, S.. 2014. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean beetle, Riptortus pedestris. J. Exp. Biol. 217:453462.Google Scholar
Imai, C. 2004. Photoperiodic induction and termination of summer diapause in adult Epilachna admirabilis (Coleoptera: Coccinellidae) from a warm temperate region. Eur. J. Ent. 101:523529.Google Scholar
Imai, K., Konno, T., Nakazawa, Y., Komiya, T., Isobe, M., Koga, K., Goto, T., Yaginuma, T., Sakakibara, K., Hasegawa, K., and Yamashita, O.. 1991. Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proc. Jap. Acad. B. 67:98101.Google Scholar
Imhof, M.O., Rusconi, S., and Lezzi, M.. 1993. Cloning of the Chironomus tentans cDNA encoding a protein (cEcRH) homologous to the Drosophila melanogaster ecdysteroid receptor (dEcR). Insect Biochem. Mol. Biol. 23:115124.Google Scholar
Ingrisch, S. 1986. The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera) 1. The effect of temperature on embryonic development and hatching. Oecologia 70:606616.Google Scholar
Ingrisch, S. 1996. Evidence of an embryonic diapause in a tropical Phaneropterinae (Insecta Ensifera Tettigonioidae). Trop. Zool. 9:431439.Google Scholar
Inoue, T. and Thomas, J.H.. 2000. Targets of TGF-β signaling in Caenorhabditis elegans dauer formation. Dev. Biol. 217:192204.Google Scholar
Irwin, J.T. and Lee, R.E. Jr. 2000. Mild winter temperatures reduce survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). J. Insect Physiol. 46:655661.Google Scholar
Irwin, J.T. and Lee, R.E. Jr. 2003. Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 100:7178.Google Scholar
Isabel, G., Gordoux, L., and Moreau, R.. 2001. Changes of biogenic amine levels in haemolymph during diapausing and non-diapausing status in Pieris brassicae L. Comp. Biochem. Physiol. A 128:117127.Google Scholar
Ishihara, M. and Shimada, M.. 1995. Trade-off in allocation of metabolic reserves: effects of diapause on egg production and adult longevity in a multivoltine bruchid, Kytorhinus sharpianus. Funct. Ecol. 9:618624.Google Scholar
Ishihara, M. and Ohgushi, T.. 2006. Reproductive inactivity and prolonged developmental time induced by seasonal decline in host plant quality in the willow leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae). Environ. Ent. 35:524530.Google Scholar
Ishikawa, Y., Yamashita, T., and Nomura, M.. 2000. Characteristics of summer diapause in the onion maggot, Delia antiqua (Diptera: Anthomyiidae). J. Insect Physiol. 46:161167.CrossRefGoogle ScholarPubMed
Ishimaru, Y., Tomonari, S., Matsuoka, Y., Watanabe, T., Miyawaki, K., Bando, T., Tomioka, K., Ohuchi, H., Noji, S., and Mito, T.. 2016. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proc. Nat’l. Acad. Sci., USA 113:56345639.Google Scholar
Isobe, M., Kai, H., Kurahashi, T., Suwan, S., Pitchayawasin-Thapphasaraphong, S., Franz, T., Tani, N., Higashi, K., and Nishida, H.. 2006. The molecular mechanism of the termination of insect diapause, part 1: A timer protein, TIME-EA4, in the diapause eggs of the silkworm Bombyx mori is a metallo-glycoprotein. Chembiochem. 7:15901598.Google Scholar
Ito, K. 2004. Deteriorating effects of diapause duration on postdiapause life history traits in the Kanzawa spider mite. Physiol. Ent. 29:453457.Google Scholar
Ito, K. 2007. Negative genetic correlation between diapause duration and fecundity after diapause in a spider mite. Ecol. Ent. 32:643650.Google Scholar
Ito, K. 2010. Effect of host plants on diapause induction in immature and adult Tetranychus kanzawai (Acari: Tetranychidae). Exp. Appl. Acarol. 52:1117.Google Scholar
Ito, K., Yokoyama, N., Kumekawa, Y., Hayakawa, H., Minamiya, Y., Nakaishi, K., Fukuda, T., Arakawa, R., and Saito, Y.. 2012. Effects of inbreeding on variation in diapause duration and early fecundity in the Kanzawa spider mite. Ent. Exp. Appl. 144:202208.Google Scholar
Ito, K. 2014. Intra-population genetic variation in diapause incidence of adult-diapausing Tetranychus pueraricola (Acari: Tetranychidae). Ecol. Ent. 39:186194.Google Scholar
Iwai, S., Fukui, Y., Fujiwara, Y., and Takada, M.. 2006. Structure and expression of two circadian clock genes, period and timeless in the commercial silkmoth, Bombyx mori. J. Insect Physiol. 52:625637.Google Scholar
Iwasaki, H., Takahashi, M., Niimi, T., Yamashita, O., and Yaginuma, T.. 1997. Cloning of cDNAs encoding Bombyx homologues of Cdc2 and Cdc2-related kinase from eggs. Insect Mol. Biol. 6:131141.Google Scholar
Iwata, K.-I., Shindome, C., Kobayashi, Y., Takeda, M., Yamashita, O., Shiomi, K., and Fujiwara, Y.. 2005a. Temperature-dependent activation of ERK/MAPK in yolk cells and its role in embryonic diapause termination in the silkworm Bombyx mori. J. Insect Physiol. 51:13061312.Google Scholar
Iwata, K.-I., Fujiwara, Y., and Takeda, M.. 2005b. Effects of temperature, sorbitol, alanine and diapause hormone on the embryonic development in Bombyx mori: in vitro tests of old hypotheses. Physiol. Ent. 30:317323.Google Scholar
Izumi, Y., Anniwaer, K., Yoshieda, H., Sonoda, S., Fujisaki, K., and Tsumuki, H.. 2005. Comparison of cold hardiness and sugar content between diapausing and nondiapausing pupae of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Physiol. Ent. 30:3641.Google Scholar
Izumi, Y., Sonoda, S., and Tsumuki, H.. 2007. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker. J. Insect Physiol. 53:685690.Google Scholar
Izzo, V.M., Armstrong, J., Hawthorne, D., and Chen, Y.. 2014. Time of the season: the effect of host photoperiodism on diapause induction in an insect herbivore, Leptinotarsa decemlineata. Ecol. Ent. 39:7582.Google Scholar
James, D.G. and James, T.A.. 2019. Migration and overwintering in Australian monarch butterflies (Danaus plexippus (L.)(Lepidoptera: Nymphalidae): a review with new observations and research needs. J. Lepidop. Soc. 73:177190.Google Scholar
Jansson, R.K., Zitzman, A.E. Jr., and Lashcomb, J.H.. 1989. Effects of food plant and diapause on adult survival and fecundity of Colorado potato beetle (Coleoptera: Chrysomelidae). Environ. Ent. 18:291297.Google Scholar
Janzen, D.H. 1984. Weather-related color polymorphism of Rothschildia lebeau (Saturniidae). Bull. Ent. Soc. Am. 30:1620.Google Scholar
Janzen, D.H. and Schoener, T.W.. 1968. Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49:96110.Google Scholar
Janzen, D.H. and Hallwachs, W.. 2021. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Nat’l. Acad. Sci., USA. 118:e2002546117.Google Scholar
Jaquiery, J., Stoeckel, S., Larose, C., Nouhaud, P., Rispe, C., Mieuzet, L., Bonhomme, J., Maheo, F., Legeai, F., Gauthier, J.-P., Prunier-Leterme, N., Tagu, D., and Simon, J.-C.. 2014. Genetic control of contagious asexuality in the pea aphid. PLoS Genet. 10:e10044838.Google Scholar
Jarwar, A.R., Hao, K., Bitume, E.V., Ullah, H., Cui, D., Nong, X., Wang, G., Tu, X., and Zhang, Z.. 2019. Comparative transcriptomic analysis reveals molecular profiles of central nervous system in maternal diapause induction of Locusta migratoria. G3 119:400475.Google Scholar
Jeong, P.-Y., Kwon, M.-S., Joo, H.-J., and Paik, Y.-K.. 2009. Molecular time-course and the metabolic basis of entry into dauer in Caenorhabditis elegans. PLoS One 5:e4162.Google Scholar
Jiang, X.F., Huang, S.H., Luo, L.Z., Liu, Y., and Zhang, L.. 2010. Diapause termination, post-diapause development and reproduction in the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). J. Insect Physiol. 56:13251331.Google Scholar
Jiang, X.F., Huang, S.H., and Luo, L.Z.. 2011. Juvenile hormone changes associated with diapause induction, maintenance, and termination in the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 77:134144.Google Scholar
Jindra, M., Palli, S.R., and Riddiford, L.M.. 2013. The juvenile hormone signaling pathway in insect development. Ann. Rev. Ent. 58:181204.Google Scholar
Joanisse, D.R. and Storey, K.B.. 1994. Mitochondrial enzymes during overwintering in two species of cold-hardy gall insects. Insect Biochem. Mol. Biol. 24:145150.Google Scholar
Joanisse, D.R. and Storey, K.B.. 1996. Fatty acid content and enzymes of fatty acid metabolism in overwintering cold-hardy gall insects. Physiol. Zool. 69:10791095.Google Scholar
Johansen, A.I., Exnerová, A., Svádová, K.H., Stys, P., Gamberale-Stille, G., and Tullberg, B.S.. 2010. Adaptive change in protective coloration in adult striated shieldbugs Graphosoma lineatum (Heteroptera: Pentatomidae): test of detectability of two colour forms by avian predators. Ecol. Ent. 35:602610.Google Scholar
Joplin, K.H. and Denlinger, D.L.. 1989. Cycles of protein synthesis during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Arch. Insect Biochem. Physiol. 12:111122.Google Scholar
Joplin, K.H., Yocum, G.D., and Denlinger, D.L.. 1990. Diapause specific proteins expressed by the brain during pupal diapause of the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 36:775783.Google Scholar
Joplin, K.H., Stetson, D.L., Diaz, J.G., and Denlinger, D.L.. 1993. Cellular differences in ring glands of flesh fly pupae as a consequence of diapause programming. Tissue Cell 25:245257.Google Scholar
Jordan, R.G. 1980. Embryonic diapause in three popluations of the western tree hole mosquito, Aedes sierrensis. Ann. Ent. Soc. Am. 73:357359.Google Scholar
Joschinski, J. and Bonte, D.. 2021. Diapause and bet-hedging in insects: a meta-analysis of reaction norm shapes. Oikos 130:12401250.Google Scholar
Joshi, A., Olson, D.L., and Carey, D.R.. 2009. Overwintering survival of Aphtona beetles (Coleoptera: Chrysomelidae): a biological control agent of leafy spurge released in North Dakota. Environ. Ent. 38:15391545.Google Scholar
Jovanović-Galović, A., Blagojević, D.P., Grubor-Lajšić, G., Worland, M.R., and Spasić, M.B.. 2007. Antioxidant defense in mitochondria during diapause and postdiapause development of European corn borer (Ostrinia nubilalis, Hubn.). Arch. Insect Biochem. Physiol. 64:111119.Google Scholar
Jurenka, R.A., Holland, D., and Krafsur, E.S.. 1998. Hydrocarbon profiles of diapausing and nondiapausing adult face flies (Musca autumnalis). Arch. Insect Biochem. Physiol. 37:206214.Google Scholar
Kadener, S., Menet, J.S., Sugino, K., Horwich, M.D., Weissbein, U., Nawthean, P., Vagin, V.V., Zamore, P.D., Nelson, S.B., and Rosbash, M.. 2009. A role for microRNAs in the Drosophila circadian clock. Genes Devel. 23:21792191.Google Scholar
Kageyama, T. and Ohnishi, E.. 1971. Carbohydrate metabolism in the eggs of the silkworm Bombyx mori II. Anaerobiosis and polyol formation. Dev. Growth Differ. 15:4755.Google Scholar
Kai, H., Kawai, T., and Kawai, Y.. 1987. A time-interval activation of esterase A4 by cold. Insect Biochem. 17:367372.Google Scholar
Kai, H., Kotani, Y., Miao, Y., and Azuma, M.. 1995. Time interval measuring enzyme for resumption of embryonic development in the silkworm, Bombyx mori. J. Insect Physiol. 41:905910.Google Scholar
Kalberer, N.M., Turlings, T.C.J., and Rahier, M.. 2005. An alternative hibernation strategy involving sun-exposed “hotspots,” dispersal by flight, and host plant finding by olfaction in an alpine leaf beetle. Ent. Exp. Appl. 114:189196.Google Scholar
Kaltenpoth, M., Göttler, W., Herzner, G., and Strohm, E.. 2005. Symbiotic bacteria protect wasp larvae from fungal infestations. Curr. Biol. 15:475479.Google Scholar
Kalushkov, P., Hodkova, M., Nedvêd, O., and Hodek, I.. 2001. Effect of diapause intensity in Pyrrhocoris apterus (Heteroptera Pyrrhocoridae). J. Insect Physiol. 47:5561.Google Scholar
Kamei, Y., Hasegawa, Y., Niimi, T., Yamashita, O., and Yaginuma, T.. 2011. trehalase-2 protein contributes to trehalase activity enhanced by diapause hormone in developing ovaries of the silkworm, Bombyx mori. J. Insect Physiol. 57:6C613.Google Scholar
Kamimura, M., Saito, H., Niwa, R., Niimi, T., Toyoda, K., Ueno, C., Kanamori, Y., Shimura, S., and Kiuchi, M.. 2012. Fungal ecdysteroid-22-oxidase, a new tool for manipulating ecdysteroid signaling and insect development. J. Biol. Chem. 287:1648816498.Google Scholar
Kandel, E.R. 2001. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:10301038.Google Scholar
Kandel, E.R., Dudai, Y., and Mayford, M.R.. 2014. The molecular and systems biology of memory. Cell 157:163185.Google Scholar
Kang, D.S., Denlinger, D.L., and Sim, C.. 2014. Suppression of allatotropin simulates reproductive diapause in the mosquito Culex pipiens. J. Insect Physiol. 64:4853.Google Scholar
Kang, D.S., Cotton, M.A., Denlinger, D.L., and Sim, C.. 2016. Comparative transcriptomics reveals key gene expression differences between diapausing and non-diapausing adults of Culex pipiens. PLoS One 11:e0154892.Google Scholar
Kankare, M., Salminen, T., Laiho, A., Vesala, L., and Hoikkala, A.. 2010. Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: a candidate gene microarray study. BMC Ecology 10:3.Google Scholar
Kankare, M., Salminen, T.S., Lampinen, H., and Hoikkala, A.. 2012. Sequence variation in couch potato and its effects on life-history traits in a northern malt fly, Drosophila montana. J. Insect Physiol. 58:256264.Google Scholar
Karl, I., Hoffmann, K., and Fischer, K.. 2010. Cuticular melanisation and immune response in a butterfly: local adaptation and lack of correlation. Ecol. Ent. 35:523528.Google Scholar
Karlsson, B. 2014. Exended season for northern butterflies. Int. J. Biometeorol. 58:691701.Google Scholar
Karlsson, B. and Johansson, A.. 2008. Seasonal polyphenism and developmental trade-offs between flight ability and egg laying in a pierid butterfly. Proc. R. Soc. B 275:21312136.Google Scholar
Kashima, T., Nakamura, T., and Tojo, S.J.. 2006. Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera:Parastrachiidae), during diapause. J. Insect Physiol. 52:816825.Google Scholar
Katsoyannos, P., Kontodimas, D.C., and Stathas, G.. 2005. Summer diapause and winter quiescence of Hippodamia (Semiadalia) undecimnotata (Coleoptera: Coccinellidae) in central Greece. Eur. J. Ent. 102:453457.Google Scholar
Katz, D.J., Edwards, T.M., Reinke, V., and Kelly, W.G.. 2009. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137:308320.Google Scholar
Kauranen, H., Tyukmaeva, V., and Hoikkala, A.. 2013. Involvement of circadian oscillation(s) in the photoperiodic time measurement and the induction of reproductive diapause in a northern Drosophila species. J. Insect Physiol. 59:662666.Google Scholar
Kauranen, H., Kinnunen, J., Hopkins, D., and Hoikkala, A.. 2019a. Direct and correlated responses to bi-directional selection on pre-adult development time in Drosophila montana. J. Insect Physiol. 116:7789.Google Scholar
Kauranen, H., Kinnunen, J., Hiilos, A.-L., Lankinen, P., Hopkins, D., Wiberg, R.A.W., Ritchie, M.G., and Hoikkala, A.. 2019b. Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence. J. Exp. Biol. 222:205831.Google Scholar
Kawaguchi, H. and Niimi, T.. 2018. A method for cryopreservation of ovaries of the ladybird beetle, Harmonia axyridis. J. Insect Biotech. Ser. 87:3544.Google Scholar
Kawaguchi, S., Manabe, Y., Sugawara, T., and Osakabe, M.. 2016. Imaginal feeding for progression of diapause phenotype in the two-spotted spider mite (Acari: Tetranychidae). Environ. Ent. 45:15681573.Google Scholar
Kawakami, Y., Yamazaki, K., and Ohashi, K.. 2017. Protogyny after hibernation and aestivation in Cheilomenes sexmaculata (Coleoptera: Coccinellidae) in central Japan. Eur. J. Ent. 114:275278.Google Scholar
Kefuss, J.A. 1978. Influence of photoperiod on the behavior and brood-rearing activities of honeybees in a flight room. J. Apicult. Res. 17:137151.Google Scholar
Kelty, J.D. and Lee, R.E. Jr. 2000. Diapausing pupae of the flesh fly Sarcophaga crassipalpis (Diptera: Sarcophagidae) are more resistant to inoculative freezing than non-diapausing pupae. Physiol. Ent. 25:120126.Google Scholar
Kemp, D.J. and Jones, R.E.. 2001. Phenotypic plasticity in field populations of the tropical butterfly Hypolimnas bolina (L.)(Nymphalidae). Biol. J. Linnean Soc. 72:3345.Google Scholar
Kfir, R. 1991. Effect of diapause on development and reproduction of the stem borers Busseola fusca (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Pyralidae). J. Econ. Ent. 84:16771680.Google Scholar
Khan, M.A. 1988. Brain-controlled synthesis of juvenile hormone in adult insects. Ent. Exp. Appl. 46:317.Google Scholar
Kidokoro, K. and Ando, Y.. 2006. Effect of anoxia on diapause termination in eggs of the false melon beetle, Atrachya menetriesi. J. Insect Physiol. 52:8793.Google Scholar
Kidokoro, K., Iwata, K., Fujiwara, Y., and Takeda, M.. 2006a. Effects of juvenile hormone analogs and 20-hydroxyecdysone on diapause termination in eggs of Locusta migratoria and Oxya yezoensis. J. Insect Physiol. 52:473479.Google Scholar
Kidokoro, K., Iwata, K., Takeda, M., and Fujiwara, Y.. 2006b. Involvement of ERK/MAPK in regulation of diapause intensity in the false melon beetle, Atrachya menetriesi. J. Insect Physiol. 52:11891193.Google Scholar
Kikawada, T., Nakahara, Y., Kanmori, Y., Iwata, K.I., Watanabe, M., McGee, B., Tunnacliffe, A., and Okuda, T.. 2006. Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem. Biophy. Res. Com. 348:5661.Google Scholar
Kikukawa, S. and Ohde, K.. 2007. The role of the main photophase on dark-time measurement used for diapause determination in the Indian meal moth, Plodia interpunctella. Physiol. Ent. 32:351356.Google Scholar
Kikukawa, S., Minamizuka, T., and Matoba, W.. 2008. Responses to stepwise photoperiodic changes for the larval diapause of the Indian meal moth Plodia interpunctella. Physiol. Ent. 33:360364.Google Scholar
Kikukawa, S., Arakawa, Y., Hayakawa, K., Hayashi, M., Katou, K., Kaneshige, J., Kimura, M., Nakamura, T., Nakamura, Y., and Watanabe, H.. 2009. Effects of skeleton photoperiods on the induction of larval diapause in the Indian meal moth Plodia interpunctella. Physiol. Ent. 34:180184.Google Scholar
Kim, K.S., French, B.W., Sumerford, D.V., and Sappington, T.W.. 2007. Genetic diversity in laboratory colonies of western corn rootworm (Coleoptera: Chrysomelidae), including a nondiapause colony. Environ. Ent. 36:637645.Google Scholar
Kim, M., Robich, R.M., Rinehart, J.P., and Denlinger, D.L.. 2006. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens. J. Insect Physiol. 52:12261233.Google Scholar
Kim, M. and Denlinger, D.L.. 2009. Decrease in expression of beta-tubulin and microtubule abundance in flight muscles during diapause in adults of Culex pipiens. Insect Mol. Biol. 18:295302.Google Scholar
Kim, M. and Denlinger, D.L.. 2010. A potential role for ribosomal protein S2 in the gene network regulating reproductive diapause in the mosquito Culex pipiens. J. Comp. Physiol. B 180:171178.Google Scholar
Kim, M., Sim, C., and Denlinger, D.L.. 2010. RNA interference directed against ribosomal protein S3a suggests a link between this gene and arrested ovarian development during adult diapause in Culex pipiens. Insect Mol. Biol. 19:2733.Google Scholar
Kim, S.K. 2007. Proteins that promote long life. Science 317:603605.Google Scholar
Kimura, K.D., Tissenbaum, H.A., Liu, Y., and Ruvkun, G.. 1997. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942946.Google Scholar
King, A.M. and MacRae, T.H.. 2015. Insect heat shock proteins during stress and diapause. Ann. Rev. Ent. 60:5975.Google Scholar
Kipyatkov, V.E. 1995. Role of endogenous rhythms in regulation of annual cycles of development in ants (Hymenoptera, Formicidae). Ent. Rev. 74:115.Google Scholar
Kipyatkov, V.E. 2006. The evolution of seasonal cycles in cold-temperate and boreal ants: patterns and constraints. In Life Cycles in Social Insects: Behaviour, Ecology and Evolution, ed. Kipyatkov, V.E., St. Petersburg: St. Petersburg University Press, pp. 6384.Google Scholar
Kipyatkov, V.E. and Lopatina, E.B.. 1999. Social regulation of larval diapause induction and termination by the worker ants of three species of the genus Myrmica Latreille (Hymenoptera, Formicidae). Ent. Rev. 79:11381144.Google Scholar
Kistenpfennig, C., Nakayama, M., Nihara, R., Tomioka, K., Helfrich-Förster, C., and Yoshii, T.. 2018. A tug-of-war between cryptochrome and the visual system allows the adaptation of evening activity to long photoperiods in Drosophila melanogaster. J. Biol. Rhy. 33:2434.Google Scholar
Kitching, R.L. and Zalucki, M.P.. 1981. Observations on the ecology of Euploea core corinna (Nymphalidae) with special reference to an overwintering population. J. Lep. Soc. 35:106119.Google Scholar
Knapp, M. and Rericha, M.. 2020. Effects of the winter temperature regime on survival, body mass loss and post-winter starvation resistance in laboratory-reared and field-collected ladybirds. Sci. Rep. 10:4970.Google Scholar
Kobelkova, A., Goto, S.G., Peyton, J.T., Ikeno, T., Lee, R.E. Jr., and Denlinger, D.L.. 2015. Continuous activity and no cycling of clock genes in the Antarctic midge during the polar summer. J. Insect Physiol. 81:9096.Google Scholar
Koch, P.B. and Bückmann, D.. 1987. Hormonal control of seasonal morphs by the timing of ecdysteroid release in Araschnia levana L. (Nymphalidae: Lepidoptera). J. Insect Physiol. 33:823829.Google Scholar
Koch, R.L. 2003. The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J. Insect Sci. 3:32.Google Scholar
Koenraadt, C.J.M., Mohlmann, T.W.R., Verhulst, N.O., Spitzen, J., and Vogels, C.B.F.. 2019. Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens. Parasit. Vect. 12:147.Google Scholar
Koga, M., Ushirogawa, H., and Tomioka, K.. 2005. Photoperiodic modulation of circadian rhythms in the cricket Gryllus bimaculatus. J. Insect Physiol. 51:681690.Google Scholar
Kogure, M. 1933. The influence of light and temperature on certain characteristics os the silkworm, Bombyx mori. J. Dept. Agric., Kyushu Univ. 4:193.Google Scholar
Komata, S. and Sota, T.. 2017. Seasonal polyphenism in body size and juvenile development of the swallowtail butterfly Papilio xuthus (Lepidoptera: Papilionidae). Eur. J. Ent. 114:365371.Google Scholar
Kontogiannatos, D., Gkouvitsas, T., and Kourti, A.. 2016. The expression patterns of the clock genes period and timeless are affected by photoperiod in the Mediterranean corn stalk borer, Sesamia nonagrioides. Arch. Insect Biochem. Physiol. 94:e21366.Google Scholar
Kontogiannatos, D., Gkouvitsas, T., and Kourti, A.. 2017. The expression of clock gene cycle has rhythmic pattern and is affected by photoperiod in the moth Sesamia nonagrioides. Comp. Biochem. Physiol. B 208–209:16.Google Scholar
Koopmanschap, A.B., Lammers, J.H.M., and de Kort, C.A.D.. 1995. The structure of the gene encoding diapause hormone protein 1 of the Colorado potato beetle (Leptinotarsa decemlineata). J. Insect Physiol. 41:509518.Google Scholar
de Kort, C.A.D. 1969. Hormones and the structural and biochemical properties of the flight muscles in the Colorado beetle. Meded. Landb. Hogesch. Wageningen 69:163.Google Scholar
de Kort, C.A.D. 1990. Thirty-five years of diapause research with the Colorado potato beetle. Ent. Exp. Appl. 56:113.Google Scholar
de Kort, C.A.D. and Koopmanschap, A.B.. 1994. Nucleotide and deduced amino acid sequence of a cDNA clone encoding Diapause Protein-1, an arylphorin-type storage hexamer of the Colorado potato beetle. J. Insect Physiol. 40:527535.Google Scholar
Koštál, V. 2006. Eco-physiological phases of insect diapause. J. Insect Physiol. 52:113127.Google Scholar
Koštál, V. 2010. Cell structural modifications in insects at low temperatures. In Low Temperature Biology of Insects, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 116140.Google Scholar
Koštál, V. 2011. Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? J. Insect Physiol. 57:538556.Google Scholar
Koštál, V. and Hodek, I.. 1997. Photoperiodism and control of summer diapause in the Mediterranean tiger moth Cymbalophora pudica. J. Insect Physiol. 43:767777.Google Scholar
Koštál, V., Noguchi, H., Shimada, K., and Hayakawa, Y.. 1998. Developmental changes in dopamine levels in larvae of the fly Chymomyza costata: comparison between widl-type and mutant-nondiapause strains. J. Insect Physiol. 44:605614.Google Scholar
Koštál, V., Shimada, K., and Hayakawa, Y.. 2000a. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. J. Insect Physiol. 46:417428.Google Scholar
Koštál, V., Noguchi, H., Shimada, K., and Hayakawa, Y.. 2000b. Circadian component influences the photoperiodic induction of diapause in a drosophilid fly, Chymomyza costata. J. Insect Physiol. 46:887896.Google Scholar
Koštál, V. and Shimada, K.. 2001. Malfunction of circadian clock in the non-photoperiodic-diapause mutants of the drosophilid fly, Chymomyza costata. J. Insect Physiol. 47:12691274.Google Scholar
Koštál, V., Havelka, J., and Šimek, P.. 2001. Low-temperature storage and cold hardiness in two populations of the predatory midge Aphidoletes aphidimyza, differing in diapause intensity. Physiol. Ent. 26:320328.Google Scholar
Koštál, V., Berkova, P., and Šimek, P.. 2003. Remodeling of membrane phospholipids during the transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comp. Biochem. Physiol. B 135:407419.Google Scholar
Koštál, V., Tamura, M., Tollarová, M., and Zahradnícková, H.. 2004. Enzymatic capacity for accumulation of polyol cryoprotectants changes during diapause in the adult red firebug, Pyrrhocoris apterus. Physiol. Ent. 29:344355.Google Scholar
Koštál, V., Tollarová, M., and Doležel, D.. 2008. Dynamism in physiology and gene transcription during reproductive diapause in a heteropteran bug, Pyrrhocoris apterus. J. Insect Physiol. 54:7788.Google Scholar
Koštál, V., Závodská, R., and Denlinger, D.L.. 2009. Clock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis. J. Insect Physiol. 55:408414.Google Scholar
Koštál, V., Zahradnícková, H., and Šimek, P.. 2011. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Nat’l Acad. Sci., USA 108:1304113046.Google Scholar
Koštál, V., Šimek, P., Zahradnícková, H., Cimlová, J., and Štetina, T.. 2012. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc. Nat’l. Acad. Sci., USA 109:32703274.Google Scholar
Koštál, V., Urban, T., Rimnáčová, L., Berková, P., and Šimek, P.. 2013. Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus. J. Insect Physiol. 59:934941.Google Scholar
Koštál, V., Miklas, B., Dolezal, P., Rozsypal, J., and Zahradnícková, H.. 2014. Physiology of cold tolerance in the bark beetle, Pityogenes chalcographus and its overwintering in spruce stands. J. Insect Physiol. 63:6270.Google Scholar
Koštál, V., Korbelová, J., Poupardin, R., Moos, M., and Šimek, P.. 2016a. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 219:23582367.Google Scholar
Koštál, V., Mallaei, M., and Schottner, K.. 2016b. Diapause induction as an interplay between seasonal token stimuli, and modifying and directly limiting factors: hibernation in Chymomyza costata. Physiol. Ent. 41:344357.Google Scholar
Koštál, V., Stetina, T., Poupardin, R., Korbelová, J., and Bruce, A.W.. 2017. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Nat’l. Acad. Sci., USA 114:85328537.Google Scholar
Kotaki, T., Shinada, T., Kaihara, K., Ohfune, Y., and Numata, H.. 2011. Biological activities of juvenile hormone III skipped bisepoxide in last instar nymphs and adults of a stink bug, Plautia stali. J. Insect Physiol. 57:147152.Google Scholar
Kotwica-Rolinska, J., Pivarciova, L., Vaneckova, H., and Doležel, D.. 2017. The role of circadian clock genes in the photoperiodic timer of the linden bug Pyrrhocoris apterus during the nymphal stage. Physiol. Ent. 42:266273.Google Scholar
Kouno, T., Mizuguchi, M., Tanaka, H., Yang, P., Mori, Y., Shinoda, H., Unoki, K., Aizawa, T., Demura, M., Suzuki, K., and Kawano, K.. 2007. The structure of a novel insect peptide explains it Ca2+ channel blocking and antifungal activities. Biochemistry 46:1373313741.Google Scholar
Kourti, A. and Kontogiannatos, D.. 2018. The cryptochrome1 (cry1) gene has oscillating expression under short and long photoperiods in Sesamia nonagrioides. Int’l. J. Mol. Theor. Physics 2:19.Google Scholar
Kovacs, J.L. and Goodisman, M.A.D.. 2012. Effects of size, shape, genotype, and mating status on queen overwintering survival in the social wasp Vespula maculifrons. Environ. Ent. 41:16121620.Google Scholar
Kozak, G.M., Wadsworth, C.B., Kahne, S.C., Bogdanowicz, S.M., Harrison, R.G., Coates, B.S., and Dopman, E.B.. 2019. Genomic basis of circannual rhythm in the European corn borer moth. Curr. Biol. 29:2019.08.053.Google Scholar
Kozuki, Y. and Takeda, M.. 2004. Split life cycle and differentiations in diapause characteristics in three host-habitat strains of Atrophaneura alcinous (Lepidoptera: Papilionidae). Jpn. J. Environ. Ent. Zool. 15:157168.Google Scholar
Krajacich, B.J., Sullivan, M., Faiman, R., Veru, L., Graber, L., and Lehmann, T.. 2020. Induction of long-lived potential aestivation states in laboratory An. gambiae mosquitoes. Parasit. Vect. 13:412.Google Scholar
Krishnan, N., Kodrik, D., Turanli, F., and Sehnal, F.. 2007. Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata. J. Insect Physiol. 53:6774.Google Scholar
Kroon, A., Veenendaal, R.L., Bruin, J., Egas, M., and Sabelis, M.W.. 2008. “Sleeping with the enemy” – predator-induced diapause in a mite. Naturwissenschaften 95:11951198.Google Scholar
Krysan, J.L. 1990. Fenoxycarb and diapause: a possible method of control for pear psylla (Homoptera; Psyllidae). J. Econ. Ent. 83:293299.Google Scholar
Krysan, J.L., Foster, D.E., Branson, T.F., Ostlie, K.R., and Cranshaw, W.S.. 1986. Two years before the hatch: rootworms adapt to crop rotation. Bull. Ent. Soc. Am. 32:250253.Google Scholar
Kuang, X.-J., Xu, J., Xia, Q., He, H.-M., and Xue, F.. 2011. Inheritance of the photoperiodic response controlling imaginal summer diapause in the cabbage beetle, Colaphellus bowringi. J. Insect Physiol. 57:614619.Google Scholar
Kubrak, O.I., Kučerová, L., Theopold, U., and Nässel, D.R.. 2014. The sleeping beauty: how reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. PLoS One 9:e113051.Google Scholar
Kubrak, O.I., Kučerová, L., Theopold, U., Nylin, S., and Nässel, D.R.. 2016. Characterization of reproductive dormancy in male Drosophila melanogaster. Front. Physiol. 7:572.Google Scholar
Kučerová, L., Kubrak, O.I., Bengtsson, J.M., Strnad, H., Nylin, S., Theopold, U., and Nässel, D.R.. 2016. Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster. BMC Genomics 17:50.Google Scholar
Kuczer, M., Czarniewska, E., Majewska, A., Różanowska, M., Rosiński, G., and Lisowski, M.. 2016. Novel analogs of alloferon: synthesis, conformational studies, pro-apoptotic and antiviral activity. Bioorg. Chem. 66:1220.Google Scholar
Kukal, O., Denlinger, D.L., and Lee, R.E. Jr. 1991. Developmental and metabolic changes induced by anoxia in diapausing and non-diapausing flesh fly pupae. J. Comp. Physiol. B 160:683689.Google Scholar
Kurihara, M. and Ando, Y.. 1969. The effect of mercury compounds on breaking of diapause in the eggs of the false melon beetle, Atrachya menestriesi Falderman (Coleoptera: Chrysomelidae). Appl. Ent. Zool. 4:149151.Google Scholar
Kurota, H. and Shimada, M.. 2001. Photoperiod- and temperature-dependent induction of larval diapause in a multivoltine bruchid, Bruchidius dorsalis. Ent. Exp. Appl. 107:1118.Google Scholar
Kurota, H. and Shimada, M.. 2003a. Geographic variation in photoperiodic induction of larval diapause in the bruchid beetle, Bruchidius dorsalis: polymorphism in overwintering stages. Ent. Exp. Appl. 107:1118.Google Scholar
Kurota, H. and Shimada, M.. 2003b. Photoperiod-dependent adult diapause within a geographical cline in the multivoltine bruchid Bruchidius dorsalis. Ent. Exp. Appl. 107:177185.Google Scholar
Kurota, H. and Shimada, M.. 2007. Over-wintering stage polymorphism of a bruchine beetle: geographic variation in optimal diapause strategy. Ecol. Ent. 32:722731.Google Scholar
Kutaragi, Y., Tokuoka, A., Tomiyama, Y., Nose, M., Watanabe, T., Bando, T., Moriyama, Y., and Tomioka, K.. 2018. A novel photic entrainment mechanism for the circadian clock in an insect: involvement of c-fos and cryptochromes. Zool. Letters 4:26.Google Scholar
Kutcherov, D., Saulich, A., Lopatina, E., and Ryzhkova, M.. 2015. Stable and variable life-history responses to temperature and photoperiod in the beet webworm, Loxostege sticticalis. Ent. Exp. Appl. 154:228241.Google Scholar
Kutcherov, D., Lopatina, E.B., and Balashov, S.. 2018. Convergent photoperiodic plasticity of developmental rate in two species of insects insect with widely different thermal phenotypes. Eur. J. Ent. 115:624631.Google Scholar
Kuwano, E., Fujisawa, T., Suzuki, K., and Eto, M.. 1991. Termination of egg diapause by imidazoles in the silkmoth, Antheraea yamamai. Agric. Biol. Chem. 55:11851186.Google Scholar
Kyriacou, C.P., Peixoto, A.A., Sandrelli, F., Costa, R., and Tauber, E.. 2008. Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends Genet. 24:124132.Google Scholar
Labrie, G., Coderre, D., and Lucas, E.. 2008. Overwintering strategy of multicolored Asian lady beetle (Coleoptera: Coccinellidae): cold-free space as a factor of invasive success. Ann. Ent. Soc. Am. 101:860866.Google Scholar
Lacour, G., Vernichon, F., Cadilhac, N., Boyer, S., Lagneau, C., and Hance, T.. 2014. When mothers anticipate: effects of the prediapause stage on embryo development and of maternal photoperiod on eggs of a temperate and a tropical strains of Ades albopictus (Diptera: Culicidae). J. Insect Physiol. 71:8796.Google Scholar
Lagueux, M., Harry, P., and Hoffman, J.A.. 1981. Ecdysteroids are bound to vitellin in newly laid eggs of Locusta. Mol. Cell. Endocrin. 24:325338.Google Scholar
Lai, X.-T., Yang, D., Wu, S.-H., Zhu, X.-F., and Xue, F.-S.. 2008. Diapause incidence of progeny in relation to parental geographic origin, host plant and rearing density in the cabbage beetle, Colaphellus bowringi. Ent. Exp. Appl. 129:117123.Google Scholar
Lam, W.-K. and Pedigo, L.P.. 2000a. Cold tolerance of overwintering bean leaf beetles (Coleoptera: Chrysomelidae). Environ. Ent. 29:157163.Google Scholar
Lam, W.-K. and Pedigo, L.P.. 2000b. A predictive model for survival of overwintering bean leaf beetles (Coleoptera: Chrysomelidae). Environ. Ent. 29:800806.Google Scholar
Lambhod, C., Pathak, A., Munjai, A.K., and Parkash, R.. 2017. Tropical Drosophila ananassae of wet-dry seasons shows cross resistance to heat, drought and starvation. Biol. Open 6:16981706.Google Scholar
Lankinen, P. 1986. Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. J. Comp. Physiol. A 159:123142.Google Scholar
Lankinen, P. and Forsman, P.. 2006. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and the Thr-GLY repeat region of the period gene in Drosophila littoralis. J. Biol. Rhyth. 21:312.Google Scholar
Lankinen, P., Tyukmaeva, V.I., and Hoikkala, A.. 2013. Northern Drosophila montana flies show variation both within and between cline populations in the critical day length evoking reproductive diapause. J. Insect Physiol. 59:745751.Google Scholar
Larson, E.L., Tinghitella, R.M., and Taylor, S.A.. 2019. Insect hybridization and climate change. Front. Ecol. Evol. 7:348.Google Scholar
Le Berre, J.-R. 1953. Contribution a l’etude biologique du criquet migrateur des lands (Locusta migratoria gallica Remaudiere). Bull. Biol. 87:227273.Google Scholar
Le Hesran, S., Groot, T., Knapp, M., Nugroho, J.E., Beretta, G., Salomé-Abarca, L.F., Choi, Y.H., Vancová, M., Moreno-Rodenas, A.M., and Dicke, M.. 2019. Proximate mechanisms of drought resistance in Phytoseiulus persimilis eggs. Exp. Appl. Acar. 79:279298.Google Scholar
Le Trionnaire, G., Hardie, J., Jaubert, S., Simon, J.-C., and Tagu, D.. 2008. Shifting from clonal to sexual reproduction in aphids: physiological and developmental aspects. Biol. Cell 100:441451.Google Scholar
Le Trionnaire, G., Francis, F., Jaubert, S., Bonhomme, J., De Pauw, E., Gauthier, J.-P., Haubruge, E., Legeai, F., Prunier-Leterme, N., Simon, J.-C., Tanguy, S., and Tagu, D.. 2009. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid. BMC Genomics 10:114.Google Scholar
Le Trionnaire, G., Jaubert-Possamai, S., Bonhomme, J., Gauthier, J.-P., Guernec, G., Le Cam, A., Legeai, F., Monfort, J., and Tagu, D.. 2012. Transcriptomic profiling of the reproductive mode switch in the pea aphid in response to natural autumnal photoperiod. J. Insect Physiol. 58:15171524.Google Scholar
Leal, L., Talla, V., Kallman, T., Friberg, M., Wiklund, C., Dinca, V., Vila, R., and Backstrom, N.. 2018. Gene expression profiling across ontogenetic stages in the wood white (Leptidea sinapis) reveals pathways linked to butterfly diapause regulation. Mol. Ecol. 2018:114.Google Scholar
Lebenzon, J.E., Mohammad, L., Mathers, K.E., Turnbull, K.F., Staples, J.F., and Sinclair, B.J.. 2020. Burning down the powerhouse: does mitophagy drive metabolic suppression during diapause in the Colorado potato beetle (Leptinotarsa decemlineata)? Integ. Comp. Biol. 59:E357.Google Scholar
Lee, D.-H., Cullum, J.P., Anderson, J.L., Daugherty, J.L., Beckett, L.M., and Leskey, T.C.. 2014. Characterization of overwintering sites of the invasive brown marmorated stink bug in natural landscapes using human surveyors and detector canines. PLoS One 9:e91575.Google Scholar
Lee, K.-Y. and Denlinger, D.L.. 1996. Diapause-regulated proteins in the gut of pharate first instar larvae of the gypsy moth, Lymantria dispar, and the effects of KK-42 and neck ligation on expression. J. Insect Physiol. 42:423431.Google Scholar
Lee, K.-Y. and Denlinger, D.L.. 1997. A role for ecdysteroids in the induction and maintenance of the pharate first instar diapause of the gypsy moth, Lymantria dispar. J. Insect Physiol. 43:289296.Google Scholar
Lee, K.-Y., Valaitis, A.P., and Denlinger, D.L.. 1997. Further evidence that a diapause in the gypsy moth, Lymantria dispar, is regulated by ecdysteroids: a comparison of diapause and nondiapause strains. J. Insect Physiol. 43:897903.Google Scholar
Lee, K.-Y., Hiremath, S., and Denlinger, D.L.. 1998. Expression of actin in the central nervous system is switched off during diapause in the gypsy moth, Lymantria dispar. J. Insect Physiol. 44:221226.Google Scholar
Lee, K.-Y., Horodyski, F.M., Valaitis, A.P., and Denlinger, D.L.. 2002. Molecular characterization of the insect immune protein hemolin and its high induction during embryonic diapause in the gypsy moth, Lymantria dispar. Insect Biochem. Mol. Biol. 32:14571467.Google Scholar
Lee, R.E. Jr. 2010. A primer on insect cold-tolerance. In Low Temperature Biology of Insects, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 334.Google Scholar
Lee, R.E. Jr., Chen, C.-P., and Denlinger, D.L.. 1987a. A rapid cold-hardening process in insects. Science 238:14151417.Google Scholar
Lee, R.E. Jr., Chen, C.-P., Meacham, M.H., and Denlinger, D.L.. 1987b. Ontogenetic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J. Insect Physiol. 33:587592.Google Scholar
Lee, R.E. Jr. and Denlinger, D.L.. 2010. Rapid cold hardening: ecological significance and underpinning mechanisms. In Low Temperature Biology of Insects, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 3558.Google Scholar
Lee, R.E. Jr. and Denlinger, D.L.. 2015. Stress tolerance in a polyextremophile: the southernmost insect. Can. J. Zool. 93:679685.Google Scholar
Lee, S.F., Sgro, C.M., Shirriffs, J., Wee, C.W., Rako, L., van Heerwaarden, B., and Hoffmann, A.A.. 2011. Polymorphism in the couch potato gene clines in eastern Australia but is not associated with ovarian dormancy in Drosophila melanogaster. Mol. Ecol. 20:29732984.Google Scholar
Lees, A.D. 1955. The Physiology of Diapause in Arthropods. Cambridge: Cambridge University Press.Google Scholar
Lees, A.D. 1964. The location of the photoperiodic receptors in the aphid Megoura viciae Buckton. J. Exp. Biol. 41:119133.Google Scholar
Lees, A.D. 1966. The control of polymorphism in aphids. Adv. Insect Physiol. 3:207277.Google Scholar
Lees, A.D. 1973. Photoperiodic time measurement in the aphid Megoura viciae. J. Insect Physiol. 19:22792316.Google Scholar
Lees, A.D. 1981. Action spectrum for the photoperiodic control of polymorphism in the aphid Megoura viviae. J. Insect Physiol. 27:761771.Google Scholar
Lefevere, K.S. 1989. Endocrine control of diapause termination in the adult female Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 35:197203.Google Scholar
Lefevere, K.S. and de Kort, C.A.D.. 1989. Adult diapause in the Colorado potato beetle, Leptinotarsa decemlineata: effects of external factors on maintenance, termination and post-diapause development. Physiol. Ent. 14:299308.Google Scholar
Lefevere, K.S., Koopmanschap, A.B., and de Kort, C.A.D.. 1989. Changes in the concentrations of metabolites in hemolymph during and after diapause in female Colorado potato beetle Leptinotarsa decemlineata. J. Insect Physiol. 35:121128.Google Scholar
Legett, H.D., Baranov, V.A., and Bernal, X.E.. 2018. Seasonal variation in abundance and diversity of eavesdropping frog-biting midges (Diptera, Corethrellidae) in a neotropical rainforest. Ecol. Ent. 43:226233.Google Scholar
Lehmann, P., Piiroinen, S., Kankare, M., Lyytinen, A., Paljakka, M., and Lindstrom, L.. 2014a. Photoperiodic effects on diapause-associated gene expression trajectories in European Leptinotarsa decemlineata populations. Insect Mol. Biol. 23:566578.Google Scholar
Lehmann, P., Lyytinen, A., Piiroinen, S., and Lindström, L.. 2014b. Northward range expansion requires synchronization of both overwintering behavior and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata). Oecologia 176:5768.Google Scholar
Lehmann, P., Piiroinen, S., Lyytinen, A., and Lindström, L.. 2015a. Response in metabolic rate to changes in temperature in diapausing Colorado potato beetle Leptinotarsa decemlineata from three European populations. Physiol. Ent. 40:123130.Google Scholar
Lehmann, P., Lyytinen, A., Piiroinn, S., and Lindström, L.. 2015b. Latitudinal differences in diapause related photoperiodic responses of European Colorado potato beetles (Leptinotarsa decemlineata). Evol. Ecol. 29:269282.Google Scholar
Lehmann, P., Pruisscher, P., Posledovich, D., Carlsson, M., Kakela, R., Tang, P., Nylin, S., Wheat, C.W., Wiklund, C., and Gotthard, K.. 2016a. Energy and lipid metabolism during direct and diapause development in a pierid butterfly. J. Exp. Biol. 219:30493060.Google Scholar
Lehmann, P., Margus, A., and Lindström, L.. 2016b. Inheritance patterns of photoperiodic diapause induction in Leptinotarsa decemlineata. Physiol. Ent. 41:218223.Google Scholar
Lehmann, P., Nylin, S., Gotthard, K., and Carlsson, M.A.. 2017a. Idiosyncratic development of sensory structures in brains of diapausing butterfly pupae: implications for information processing. Proc. R. Soc. B 284:20170897.Google Scholar
Lehmann, P., van der Bijl, W., Nylin, S., Wheat, C.W., and Gotthard, K.. 2017b. Timing of diapause termination in relation to variation in winter climate. Physiol. Ent. 42:232238.Google Scholar
Lehmann, P., Pruisscher, P., Koštál, V., Moos, M., Šimek, P., Nylin, S., Agren, R., Varemo, L., Wiklund, C., Wheat, C.W., and Gotthard, K.. 2018. Metabolome dynamics of diapause in the butterfly Pieris napi: distinguishing maintenance, termination and post-diapause phases. J. Exp. Biol. 221:jeb.169508.Google Scholar
Lehmann, P., Westberg, M., Tang, P., Lindström, L., and Käkelä, R.. 2020. The diapause lipidomes of three closely related beetle species reveal mechanisms for tolerating energetic and cold stress in high-latitude seasonal environments. Front. Physiol. 11:576617.Google Scholar
Leonard, D.E. 1968. Diapause in the gypsy moth. J. Econ. Ent. 61:596598.Google Scholar
Leopold, R.A. 2007. Cryopreservation of nonmammalian metazoan systems. In Advances in Biopreservation, ed. Baust, J.G. and Baust, J.M., Boca Raton: CRC Press, pp. 271289.Google Scholar
Leopold, R.A. and Rinehart, J.P.. 2010. A template for insect cryopreservation. In Insects at Low Temperature, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 325341.Google Scholar
Lepage, M.P., Boivin, G., Broudeur, J., and Bourgeois, G.. 2014. Oviposition pattern of early and late-emerging genotypes of Delia radicum (Diptera: Anthomyiidae) at different temperatures. Environ. Ent. 43:178186.Google Scholar
Lester, J.D. and Irwin, J.T.. 2012. Metabolism and cold tolerance of overwintering adult mountain pine beetles (Dendroctonus ponderosae): evidence of facultative diapause. J. Insect Physiol. 58:808815.Google Scholar
Levin, D.B., Danks, H.V., and Barber, S.A.. 2003. Variations in mitochondrial DNA and gene transcription in freezing-tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Mol. Biol. 12:281289.Google Scholar
Levine, E., Oloui-Sadeghi, H., and Fisher, J.R.. 1992. Discovery of multiyear diapause in Illinois and South Dakota northern corn rootworm (Coleoptera: Chrysomelidae) eggs and incidence of prolonged diapause trait in Illinois. J. Econ Ent. 85:262267.Google Scholar
Levy, R.C., Kozak, G.M., and Dopman, E.B.. 2018. Non-pleiotropic coupling of daily and seasonal temporal isolation in the European corn borer. Genes 9:180.Google Scholar
Levy, R.I. and Schneiderman, H.A.. 1966. Discontinuous respiration in insects II: the direct measurement and significance of changes in tracheal gas composition during the respiratory cycles of silkworm pupae. J. Insect Physiol. 12:83104.Google Scholar
Lewis, D.K., Spurgeon, D., Sappington, T.W., and Keeley, L.L.. 2002. A hexamerin protein, AgSP-1, is associated with diapause in the boll weevil. J. Insect Physiol. 48:887901.Google Scholar
Li, A. and Denlinger, D.L.. 2009. Pupal cuticle protein is abundant during early adult diapause in the mosquito Culex pipiens. J. Med. Ent. 46:13821386.Google Scholar
Li, A., Xue, F., Hua, A., and Tang, J.. 2003. Photoperiodic clock of diapause termination in Pseudopidorus fasciata (Lepidoptera: Zygaenidae). Eur. J. Ent. 100:287293.Google Scholar
Li, A.Q., Popova-Butler, A., Dean, D.H., and Denlinger, D.L.. 2007. Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. J. Insect Physiol. 53:385391.Google Scholar
Li, A., Rinehart, J.P., and Denlinger, D.L.. 2009a. Neuropeptide-like precursor 4 is uniquely expressed during pupal diapause in the flesh fly. Peptides 30:518521.Google Scholar
Li, A., Michaud, M.R., and Denlinger, D.L.. 2009b. Rapid elevation of Inos and decreases in abundance of other proteins at pupal diapause termination in the flesh fly Sarcophaga crassipalpis. Biochim. Biophys. Acta Proteins Proteom. 1794:663668.Google Scholar
Li, A., Wang, L., Liang, M., Zhou, Q., Wang, G., and Hou, F.. 2012. Proteomic approach to understanding the maternal effect in the flesh fly, Sarcophaga bullata (Diptera: Sarcophagidae). Eur. J. Ent. 109:714.Google Scholar
Li, F.-Q., Fu, N.-N., Qu, C., Wang, R., Xu, Y.-H., and Luo, C.. 2017a. Understanding the mechanisms of dormancy in an invasive alien sycamore lace bug, Corythucha ciliata through transcript and metabolite profiling. Sci. Rep. 7:2631.Google Scholar
Li, H.-Y., Wang, T, Yang, Y.-P., Geng, S.-L., and Xu, W.-H.. 2017b. TGF-β signaling regulates p-Akt levels via PP2A during diapause entry in the cotton bollworm, Helicoverpa armigera. Insect Biochem. Mol. Biol. 87:165173.Google Scholar
Li, H.-Y., Lin, X.-W., Geng, S.-L., and Xu, W.-H.. 2018a. TGF-β and BMP signals regulate insect diapause through Smad1-POU-TFAM pathway. BBA-Mol. Cell Res. 1865:12391249.Google Scholar
Li, Y., Zhang, L., Zhang, Q., Chen, H., and Denlinger, D.L.. 2014. Host diapause status and host diets augmented with cryoprotectants enhance cold hardiness in the parasitoid Nasonia vitripennis. J. Insect Physiol. 70:814.Google Scholar
Li, Y., Zhang, L., Chen, H., Koštál, V., Šimek, P., Moos, M., and Denlinger, D.L.. 2015. Shifts in metabolomics profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid’s diapause, host diapause and host diet augmented with proline. Insect Biochem. Mol. Biol. 63:3446.Google Scholar
Li, Y., Wang, M., Zhang, H., Chen, H., Wang, M., Liu, C., and Zhang, L.. 2018b. Exploiting diapause and cold tolerance to enhance the use of the green lacewing Chrysopa formosa for biological control. Biol. Cont. 127:116126.Google Scholar
Li, Y.-P., Goto, M., Ito, S., Sato, Y., Sasaki, K., and Goto, N.. 2001. Physiology of diapause and cold hardiness in the overwintering pupae of the fall webworm Hyphantria cunea (Lepidoptera: Arctiidae) in Japan. J. Insect Physiol. 47:11811187.Google Scholar
Li, Y.-P., Oguchi, S., and Goto, M.. 2002a. Physiology of diapause and cold hardiness in overwintering pupae of the apple leaf miner Phyllonorycter ringoneiella in Japan. Physiol. Ent. 27:9296.Google Scholar
Li, Y.-P., Goto, M., Ding, L., and Tsumuki, H.. 2002b. Diapause development and acclimation regulating enzymes associated with glycerol synthesis in the Shonai ecotype of the rice stem borer larva, Chilo suppressalis Walker. J. Insect Physiol. 48:303310.Google Scholar
Liang, G.-M., Wu, K.-M., Rector, B., and Guo, Y.Y.. 2007. Diapause, cold hardiness and flight ability of Cry1Ac-resistant and -susceptible strains of Helicoverpa armigera (Lepidoptera: Noctuidae). Eur. J. Ent. 104:699704.Google Scholar
Lighton, J.R.B. 1996. Discontinuous gas exchange in insects. Ann. Rev. Ent. 41:309324.Google Scholar
Lin, J.L., Lin, P.L., and Gu, S.H.. 2009. Phosphorylation of glycogen synthase kinase-3 beta in relation to diapause processing in the silkworm, Bombyx mori. J. Insect Physiol. 55:593598.Google Scholar
Lin, X.-W. and Xu, W.-H.. 2016. Hexokinase is a key regulator of energy metabolism and ROS activity in insect lifespan extension. Aging 8:245258.Google Scholar
Lirakis, M., Dolezal, M., and Schlötterer, C.. 2018. Redefining reproductive dormancy in Drosophila as a general stress response to cold temperatures. J. Insect Physiol. 107:175185.Google Scholar
Liu, M., Zhang, T.Y., and Xu, W.-H.. 2005. A cDNA encoding diazepam-binding inhibitor/acyl-CoA-binding protein in Helicoverpa armigera: molecular characterization and expression analysis associated with pupal diapause. Comp. Biochem. Physiol. C 141:168176.Google Scholar
Liu, W., Li, Y., Zhu, L., Zhu, F., Lei, C.-L., and Wang, X.-P.. 2016a. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringi. Insect Biochem. Mol. Biol. 74:5060.Google Scholar
Liu, W., Li, Y., Guo, S., Yin, H., Lei, C.-L., and Wang, X.-P.. 2016b. Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Sci. Rep. 6:38900.Google Scholar
Liu, W., Tan, Q.Q., Zhu, L., Li, Y., Zhu, F., Lei, C.-L., and Wang, X.-P.. 2017. Absence of juvenile hormone signaling regulates the dynamic expression profiles of nutritional metabolism genes during diapause preparation in the cabbage beetle Colaphellus bowrinigi. Insect Mol. Biol. 26:530542.Google Scholar
Liu, Y., Zhang, Q., and Denlinger, D.L.. 2015. Imidazole derivative KK-42 boosts pupal diapause incidence and delays diapause termination in several insect species. J. Insect Physiol. 74:3844.Google Scholar
Liu, Y., Liao, S., Veenstra, J.A., and Nässel, D.R.. 2016c. Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Sci. Rep. 6:26620.Google Scholar
Liu, Z., Gong, P., Wu, K., Sun, J., and Li, D.. 2006. A true summer diapause induced by high temperatures in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Insect Physiol. 52:10121020.Google Scholar
Liu, Z., Gong, P., Wu, K., Wei, W., Sun, J., and Li, D.. 2007. Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J. Insect Physiol. 53:10161026.Google Scholar
Liu, Z., Gong, P., Heckel, D.G., Wei, W., Sun, J., and Li, D.. 2009. Effects of larval host plants on over-wintering physiological dynamics and survival of the cotton bollworm, Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae). J. Insect Physiol. 55:19.Google Scholar
Liu, Z., Gong, P., Li, D., and Wei, W.. 2010. Pupal diapause of Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae) mediated by larval host plants: pupal weight is important. J. Insect Physiol. 56:18631870.Google Scholar
Liu, Z., Xin, Y., Zhang, Y., Fan, J., and Sun, J.. 2016d. Summer diapause induced by high temperatures in the oriental tobacco budworm: ecological adaptation to hot summers. Sci. Rep. 6:27443.Google Scholar
Lohmeyer, K.H., Pound, J.M., and George, J.E.. 2009. Effects of photoperiod on reproduction, nymphal developmental timing, and diapause in Amblyomma maculatum (Acari: Ixodidae). J. Med. Ent. 46:12991302.Google Scholar
Lopatina, E.B., Balashov, S.V., and Kipyatkov, V.E.. 2007. First demonstration of the influence of photoperiod on the thermal requirements for development in insects and in particular the linden-bug, Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur. J. Ent. 104:2331.Google Scholar
López-Martinez, G. and Hahn, D.A.. 2012. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation, and enhances male sexual performance in the Caribbean fruit fly, Anastrepha suspensa. J. Exp. Biol. 215:21502161.Google Scholar
Lorenz, M.W. and Gäde, G.. 2009. Hormonal regulation of energy metabolism in insects as a driving force for performance. Integr. Comp. Biol. 49:380392.Google Scholar
Lou, Y., Liu, K., He, D., Gao, D., and Ruan, S.. 2019. Modelling diapause in mosquito population growth. J. Math. Biol. 78:22592288.Google Scholar
Lounibos, L.P. and Bradshaw, W.E.. 1975. A second diapause in Wyeomyia smithii: seasonal incidence and maintenance by photoperiod. Can. J. Zool. 53:215221.Google Scholar
Lounibos, L.P., Escher, R.L., and Lourenço De Oliveira, R.. 2003. Asymmetric evolution of photoperiodic diapause in temperate and tropical invasive populations of Aedes albopictus (Diptera: Culicidae). Ann. Ent. Soc. Am. 96:512518.Google Scholar
Lounibos, L.P., Escher, R.L., and Nishimura, N.. 2011. Retention and adaptiveness of photoperiodic egg diapause in Florida populations of invasive Aedes albopictus. J. Am. Mosq. Cont. Assoc. 27:433436.Google Scholar
Lu, M.-X., Cao, S.-S., Du, Y.-Z., Liu, Z.-X., Liu, P., and Li, J.. 2013a. Diapause, signal and molecular characteristics of overwintering Chilo suppressalis (Insecta: Lepidoptera: Pyralidae). Sci. Rep. 3:3211.Google Scholar
Lu, W., Meng, Q.-J., Tyler, N.J.C., Stokkan, K.-A., and Loudon, A.S.I.. 2010. A circadian clock is not required in an Arctic mammal. Curr. Biol. 20:533537.Google Scholar
Lu, Y.-X. and Xu, W.-H.. 2010. Proteomic and phosphoproteomic analysis at diapause initiation in the cotton bollworm, Helicoverpa armigera. J. Proteome Res. 9:50535064.Google Scholar
Lu, Y.-X., Denlinger, D.L., and Xu, W.-H.. 2013b. Polycomb complex 2 (PRC2) protein ESC regulates insect developmental timing by mediating H3K27me3 and activating prothoracicotropic hormone gene expression. J. Biol. Chem. 288:2355423564.Google Scholar
Lubawy, J., Urbański, A., Colinet, H., Pflüger, H.-J., and Marciniak, P.. 2020. Role of the insect neuroendocrine system in the response to cold stress. Front. Physiol. 11:376.Google Scholar
Lumme, J. 1978. Phenology and photoperiodic diapause in northern populations of Drosophila. In Evolution of Insect Migration and Diapause, ed. Dingle, H., New York: Springer Verlag, pp. 145170.Google Scholar
Lumme, J. and Oikarinen, A.. 1977. The genetic basis of the geographically variable photoperiodic diapause in Drosophila littoralis. Hereditas 86:129142.Google Scholar
Luna-Cozar, J., Martinez-Madera, O., and Jones, R.W.. 2020. Ball moss, Tillandsia recurvata L., as a refuge site for arthropods in a seasonally dry tropical forest of Central Mexico. Southwest. Ent. 45:445460.Google Scholar
Luo, G.-H., Luo, Z.-X., Zhang, Z.-L, Sun, Y., Lu, M.-H., Shu, Z.-L., Tian, Z.-H., Hoffmann, A.A., and Fang, J.-C.. 2021. The response to flooding of two overwintering rice stem borers likely accounts for their changing impacts. J. Pest Sci. 94:451461.Google Scholar
Lyons, P.J., Govaere, L., Crapoulet, N., Storey, K.B., and Morin, P.J.. 2016. Characterization of cold-associated microRNAs in the freeze-tolearnt gall fly Eurosta solidaginis using high-throughput sequencing. Comp. Biochem. Physiol. D, Genomics Proteomics 20:95100.Google Scholar
Lyons-Sobaski, S. and Berlocher, S.. 2009. Life history phenology differences between southern and northern populations of the apple maggot fly, Rhagoletis pomonella. Ent. Exp. Appl. 130:149159.Google Scholar
Ma, H.-Y., Zhou, X.-R., Tan, Y., and Pang, B.-P.. 2019. Proteomic analysis of adult Galeruca daurica (Coleoptera: Chrysomelidae) at different stages during summer diapause. Comp. Biochem. Physiol. D 29:351357.Google Scholar
Ma, H.-Y., Li, Y.-Y., Li, L., Tan, Y., and Pang, B.-P.. 2021. Regulation of juvenile hormone on summer diapause of Galeruca daurica and its pathway analysis. Insects 12:237.Google Scholar
Ma, W.-M., Li, H.-W., Dai, Z.-M., Yang, J.-S., Yang, F., and Yang, W.-J.. 2013. Chitin-binding proteins of Artemia diapause cysts participate in formation of the embryonic cuticle layer of cyst shells. Biochem. J. 449:285294.Google Scholar
Machado, H., Bergland, A.O., O’Brien, K.R., Behrman, E.L., Schmidt, P.S., and Petrov, D.A.. 2016. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster. Mol. Ecol. 25:723740.Google Scholar
MacLeod, E.G. 1967. Experimental induction and elimination of diapause and autumnal coloration in Chrysopa carnea (Neuroptera). J. Insect Physiol. 13:13431349.Google Scholar
MacMillan, H.A., Knee, J.M., Dennis, A.B., Udaka, H., Marshall, K.E., Merritt, T.J.S., and Sinclair, B.J.. 2016. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci. Rep. 6:28999.Google Scholar
MacRae, T.H. 2016. Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress Chap. 21:918.Google Scholar
Maeto, K. and Ozaki, K.. 2003. Prolonged diapause of specialist seed-feeders makes predator satiation unstable in masting of Quercus crispula. Oecologia 137:392398.Google Scholar
Majewska, A.A. and Altizer, S.. 2019. Exposure to non-native tropical milkweed promotes reproductive development in migratory monarch butterflies. Insects 10:253.Google Scholar
Malod, K., Archer, C.R., Karsten, M., Cruywagen, R., Howard, A., Nicolson, S.W., and Weldon, C.W.. 2020. Exploring the role of host specialization and oxidative stress in interspecific lifespan variation in subtropical tephritid flies. Sci. Rep. 10:5601.Google Scholar
Mansingh, A. 1971. Physiological classification of dormancies in insects. Can. Ent. 103:9831009.Google Scholar
Marchal, E., Vandersmissen, H.P., Badisco, L., van de Velde, S., Verlinden, H., Iga, M., van Wielendaele, P., Huybrechts, R., Simonet, G., Smagghe, G., and vanden Broeck, J.. 2010. Control of ecdysteroidogenesis in prothoracic glands of insects: a review. Peptides 31:506519.Google Scholar
Marcus, N.H. and Scheef, L.P.. 2010. Photoperiodism in copepods. In Photoperiodism, the Biological Calendar. ed. Nelson, R.J., Denlinger, D.L., and Somers, D.E., Oxford: Oxford University Press, pp. 193217.Google Scholar
Margaritopoulos, J.T. and Tzanakakis, M.E.. 2006. Diapause completion in the almond seed wasp, Eurytoma amygdali (Hymenoptera: Eurytomidae) following early low temperature treatment. Eur. J. Ent. 103:733742.Google Scholar
Margus, A. and Lindström, L.. 2020. Prolonged diapause has sex-specific fertility and fitness costs. Evol. Ecol. 34:4157.Google Scholar
Marshall, K.E. and Sinclair, B.J.. 2015. The relative importance of number, duration, and intensity of cold stress events in determining survival and energetics of an overwintering insect. Funct. Ecol. 29:357366.Google Scholar
Martin, K.L.M. and Podrabsky, J.E.. 2017. Hit pause: developmental arrest in annual killifishes and their close relatives. Devel. Dynamics 246:858866.Google Scholar
Masaki, S. 1967. Geographic variation and climatic adaptation in a field cricket (Orthoptera: Gryllidae). Evolution 21:725741.Google Scholar
Masaki, S. 1978. Seasonal and latitudinal adaptations in the life cycles of crickets. In Evolution of Insect Migration and Diapause, ed. Dingle, H., New York: Springer-Verlag, pp. 72100.Google Scholar
Masaki, S. 1980. Summer diapause. Ann. Rev. Ent. 25:125.Google Scholar
Masaki, S. 2002. Ecophysiological consequence of variability in diapause intensity. Eur. J. Ent. 99:143154.Google Scholar
Masaki, S. and Kikukawa, S.. 1981. The diapause clock in a moth: response to temperature signals. In Biological Clocks in Seasonal Reproductive Cycles, ed. Follet, B.K. and Follett, D.E., Bristol: Wright, pp. 101112.Google Scholar
Masaki, S. and Walker, T.J.. 1987. Cricket life cycles. Evol. Biol. 21:349423.Google Scholar
Maslennikova, V.A. 1958. On the conditions determining the diapause in the parasitic Hymenoptera, Apanteles glomeratus L. (Braconidae) and Pteromalus puparum L. (Chalcididae). Ent. Rev. 37:466472.Google Scholar
Massaqué, J. 2012. TGFβ signaling in control. Nature Rev. Mol. Cell Biol. 13:616630.Google Scholar
Mathias, D., Jacky, L., Bradshaw, W.E., and Holzapfel, C.M.. 2005. Geographic and developmental variation in expression of the circadian rhythm gene, timeless, in the pitcher-plant mosquito, Wyeomyia smithii. J. Insect Physiol. 51:661667.Google Scholar
Mathias, D., Jacky, L., Bradshaw, W.E., and Holzapfel, C.M.. 2007. Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 176:391402.Google Scholar
Matsuda, N., Kanbe, T., Akimoto, S.-I., and Numata, H.. 2017. Transgenerational seasonal timer for suppression of sexual morph production in the pea aphid, Acyrthosiphon pisum. J. Insect Phyiol. 101:16.Google Scholar
Matsumoto, M. and Takeda, M.. 2002. Changes in brain monoamine contents in diapausing pupae of Antheraea pernyi when activated under long-day conditions. J. Insect Physiol. 48:765771.Google Scholar
Matsumoto, M., Numata, H., and Shiga, S.. 2013. Role of the brain in photoperiodic regulation of juvenile hormone biosynthesis in the brown-winged green bug Plautia stali. J. Insect Physiol. 59:387393.Google Scholar
Matsunaga, K., Takahashi, H., Yoshida, T., and Kimura, M.T.. 1995. Feeding, reproductive and locomotor activities in diapausing and non-diapausing adults of Drosophila. Ecol. Res. 10:8793.Google Scholar
Matsuo, J., Nakayama, S., and Numata, H.. 1997. Role of the corpus allatum in control of adult diapause in the blow fly, Protophormia terraenovae. J. Insect Physiol. 43:211216.Google Scholar
Matsuo, Y. 2006. Cost of prolonged diapause and its relationship to body size in a seed predator. Funct. Ecol. 20:300306.Google Scholar
Maurer, J.A., Shephard, J.H., Crabo, L.G., Hammond, P.C., Zack, R.S., and Peterson, M.A.. 2018. Phenological responses of 215 moth species to interannual climate variation in the Pacific Northwest from 1895 to 2013. PLoS One 13:e0202850.Google Scholar
Mayekar, H.V. and Kodandaramaiah, U.. 2021. Partially coupled reaction norms of pupal colour and spot size in a butterfly. Evol. Ecol. 35:201216. doi: 10.1007/s10682–020-10090-w.Google Scholar
Mayr, E. 1963. Animal Species and Evolution. Cambridge: Harvard University PressGoogle Scholar
McBrayer, Z., Ono, H., Shimell, M.J., Parvy, J.-P., Beckstead, R.B., Warren, J.T., Thummel, C.S., Dauphin-Villemanr, C., Gilbert, L.I., and O’Connor, M.B.. 2007. Prothoracicotropic hormone regulates developmental timing and body size. Dev. Cell 13:857871.Google Scholar
McDaniel, C.N. and Berry, S.J.. 1967. Activation of the prothoracic glands of Antheraea polyphemus. Nature 214:10321034.Google Scholar
McEvoy, P.B., Higgs, K.M., Coombs, E.M., Karaçetin, E., and Starcevich, L.A.. 2012. Evolving while invading: rapid adaptive evolution in juvenile development time for a biological control organism colonizing a high-elevation environment. Evol. Appl. 5:524536.Google Scholar
McKee, F.R. and Aukema, B.H.. 2015. Successful reproduction by the eastern larch beetle (Coleoptera: Curculionidae) in the absence of an overwintering period. Can. Ent. 147:602610.Google Scholar
McMullen, D.C. and Storey, K.B.. 2008a. Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic , mRNA, and DNA levels. Insect Biochem. Mol. Biol. 38:367373.Google Scholar
McMullen, D.C. and Storey, K.B.. 2008b. Suppression of Na+K+-ATPase activity by reversible phosphorylation over winter in a freeze-tolerant insect. J. Insect Physiol. 54:10231027.Google Scholar
McWatters, H.G. and Saunders, D.S.. 1996. The influence of each parent and geographic origin on larval diapause in the blow fly, Calliphora vicina. J. Insect Physiol. 42:721726.Google Scholar
McWatters, H.G. and Saunders, D.S.. 1997. Inheritance of the photoperiodic response controlling larval diapause in the blow fly, Calliphora vicina. J. Insect Physiol. 43:709717.Google Scholar
McWatters, H.G. and Saunders, D.S.. 1998. Maternal temperature has different effects on the photoperiodic response and duration of larval diapause in blow fly (Calliphora vicina) strains collected at two latitudes. Physiol. Ent. 23:369375.Google Scholar
Medina, V., Sardoy, P.M., Soria, M., Vay, C.A., Gutkind, G.O., and Zavala, J.A.. 2018. Characterized non-transient microbiota from stinkbug (Nezara viridula) midgut deactivates soybean chemical defenses. PLoS One 13:e0200161.Google Scholar
Mehrnejad, M.R. and Copland, M.J.W.. 2005. Diapause strategy in the parasitoid Psyllaephagus pistaciae. Ent. Exp. Appl. 116:109114.Google Scholar
Meisel, R.P. and Connallon, T.. 2013. The faster-X effect: integrating theory and data. Trends Gen. 29:537544.Google Scholar
Meister, P., Schoot, S., Bedet, C., Xiao, Y., Rohner, S., Bodennec, S., Hudry, B., Molin, L., Solari, F., Gasser, S.M., and Palladino, F.. 2011. Caenorhabditis elegans heterochromatin protein 1 (HPL-2) links developmental plasticity, longevity and lipid metabolism. Genome Biol. 12: R123.Google Scholar
Mellanby, K. 1938. Diapause and metamorphosis of the blowfly Lucilia sericata Mg. Parasitology 30:392402.Google Scholar
Mellström, H.L., Friberg, M., Borg-Karlson, A.-K., Murtazina, R., Palm, M., and Wiklund, C.. 2010. Seasonal polyphenism in life history traits: time costs of direct development in a butterfly. Behav. Ecol. Sociobiol. 64:13771383.Google Scholar
Menu, F. and Debouzie, D.. 1993. Coin-flipping plasticity and prolonged diapause in insects: example of the chestnut weevil Curculio elephas (Coleoptera: Curculionidae). Oecologia 93:367373.Google Scholar
Meola, R.W. and Adkisson, P.L.. 1977. Release of prothoracicotropic hormone and potentiation of developmental ability during diapause in the bollworm, Heliothis zea. J. Insect Physiol. 23:683688.Google Scholar
Meuti, M.E. and Denlinger, D.L.. 2013. Evolutionary links between circadian clocks and photoperiodic diapause in insects. Integ. Comp. Biol. 53:131143.Google Scholar
Meuti, M.E., Stone, M., Ikeno, T., and Denlinger, D.L.. 2015. Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens. J. Exp. Biol. 218:412422.Google Scholar
Meuti, M.E., Bautista-Jimenez, R., and Reynolds, J.A.. 2018. Evidence that microRNAs are part of the molecular toolkit regulating adult reproductive diapause in the mosquito, Culex pipiens. PLoS One 13:e0203015.Google Scholar
Meyers, P.J., Powell, T.H.Q., Walden, K.K.O., Schieferecke, A.J., Feder, J.L., Hahn, D.A., Robertson, H.M., Berlocher, S.H., and Ragland, G.J.. 2016. Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression. J. Exp. Biol. 219:26132622.Google Scholar
Michaud, J.P. and Qureshi, J.A.. 2005. Induction of reproductive diapause in Hippodamia convergens (Coleoptera: Coccinellidae) hinges on prey quality and availability. Eur. J. Ent. 102:483487.Google Scholar
Michaud, M.R. and Denlinger, D.L.. 2006. Oleic acid is elevated in cell membranes during rapid cold hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 52:10731082.Google Scholar
Michaud, M.R. and Denlinger, D.L.. 2007. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. J. Comp. Physiol. B 177:753763.Google Scholar
Michaud, M.R. and Denlinger, D.L.. 2010. Genomics, proteomics and metabolomics: finding the other players in insect cold hardiness. In Low Temperature Biology of Insects, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 91115.Google Scholar
Michaud, M.R., Teets, N.M., Peyton, J.T., Blobner, B.M., and Denlinger, D.L.. 2011. Heat shock response to hypoxia and its attenuation during recovery in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 57:203210.Google Scholar
Miki, T., Shinohara, T., Chafino, S., Noji, S., and Tomioka, K.. 2020. Photoperiod and temperature separately regulate nymphal development through JH and insulin/TOR signaling pathways in an insect. Proc. Nat’l. Acad. Sci., USA 117:55255531.Google Scholar
Milbrath, L.R., Deloach, C.J., and Tracy, J.L.. 2007. Overwintering survival, phenology, voltinism, and reproduction among different populations of the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae). Environ. Ent. 36:13561364.Google Scholar
Milonas, P.G. and Savopoulou-Soultani, M.. 2004. Diapause termination in overwintering larvae of a Greek strain of Adoxophyes orana (Lepidoptera: Tortricidae). Environ. Ent. 33:513519.Google Scholar
Minder, I.F. 1976. Hibernation conditions and survival rate of the Colorado potato beetle in different types of soil. In Ecology and Physiology of Diapause in the Colorado beetle, ed. Arnoldi, K.V., New Delhi: Indian National Scientific Documentation Centre (translation from Russian), pp. 2858.Google Scholar
Minder, I.F. and Petrova, D.V.. 1976. Repeated diapause in the Colorado beetle under Transcarpathian conditions. In Ecology and Physiology of Diapause in the Colorado beetle, ed. Arnoldi, K.V., New Delhi: Indian National Scientific Documentation Centre (translation from Russian), pp. 279296.Google Scholar
Mirth, C.K., Tang, H.Y., Makohon-Moore, S.C., Salhadar, S., Gokhale, R.H., Warner, R.D., Koyama, T., Riddiford, L.M., and Shingleton, A.W.. 2014. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc. Nat’l. Acad. Sci., USA 111:70187023.Google Scholar
Mishra, P.K., Sharan, S.K., Kumar, D., Singh, B., Subrahmanyam, M.K., and Suryanarayana, N.. 2008. Effects of ecdysone on termination of pupal diapause and egg production in Antheraea mylita Drury. J. Adv. Zool. 29:128136.Google Scholar
Mitchell, C.J. and Briegel, H.. 1989. Inability of diapausing Culex pipiens (Diptera: Culicidae) to use blood for producing lipid reserves for overwintering survival. J. Med. Entomol. 26:318326.Google Scholar
Miyawaki, R., Tanaka, S.I., and Numata, H.. 2003. Photoperiodic receptor in the nymph of Poecilocoris lewisi (Heteroptera: Scutelleridae). Eur. J. Entomol. 100:301303.Google Scholar
Miyazaki, Y., Nisimura, T., and Numata, H.. 2009. A circadian system is involved in photoperiodic entrainment of the circannual rhythm of Anthrenus verbasci. J. Insect Physiol. 55:494498.Google Scholar
Miyazaki, Y., Nisimura, T., and Numata, H.. 2014. Circannual rhythms in insects. In Annual, Lunar and Tidal Clocks, ed. Numata, H. and Helms, B., Tokyo: Springer Japan, pp. 333352.Google Scholar
Miyazaki, Y., Watari, Y., and Numata, H.. 2016. Resetting of the circannual rhythm of the varied carpet beetle Anthrenus verbasci by low-temperature pulses. Physiol. Ent. 41:390399.Google Scholar
Mizoguchi, A., Ohsumi, S., Kobayashi, K., Okamoto, N., Yamada, N., Tateishi, K., Fujimoto, Y., and Kataoka, H.. 2013. Prothoracicotropic hormone acts as a neuroendocrine switch between pupal diapause and adult development. PLoS One 8:e60824.Google Scholar
Mizoguchi, A., Kamimura, M., Kiuchi, M., and Kataoka, H.. 2015. Positive feedback regulation of prothoracicotropic hormone secretion by ecdysteroid – a mechanism that determines the timing of metamorphosis. Insect Biochem. Mol. Biol. 58:3945.Google Scholar
Moerbitz, C. and Hetz, S.K.. 2010. Tradeoffs between metabolic rate and spiracular conductance in discontinuous gas exchange of Samia cynthia (Lepidpoptera, Saturniidae). J. Insect Physiol. 56:536542.Google Scholar
Mohamed, A.A.M., Wang, Q., Bembenek, J., Ichihara, N., Hiragaki, S., Suzuki, T., and Takeda, M.. 2014. N-acetyltransferase (nat) is a critical conjunct of photoperiodism between the circadian system and endocrine axis in Antheraea pernyi. PLoS One 9:e92680.Google Scholar
Molleman, F., Zwann, B.J., Brakefeld, P.M., and Carey, J.R.. 2007. Extraordinary long life spans in fruit-feeding butterflies can provide window on evolution of life span and aging. Exp. Gerontol. 42:472482.Google Scholar
Mondy, N. and Corio-Costet, M.-F.. 2004. Feeding insects with a phytopathogenic fungus influences their diapause and population dynamics. Ecol. Ent. 29:711717.Google Scholar
Monro, J. 1972. Terminal diapause in geometrid pupae – a new link in the endocrine chain? In Insect Endocrines, ed. Novak, V.J.A. and Sláma, K., Vol. 3, Prague: Academia, pp. 8997.Google Scholar
Monteith, G.B. 1982. Dry season aggregations of insects in Australian monsoon forests. Mem. Queensl. Mus. 20:533543.Google Scholar
Moore, A.J., Devine, D.A., and Bibby, M.C.. 1994. Preliminary experimental anticancer activity of cecropins. Peptide Res. 7:265269.Google Scholar
Moraiti, C.A., Nakas, C.T., and Papadopoulos, N.T.. 2012. Prolonged pupal dormancy is associated with significant fitness cost for adults of Rhagoletis cerasi (Diptera: Tephritidae). J. Insect Physiol. 58:11281135.Google Scholar
Moraiti, C.A., Nakas, C.T., and Papadopoulos, N.T.. 2013. Diapause termination of Rhagoletis cerasi pupae is regulated by local adaptation and phenotypic plasticity: escape in time through bet-hedging strategies. J. Evol. Biol. 27:4354.Google Scholar
Moraiti, C.A. and Papadopoulos, N.T.. 2017. Obligate annual and successive facultative diapause establish a bet-hedging strategy of Rhagoletis cerasi (Diptera: Tephritidae) in seasonally unpredictable environments. Physiol. Ent. 42:225231.Google Scholar
Moraiti, C.A.,Köppler, K., Vogt, H., and Papadopoulos, N.T.. 2020. Effects of photoperiod and relative humidity on diapause termination and post-winter development of Rhagoletis cerasi pupae. Bull. Ent. Res. 110:588596.Google Scholar
Moran, N.A. and Dunbar, H.E.. 2006. Sexual acquisition of beneficial symbionts in aphids. Proc. Nat’l. Acad. Sci., USA 103:1280312806.CrossRefGoogle ScholarPubMed
Morehouse, N.I., Mandon, N., Christides, J.-P., Body, M., Bimbard, G., and Casas, J.. 2013. Seasonal selection and resource dynamics in a seasonally polyphonic butterfly. J. Evol. Biol. 26:175185.Google Scholar
Moreira, D.C., Paula, D.P., and Hermes-Lima, M.. 2012. Redox metabolism during tropical diapause in a Lepidoptera larva. In Living in a Seasonal World, ed. Ruf, T., Bieber, C., Arnold, W., and Millesi, E., Heidelberg: Springer-Verlag, pp. 399409.Google Scholar
Moreira, D.C., Oliveira, M.F., Liz-Guimaraes, L., Diniz-Rojas, N., Campos, E.G., and Hermes-Lima, M.. 2017. Current trends and research challenges regarding “preparation for oxidative stress.” Front. Physiol. 8:702.Google Scholar
Morewood, W.D. and Ring, R.A.. 1998. Revision of the life history of the high Arctic moth Gynaephora groenlandica (Wocke) (Lepidoptera: Lymantriidae). Can. J. Zool. 76:13711381.Google Scholar
Mori, A., Romero-Severson, J., and Severson, D.W.. 2007. Genetic basis for reproductive diapause is correlated with life history traits within the Culex pipiens complex. Insect Mol. Biol. 16:515524.Google Scholar
Moribayashi, A., Kurahashi, H., and Ohtaki, T.. 1992. Physiological differentiation of the ring glands in mature larvae of the flesh fly, Boettcherisca peregrina, programmed for diapause or non-diapause. J. Insect Physiol. 38:177183.Google Scholar
Moribayashi, A., Kurahashi, H., and Ohtaki, T.. 1988. Different profiles of ecdysone secretion and its metabolism between diapause- and nondiapause-destined cultures of the fleshfly, Boettcherisca peregrina. Comp. Biochem. Physiol. A 91:157164.Google Scholar
Moribayashi, A., Hayashi, T., Taylor, D., Kurahashi, H., and Kobayashi, M.. 2008. Different responses to photoperiod in non-diapausing colonies of the flesh fly, Boettcherisca peregrina. Physiol. Ent. 33:3136.Google Scholar
Moribe, Y., Niimi, T., Yamashita, O., and Yaganuma, T.. 2001. Samui, a novel cold-inducible gene, encoding a protein with a BAG domain similar to silencer of death domains (SODD/BAG-4), isolated from Bombyx diapause eggs. Eur. J. Biochem. 268:34323442.Google Scholar
Moribe, Y., Oka, K., Niimi, T., Yamashita, O., and Yaginuma, T.. 2010. Expression of heat shock protein 70a mRNA in Bombyx mori diapause eggs. J. Insect Physiol. 56:12461252.Google Scholar
Morita, A. and Numata, H.. 1997. Distribution of the photoperiodic receptor in the compound eyes of the bean bug, Riptortus clavatus. J. Comp. Physiol. A 180:181185.Google Scholar
Morita, A., Niimi, T., and Yamashita, O.. 2003. Physiological differentiation of DH-PBAN-producing neurosecretory cells in the silkworm embryo. J. Insect Physiol. 49:10931102.Google Scholar
Moriyama, M. and Numata, H.. 2008. Diapause and prolonged development in the embryo and their ecological significance in two cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata. J. Insect Physiol. 54:14871494.Google Scholar
Mousseau, T.A. and Fox, C.W., eds. 1998. Maternal Effects as Adaptations. Oxford: Oxford University Press.Google Scholar
Mukai, A. and Goto, S.G.. 2016. The clock gene period is essential for the photoperiodic response in the jewel wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). App. Ent. Zool. 51:185194.Google Scholar
Mukherjee, K., Baudach, A., Vogel, H., and Vilcinskas, A.. 2020. Seasonal phenotype-specific expression of microRNAs during metamorphosis in the European map butterfly Araschnia levana. Arch. Insect Biochem. Physiol. 2020:e21657.Google Scholar
Müller, H.J. 1970. Formen der Dormanz bei Insekten. Nova Acta Leopoldina 35:127.Google Scholar
Müller, H.J. 1976. Formen der Dormanz bei Insekten als Mechanismen ökologischer Anpassung. Verh. Dtsch. Zool. Ges. 1976:4658.Google Scholar
Munyiri, F. and Ishikawa, Y.. 2004. Endocrine changes associated with metamorphosis and diapause induction in the yellow-spotted longicorn beetle, Psacothea hilaris. J. Insect Physiol. 50:10751081.Google Scholar
Munyiri, F., Shintani, Y., and Ishikawa, Y.. 2004. Evidence for the presence of a threshold weight for entering diapause in the yellow-spotted longicorn beetle, Psacothea hilaris. J. Insect Physiol. 50:295301.Google Scholar
Murphy, S.M. and Lill, J.T.. 2010. Winter predation of diapausing cocoons of slug caterpillars (Lepidoptera: Limacodidae). Environ. Ent. 39:18931902.Google Scholar
Mushegian, A.A. and Tougeron, K.. 2019. Animal-microbe interactions in the context of diapause. Biol. Bull. 237:180191.Google Scholar
Mushegian, A.A., Neupane, N., Batz, Z., Mogi, M., Tuno, N., Toma, T., Miyagi, I., Ries, L., and Armbruster, P.A.. 2021. Ecological mechanism of climate-mediated selection in a rapidly evolving invasive species. Ecol. Lett. 24:698707. doi: 10.1111/ele13686.Google Scholar
Musolin, D.L. 2012. Surviving winter: diapause syndrome in the southern green stink bug Nezara viridula in the laboratory, in the field, and under climate change conditions. Physiol. Ent. 37:309322.Google Scholar
Musolin, D.L. and Saulich, A.H.. 2000. Summer dormancy ensures univoltinism in the predatory bug Picromerus bidens. Ent. Exp. Appl. 95:259267.Google Scholar
Musolin, D.L., Numata, H., and Saulich, A.H.. 2001. Timing of diapause induction outside the natural distribution range of a species: an outdoor experiment with the bean bug Riptortus clavatus. Ent. Exp. Appl. 100:211219.Google Scholar
Musolin, D.L. and Numata, H.. 2003a. Photoperiodic and temperature control of diapause induction and colour change in the southern green stink bug Nezara viridula. Physiol. Ent. 28:6574.Google Scholar
Musolin, D.L. and Numata, H.. 2003b. Timing of diapause induction and its life-history consequences in Nezara viridula: is it costly to expand the distribution range? Ecol. Ent. 28:694703.Google Scholar
Musolin, D.L. and Numata, H.. 2004. Late-season induction of diapause in Nezara viridula and its effect on adult colouration and post-diapause reproductive performance. Ent. Exp. Appl. 111:16.Google Scholar
Musolin, D.L., Fujisaki, K., and Numata, H.. 2007. Photoperiodic control of diapause termination, colour change and postdiapause reproduction in the southern green stinkbug, Nezara viridula. Physiol. Ent. 32:6472.Google Scholar
Musolin, D.L. and Ito, K.. 2008. Photoperiodic and temperature control of nymphal development and induction of reproductive diapause in two predatory Orius bugs: interspecific and geographic differences. Physiol. Ent. 33:291301.Google Scholar
Musolin, D.L., Tougou, D., and Fujisaki, K.. 2011. Photoperiodic response in the subtropical and warm-temperate zone populations of the southern green stink bug Nezara viridula: why does it not fit the common latitudinal trend? Physiol. Ent. 36:379384.Google Scholar
Musolin, D.L. and Saulich, A.K.. 2018. Diapause in Pentatomoidea. In Invasive Stink Bugs and Related Species (Pentatomoidea). ed. McPherson, J.E., Boca Raton: CRC Press, pp. 497564.Google Scholar
Musolin, D.L., Dolgovskaya, M.Y., Protsenko, V.Y., Karpun, N.N., Reznik, S.Y., and Saulich, A.K.. 2019. Photoperiodic and temperature control of nymphal growth and adult diapause induction in the invasive Caucasian population of the brown marmorated stink bug, Halyomorpha halys. J. Pest Sci. 92:621631.Google Scholar
Muszyńska-Pytel, M., Trzcińska, R., Aubry, M., Pszczółkowski, M.A., and Cymborowski, B.. 1993. Regulation of prothoracic gland activity in diapausing larvae of the wax moth, Galleria mellonella L. (Lepidoptera). Insect Biochem. Mol. Biol. 23:3341.Google Scholar
Nadal-Jimenez, P., Griffin, J.S., Davies, L., Frost, C.L., Marcello, M., and Hurst, G.D.D.. 2019. Genetic manipulation allows in vivo tracking of the life cycle of the son-killer symbiont, Arsenophonus nasoniae, and reveals patterns of host invasion, tropism and pathology. Environ. Microbiol. 21:31723182.Google Scholar
Nagy, D., Andreatta, G., Bastianello, S., Anduaga, A.M., Mazzotta, G., Kyriaou, C.P., and Costa, R.. 2018. A semi-natural approach for studying seasonal diapause in Drosophila melanogaster reveals robust photoperiodicity. J. Biol. Rhyth. 33:117125.Google Scholar
Nakagaki, M., Takei, R., Nagashima, E., and Yaginuma, T.. 1991. Cell cycles in embryos of the silkworm, Bombyx mori: G2-arrest at diapause stage. Roux’s Arch. Dev. Biol. 200:223229.Google Scholar
Nakamura, A., Miyado, K., Takezawa, Y., Ohnami, N., Sato, M., Ono, C. Harada, Y., Yoshida, K., Kawano, N., Kanai, S., Miyado, M., and Umezawa, A.. 2011. Innate immune system still works at diapause, a physiological state of dormancy in insects. Biochem. Biophy. Res. Comm. 410:351357.Google Scholar
Nakamura, K. and Numata, H.. 2000. Photoperiodic control of the intensity of diapause and diapause development in the bean bug, Riptortus clavatus (Heteroptera: Alydidae). Eur. J. Ent. 97:1923.Google Scholar
Nakashima, Y. and Hirose, Y.. 1997. Winter reproduction and photoperiodic effects on diapause induction of Orius tantillus (Motschulsky) (Heteroptera: Anthocoridae), a predator of Thrips palmi. Appl. Ent. Zool. 32:403405.Google Scholar
Nanda, K.K. and Hamner, K.C.. 1958. Studies on the nature of the endogenous rhythm affecting photoperiodic response of Biloxi soy bean. Bot. Gaz. 120:14-25.Google Scholar
Nasci, R.S., Savage, H.M., White, D.J., Miller, J.R., Cropp, B.C., Godsey, M.S., Kerst, A.J., Bennett, P., Gottfried, K., and Lanciotti, R.S.. 2001. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg. Infect. Diseases 7:742744.Google Scholar
Nässel, D.R., Kubrak, O.I., Liu, Y., Luo, J., and Lushchak, O.V.. 2013. Factors that regulate insulin producing cells and their output in Drosophila. Front. Physiol. 4:252.Google Scholar
Nealis, V.G. 2005. Diapause and voltinism in western and 2-year-cycle spruce budworms (Lepidoptera: Tortricidae) and their hybrid progeny. Can. Ent. 137: 584597.Google Scholar
Nealis, V.G. and Regniere, J.. 2016. Why western spruce budworms travel so far for winter. Ecol. Ent. 41:633641.Google Scholar
Nelms, B.M., Macedo, P.A., Kothera, L., Savage, H.M., and Reisen, W.K.. 2013. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J. Med. Ent. 50:773790.Google Scholar
Nelson, R.J., Denlinger, D.L., and Somers, D.E., eds. 2010. Photoperiodism, the Biological Calendar. Oxford: Oxford University Press.Google Scholar
Nesin, A.P., Simonenko, N.P., Numata, H., and Chernysh, S.I.. 1995. Effects of photoperiod and parental age on the maternal induction of larval diapause in the blowfly Calliphora vicina Robineau-Desvoidy (Diptera Calliphoridae). Appl. Ent. Zool. 30:351356.Google Scholar
Neven, L.G. and Yee, W.L.. 2017. Impact of prolonged absence of low temperature on adult eclosion patterns of western cherry fruit fly (Diptera: Tephritidae). Environ. Ent. 46:708713.Google Scholar
Nicholls, C.N. and Pullin, A.S.. 2003. The effects of flooding on survivalship in overwintering larvae of the large copper butterfly Lycaena dispar batavus (Lepidoptera: Lycaenidae), and it possible implications for restoration management. Eur. J. Ent. 100:6572.Google Scholar
Nijhout, H.F. and Callier, V.. 2013. A new mathematical approach for qualitative modeling of the insulin-TOR-MAPK network. Front. Physiol. 4:245.Google Scholar
Nishida, T. 1955. The phenomenon of arrested insect development in the Hawaiian Islands. Proc. Hawaii. Ent. Soc. 15:575582.Google Scholar
Nisimura, T. and Numata, H.. 2001. Endogenous timing mechanism controlling the circannual pupation rhythm of the varied carpet beetle Anthrenus verbasci. J. Comp. Physiol. A 187:433440.Google Scholar
Nisimura, T., Kon, M., and Numata, H.. 2002. Bimodal life cycle of the burying beetle Nicrophorus quadripunctus in relation to its summer reproductive diapause. Ecol. Ent. 27:220228.Google Scholar
Nisimura, T. and Numata, H.. 2003. Circannual control of the life cycle in the varied carpet beetle Anthrenus verbasci. Funct. Ecol. 17:489495.Google Scholar
Nnko, H. J., Ngonyoka, A., Salekwa, L., Estes, A.B., Hudson, P.J., Gwakisa, P.S., and Cattadori, I.M.. 2017. Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai Steppe, Tanzania. J. Vector Ecol. 42:2433.Google Scholar
Noguchi, H. and Hayakawa, Y.. 1997. Role of dopamine at the onset of pupal diapause in the cabbage armyworm, Mamestra brassicae. FEBS Lett. 413:157161.Google Scholar
Noguchi, H. and Hayakawa, Y.. 2001. Dopamine is a key factor for the induction of egg diapause of the silkworm Bombyx mori. Eur. J. Biochem. 268:774780.Google Scholar
Noh, M.Y., Kim, S.H., Gorman, M.J., Kramer, K.J., Muthukrishnan, S., and Arakane, Y.. 2020. Yellow-g and yellow-g2 proteins are required for egg desiccation resistance and temporal pigmentation in the Asian tiger mosquito, Aedes albopictus. Insect Biochem. Mol. Biol. 122:103386.Google Scholar
Nomura, M. and Ishikawa, Y.. 2000. Biphasic effect of low temperature on completion of winter diapause in the onion maggot, Delia antiqua. J. Insect Physiol. 46:373377.Google Scholar
Noronha, C. and Cloutier, C.. 2006. Effects of potato foliage age and temperature regime on prediapause Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Environ. Ent. 35:590599.Google Scholar
Numata, H. 2004. Environmental factors that determine the seasonal onset and termination of reproduction in seed-sucking bugs (Heteroptera) in Japan. Appl. Ent. Zool. 39:565573.Google Scholar
Numata, H., Shiga, S., and Morita, A.. 1997. Photoperiodic receptors in arthropods. Zool. Sci. 14:187197.Google Scholar
Numata, H. and Nakamura, K.. 2002. Photoperiodism and seasonal adaptations in some seed-sucking bugs (Heteroptera) in central Japan. Eur. J. Ent. 99:155161.Google Scholar
Numata, H. and Udaka, H.. 2010. Photoperiodism in Mollusks. In Photoperiodism, the Biological Calendar, ed. Nelson, R.J., Denlinger, D.L, and Somers, D.E., Oxford: Oxford University Press, pp. 173192.Google Scholar
Numata, H., Miyazaki, Y., and Ikeno, T.. 2015. Common features in diverse insect clocks. Zool. Letters 1:10.Google Scholar
Nylin, S. 2013. Induction of diapause and seasonal morphs in butterflies and other insects: knowns, unknowns and the challenge of integration. Physiol. Ent. 38:96104.Google Scholar
Oberhauser, K., Wiederholt, R., Diffendorfer, J.E., Semmens, D., Ries, L. Thogmartin, W.E., Lopez-Hoffman, L., and Semmens, B.. 2017. A trans-national monarch butterfly population model and implications for regional conservation. Ecol. Ent. 42:5160.Google Scholar
Obregon, R., Fernandez Haeger, J., and Jordano, D.. 2017. Adaptive significance of the prolonged diapause in the western Mediterranean lycaenid butterfly Tomares ballus (Lepidoptera: Lycaenidae). Eur. J. Ent. 114:133139.Google Scholar
Oh, S.W., Mukhopadhyay, A., Dixit, B.I., Raha, T., Green, M.R., and Tissenbaum, H.A.. 2006. Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nature Gen. 38:251257.Google Scholar
Ohashi, K, Kawauchi, S.-E., and Sakuratani, Y. 2003. Geographic and annual variation of summer-diapause expression in the ladybird beetle, Coccinella septempunctata (Coleoptera: Coccinellidae), in Japan. Appl. Ent. Zool. 38:187196.Google Scholar
Ohtaki, J.M. 2008. Physiologically induced color-pattern changes in butterfly wings: mechanistic and evolutionary implications. J. Insect Physiol. 54:10991112.Google Scholar
Oikarinen, A. and Lumme, J.. 1979. Selection against photoperiodic reproductive diapause in Drosophila littoralis. Hereditas 90:119125.Google Scholar
Ojima, N., Ishiguro, S., An, Y., Kadosawa, T., and Suzuki, K.. 2015. Male reproductive maturity and diapause termination in the leaf beetle Gastrophysa atrocyanea. Physiol. Ent. 40:277283.Google Scholar
Ojima, N. ,Hara, Y., Ito, H., and Yamamoto, D.. 2018. Genetic dissection of stress-induced reproductive arrest in Drosophila melanogaster females. PLoS Genet. 14:e1007434.Google Scholar
Oku, T. 1983. Aestivation and migration in noctuid moths. In Diapause and Life Cycle Strategies in Insects, ed. Brown, V.K. and Hodek, I., the Hague: Dr. W. Junk, pp. 219231.Google Scholar
Okuda, T. 1991. Factors inducing and terminating larval diapause ina stem borer, Busseola fusca in western Kenya. Jap. Agr. Res. Quart. 25:4754.Google Scholar
Okuda, T., Tanaka, S., Kotaki, T., and Ferenz, H.-J.. 1996. Role of the corpora allata and juvenile hormone in the control of imaginal diapause and reproduction in three species of locusts. J. Insect Physiol. 42:943951.Google Scholar
Okuda, T. and Tanaka, S.. 1997. An allostatic factor and juvenile hormone synthesis by corpora allata in Locusta migratoria. J. Insect Physiol. 43:635641.Google Scholar
Olademehin, O.P., Liu, C., Rimal, B., Adegboyega, N.F., Chen, F., Sim, C., and Kim, S.J.. 2020. Dsi-RNA knockdown of genes regulated by Foxo reduces glycogen and lipid accumulations in diapausing Culex pipiens. Sci. Rep. 10:17201.Google Scholar
Oliveira, C.M., Lopes, J.R.S., and Nault, L.R.. 2013. Survival strategies of Dalbulus maidis during maize off-season in Brazil. Ent. Exp. Appl. 147:141153.CrossRefGoogle Scholar
O’Riordan, V.B. and Burnell, A.M.. 1989. Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans – I. Glycolysis, gluconeogenesis, oxidative phosphorylation and the tricarboxylic acid cycle. Comp. Biochem. Physiol. B 92:233238.Google Scholar
Orshan, L. and Pener, M.P.. 1976. Termination and reinduction of reproductive diapause by photoperiod and temperature in males of the grasshopper, Oedipoda miniata. Physiol. Ent. 4:5561.Google Scholar
Osir, E.O., Labongo, L.V., and Unnithan, G.C.. 1989. A high molecular weight diapause-associated protein from the stem-borer Busseola fusca: purification and properties. Arch. Insect Biochem. Physiol. 11:173187.Google Scholar
Ovchinnikova, A.A., Ovchinnikov, A.N., Dolgovskaya, M.Y., Reznik, S.Y., and Belyakova, N.A.. 2016. Trophic induction of diapause in native and invasive populations of Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Ent. 113:469475.Google Scholar
Overgaard, J. and MacMillan, H.A.. 2017. The integrative physiology of insect chill tolerance. Ann. Rev. Physiol. 79:187208.CrossRefGoogle ScholarPubMed
Owen, D.F. 1971. Tropical Butterflies. Oxford: Clarendon.Google Scholar
Palli, S.R. 2017. New roles for old actors, ROS and PRMT1. Proc. Nat’l. Acad. Sci., USA 114:1081010812.Google Scholar
Palli, S.R., Ladd, T.R., Ricci, A.R., Primavera, M., Mungrue, I.N., Pang, A.S.D., and Retnakaran, A.. 1998. Synthesis of the same two proteins prior to larval diapause and pupation in the spruce budworm, Choristoneura fumiferana. J. Insect Physiol. 44:509524.CrossRefGoogle ScholarPubMed
Palli, S.R., Kothapalli, R., Feng, Q., Ladd, T., Perera, S.C., Zheng, S.-C., Gojtan, K., Pang, A.S.D., Primavera, M., Tomkins, W., and Retnakaran, A.. 2001. Molecular analysis of overwintering diapause. In Insect Timing: Circadian Rhythmicity to Seasonality, ed. Denlinger, D.L., Giebultowicz, J.M., and Saunders, D.S., Amsterdam: Elsevier, pp. 133144.Google Scholar
Panfilio, K.A. 2008. Extraembryonic development in insects and the acrobatics of blastokinesis. Dev. Biol. 313:471491.Google Scholar
Paolucci, S., van de Zande, L., and Beukeboom, L.W.. 2013. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. J. Evol. Biol. 26:705718.Google Scholar
Paolucci, S., Salis, L., Vermeulen, C.J., Beukeboom, L.W., and van der Zande, L.. 2016. QTL analysis of the photoperiodic response and clinal distribution of period alleles in Nasonia vitripennis. Mol. Ecol. 25:48054817.Google Scholar
Papa, G. and Negri, I.. 2020. Cannibalism in the brown marmorated stink bug Halyomorpha halys (Stål). Insects 11:643.Google Scholar
Papanastasiou, S.A., Nestel, D., Diamantidis, A.D., Nakas, C.T., and Papadopoulos, N.T.. 2011. Physiological and biological patterns of highland and coastal populations of the European cherry fruit fly during diapause. J. Insect Physiol. 57:8393.CrossRefGoogle ScholarPubMed
Parkash, R., Singh, S., and Ramniwas, S.. 2009. Seasonal changes in humidity level in the tropics impact body color polymorphism and desiccation resistance in Drosophila jambulina – evidence for melanism-desiccation hypothesis. J. Insect Physiol. 55:358368.CrossRefGoogle ScholarPubMed
Parker, D.J., Ritchie, M.G., and Kankare, M.. 2016. Preparing for winter: the transcriptomic response associated with different day lengths in Drosophila montana. G3 6:13731381.Google Scholar
Pavelka, J., Shimada, K., and Koštál, V.. 2003. TIMELESS: a link between fly’s circadian and photoperiodic clocks? Eur. J. Ent. 100:255265.Google Scholar
Pavlides, S.C., Pavlides, S.A., and Tammariello, S.P.. 2011. Proteomic and phosphoproteomic profiling during diapause entrance in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 57:635644.Google Scholar
Pazyuk, I.M., Dolgovskaya, M.Y., Reznik, S.Y., and Musolin, D.L.. 2018. Photoperiodic control of pre-adult development and adult diapause induction in zoophytophagous bug Dicyphus errans (Wolff) (Heteroptera, Miridae). Ent. Rev. 98:956962.Google Scholar
Pegoraro, M., Bafna, A., Davies, N.J., Shuker, D.M., and Tauber, E.. 2016. DNA methylation changes induced by long and short photoperiods in Nasonia. Genome Res. 26:203210.Google Scholar
Pegoraro, M., Zonato, V., Tyler, E.R., Fedele, G., Kyriacou, C.P., and Tauber, E.. 2017. Geographic analysis of diapause inducibility in European Drosophila melanogaster populations. J. Insect Physiol. 98:238244.Google Scholar
Pener, M.P. 1992. Environmental cues, endocrine factors, and reproductive diapause in male insects. Chronobiol. Int. 9:102113.Google Scholar
Pener, M.P. and Broza, M.. 1971. The effect of implanted, active corpora allata on reproductive diapause in adult females of the grasshopper Oedipoda miniata. Ent. Exp. Appl. 14:190202.Google Scholar
Pener, M.P. and Orshan, L.. 1983. The reversibility and flexibility of the reproductive diapause in males of a “short day” grasshopper, Oedipoda miniata. In Diapause and Life Cycle Strategies in Insects, ed. Brown, V.K. and Hodek, I, the Hague: Dr. W. Junk, pp. 6785.Google Scholar
Pengelley, E.T. and Fisher, K.C.. 1961. Rhythmic arousal from hibernation in the golden-mantled ground squirrel, Citellus lateralis tescorum. Can. J. Zool. 39:105120.Google Scholar
Penkov, S., Raghuram, B.K., Erkut, C., Oertel, J., Galli, R., Ackerman, E.J.M., Vorkel, D., Verbavatz, J.-M., Koch, E., Fahmy, K., Shevchenko, A., and Kurzchalia, T.V.. 2020. A metabolic switch regulates the transition between growth and diapause in C. elegans. BMC Biol. 18:31.Google Scholar
Pepper, J.H. 1973. Breaking the dormancy in the sugar beet webworm, Loxostege sticticalcis L., by means of chemicals. J. Econ. Ent. 30:380.Google Scholar
Pérez-Hedo, M., Eizaguirre, M., and Sehnal, F.. 2010. Brain-independent development in the moth Sesamia nonagrioides. J. Insect Physiol. 56:594602.Google Scholar
Pérez-Hedo, M., Goodman, W.C., Schafellner, C., Martini, A., Sehnal, F., and Eizaguirre, M.. 2011. Control of larval-pupal-adult molt in the moth Sesamia nonagrioides by juvenile hormone and ecdysteroids. J. Insect Physiol. 57:602607.Google Scholar
Perrot-Minnot, M.J., Guo, L.R., and Werren, J.H.. 1996. Single and double infections with Wolbachia in the parasitic wasp Nasonia vitripennis: effects on compatibility. Genetics 143:961972.Google Scholar
Peschel, N. and Helfrich-Förster, C.. 2011. Setting the clock by nature: circadian rhythm in the fruitfly Drosophila melanogaster. FEBS Lett. 585:14351442.Google Scholar
Petrice, T.R., Miller, D.L., Bauer, L.S., Poland, T.M., and Ravlin, F.W.. 2019. Photoperiodic modulation of diapause induction and termination in Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae), an egg parasitoid of the invasive emerald ash borer. Biol. Cont. 138:104047.Google Scholar
Peypelut, L., Beydon, P., and Lavenseau, L.. 1990. 20-hydroxyecdysone triggers the resumption of imaginal wing disc development after diapause in the European corn borer, Ostrinia nubilalis. Arch. Insect Biochem. Physiol. 15:119.Google Scholar
Pfenning, B., Gerstner, S., and Poethke, H.J.. 2008. Alternative life histories in the water strider Gerris lacustris: time constraint on wing morph and voltinism. Ent. Exp. Appl. 129:235242.Google Scholar
Piekarski, P.K., Carpenter, J.M., Lemmon, A.R., Lemmon, E.M., and Sharanowski, B.J.. 2018. Phylogenetic evidence overturns current conceptions of social evolution in wasps (Vespidae). Mol. Biol. Evol. 35:20972109.Google Scholar
Pieloor, M.J. and Seymour, J.E.. 2001. Factors affecting adult diapause initiation in the tropical butterfly Hypolimnas bolina L. (Lepidoptera: Nymphalidae). Aust. J. Ent. 40:376379.Google Scholar
Piiroinen, S., Ketola, T., Lyytinen, A., and Lindstrom, L.. 2011. Energy use, diapause behavior and northern range expansion potential in the invasive Colorado potato beetle. Funct. Ecol. 25:527536.Google Scholar
Pinones-Tapia, D., Rios, R.S., and Gianoli, E.. 2017. Pupal colour dimorphism in a desert swallowtail (Lepidoptera: Papilionidae) is driven by changes in food availability, not photoperiod. Ecol. Ent. 42:636644.Google Scholar
Pintureau, B., Pizzol, J., and Bolland, P.. 2003. Effects of endosymbiotic Wolbachia on the diapause in Trichogramma hosts and effects of the diapause on Wolbachia. Ent. Exp. Appl. 106:193200.Google Scholar
Pinyarat, W., Shimada, T., Xu, W.-H., Sato, Y., Yamashita, O., and Kobayashi, M.. 1995. Linkage analysis of the gene encoding precursor protein of diapause hormone and pheromone biosynthesis-activating neuropeptide in the silkworm, Bombyx mori. Genet. Res. 65:105111.Google Scholar
Pires, C.S.S., Suji, E.R., Fontes, E.M.G., Tauber, C.A., and Tauber, M.J.. 2000. Dry-season embryonic dormancy in Deois flavopicta (Homoptera: Cercopidae): role of temperature and moisture in nature. Environ. Ent. 29:714720.Google Scholar
Pittendrigh, C.S. 1966. The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Z. Pflanzenphysiol. 54:275307.Google Scholar
Pittendrigh, C.S. and Minis, D.H.. 1964. The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am. Nat. 98:261299.Google Scholar
Pittendrigh, C.S., Eichhorn, J.H., Minis, D.H., and Bruce, V.G.. 1970. Circadian systems. VI. Photoperiodic time measurement in Pectinophora gossypiella. Proc. Nat’l. Acad. Sci., USA 66:758764.Google Scholar
Pizzol, J. and Pintureau, B.. 2008. Effect of photoperiod experienced by parents on diapause induction in Trichogramma cacoeciae. Ent. Exp. Appl. 127:7277.Google Scholar
Ploomi, A., Kuusik, A., Jögar, K., Metspalu, L., Hiiesaar, K., Karise, R., Williams, I.H., Sibul, I., and Mänd, M.. 2018. Variability in metabolic rate and gas exchange patterns of the Colorado potato beetle of winter and prolonged diapauses. Physiol. Ent. 43:251258.Google Scholar
Poelchau, M.F., Reynolds, J.A., Denlinger, D.L., Elsik, C.G., and Armbruster, P.A.. 2011. A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genomics 12:619.Google Scholar
Poelchau, M.F., Reynolds, J.A., Denlinger, D.L., Elsik, C.G., and Armbruster, P.A.. 2013a. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc. R. Soc. B 280:20130143.Google Scholar
Poelchau, M.F., Reynolds, J.A., Elsik, C.G., Denlinger, D.L., and Armbruster, P.A.. 2013b. RNA-Seq reveals early distinctions and late convergence of gene expression between diapause and quiescence in the Asian tiger mosquito, Aedes albopictus. J. Exp. Biol. 216:40824090.Google Scholar
Poikela, N., Tyukmaeva, V., Hoikkala, A., and Kankare, M.. 2021. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and circadian clock gene vrille. BMC Ecol. Evol. 21:117.Google Scholar
Polgar, L.A., Mackauer, M., and Volkl, W.. 1991. Diapause induction in two species of aphid parasitoids: the influence of aphid morph. J. Insect Physiol. 37:699702.CrossRefGoogle Scholar
Polgar, L.A., Darvas, B., and Volkl, W.. 1995. Induction of dormancy in aphid parasitoids: implications for enhancing their field effectiveness. Agric. Ecosyst. Environ. 52:1923.Google Scholar
Polgar, L.A. and Hardie, J.. 2000. Diapause induction in aphid parasitoids. Ent. Exp. Appl. 97:2127.Google Scholar
Posledovich, D., Toftegaard, T., Wiklund, C., Ehrlén, J., and Gotthard, K.. 2015. Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization. Oecologia 177:181190.Google Scholar
Poulton, E. 1936. Assemblies of coccinellid beetles observed in N. Uganda (1927) by Prof. Hale Carpenter and in Beuchuanaland (1935) by Dr. W. A. Lamborn. Proc. Roy. Ent. Soc. London A 11:99100.Google Scholar
Poupardin, R., Schöttner, K., Korbelová, J., Provazník, J., Doležel, D., Pavlinic, D., Beneš, V., and Koštál, V.. 2015. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genomics 16:720.Google Scholar
Powell, J.A. 1987. Records of prolonged diapause in Lepidoptera. J. Res. Lepid. 25:83109.Google Scholar
Powell, J.A. 2001. Longest insect dormancy: yucca moth larvae (Lepidoptera: Prodoxidae) metamorphose after 20, 25, and 30 years in diapause. Ann. Ent. Soc. Am. 94:677680.Google Scholar
Powell, T.H.Q., Nguyen, A., Xia, Q., Feder, J.L., Ragland, G.J., and Hahn, D.A.. 2020. A rapidly evolved shift in life history timing during ecological speciation is driven by the transition between developmental phases. J. Evol. Biol. 33:13711386.Google Scholar
Prasai, K. and Karlsson, B.. 2011. Variation in immune defence in relation to developmental pathway in the green-veined white butterfly, Pieris napi. Evol. Ecol. Res. 13:295305.Google Scholar
Pruisscher, P., Larsdotter-Mellström, H., Stefanescu, C., Nylin, S., Wheat, C.W., and Gotthard, K.. 2017. Sex-linked inheritance of diapause induction in the butterfly Pieris napi. Physiol. Ent. 42:257265.Google Scholar
Pruisscher, P., Nylin, S., Gotthard, K., and Wheat, C.W.. 2018. Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Mol. Ecol. 27:36133626.Google Scholar
Ptashne, M. 2013. Epigenetics: core misconcept. Proc. Nat’l. Acad. Sci., USA 110:71017103.Google Scholar
Pullin, A.S. 1987. Adult feeding time, lipid accumulation, and overwintering in Aglais urticae and Inachis io (Lepidoptera: Nymphalidae). J. Zool., Lond. 211:631641.CrossRefGoogle Scholar
Pullin, A.S. and Bale, J.S.. 1989. Effects of ecdysone, juvenile hormone and haemolymph transfer on cryoprotectant metabolism in diapausing and non-diapausing pupae of Pieris brassicae. J. Insect Physiol. 35:911918.Google Scholar
Pullin, A.S. and Wolda, H.. 1993. Glycerol and glucose accumulation during diapause in a tropical beetle. Physiol. Ent. 18:7578.Google Scholar
Quan, W.-L., Zheng, X.-L., Li, X.-X., Zhou, X-M., Ma, W.-H., and Wang, X.-P.. 2013. Overwintering strategy of endoparasitois in Chilo suppressalis: a perspective from the cold hardiness of a host. Ent. Exp. Appl. 146:398403.Google Scholar
Raak-van den Berg, C.L., de Jong, P.W., Hemerik, L., and van Lenteren, J.C.. 2013. Diapause and post-diapause quiescence demonstrated in overwintering Harmonia axyridis (Coleoptera: Coccinellidae) in northwestern Europe. Eur. J. Ent. 110:585591.Google Scholar
Rabb, R.L. 1966. Diapause in Protoparce sexta (Lepidoptera: Sphingidae). Ann. Ent. Soc. Am. 59:160165.Google Scholar
Rafferty, A.R. and Reina, R.D.. 2012. Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles. Proc. Biol. Sci. 279:22992308.Google Scholar
Ragland, G.J., Fuller, J., Feder, J.L., and Hahn, D.A.. 2009. Biphasic metabolic rate trajectory of pupal diapause termination and post-diapause development in a tephritid fly. J. Insect Physiol. 55:344350.Google Scholar
Ragland, G.J., Denlinger, D.L., and Hahn, D.A.. 2010. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc. Nat’l. Acad. Sci., USA 107:1490914914.Google Scholar
Ragland, G.J., Egan, S.P., Feder, J.L., Berlocher, S.H., and Hahn, D.A.. 2011. Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot Rhagoletis pomonella. J. Exp. Biol. 214:39483959.Google Scholar
Ragland, G.J., Doellman, M.M., Meyers, P.J., Hood, G.R., Egan, S.P., Powell, T.H.Q., Hahn, D.A., Nosil, P., and Feder, J.L.. 2017. A test of genomic modularity among life-history adaptations promoting speciation with gene flow. Mol. Ecol. 26:39263942.Google Scholar
Ragland, G.J. and Keep, E.. 2017. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Ent. 42:246256.Google Scholar
Ragland, G.J., Armbruster, P.A., and Meuti, M.E.. 2019. Evolutionary and functional genetics of insect diapause: a call for integration. Curr. Opin. Insect Sci. 36:7481.Google Scholar
Ramírez-Soria, M.J., Wäckers, F., and Sanchez, J.A.. 2019. When natural enemies go to sleep: diapause induction and termination in the pear psyllid predator Pilophorus gallicus (Hemiptera: Miridae). Pest Manag. Sci. 75:32933301.Google Scholar
Rankin, M.A. and Rankin, S.. 1980. Some factors affecting presumed migratory flight activity of the convergent ladybeetle, Hippodamia convergens (Coccinellidae: Coleoptera). Biol. Bull. 158: 356369.Google Scholar
Ravn, M.V., Campbell, J.B., Gerber, L., Harrison, J.F., and Overgaard, J.. 2019. Effects of anoxia on ATP, water, ion and pH balance in an insect (Locusta migratoria). J. Exp. Biol. 222:190850.Google Scholar
Ray, S., Valekunja, U.K., Stangherlin, A., Howell, S.A., Snijders, A.P., Damodaran, G., and Reddy, A.B.. 2020. Circadian rhythms in the absence of the clock gene Bmal1. Science 367:800806.Google Scholar
Readio, J., Chen, M.H., and Meola, R.. 1999. Juvenile hormone biosynthesis in diapausing and nondiapausing Culex pipiens (Diptera: Culicidae). J. Med. Ent. 36:355360.Google Scholar
Reierth, E. and Stokkan, K.-A.. 1998. Activity rhythm in high Arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). Can. J. Zool. 76:20312039.Google Scholar
Ren, S., Hao, Y.-J., Chen, B., and Yin, Y.-P.. 2018. Global transcriptome sequencing reveals molecular profiles of summer diapause induction stage of onion maggot, Delia antiqua (Diptera: Anthomyiidae). G3 8:207217.Google Scholar
Renfree, M.B. and Fenelon, J.C.. 2017. The enigma of embryonic diapause. Development 144:31993210.CrossRefGoogle ScholarPubMed
Reppert, S.M., Gegear, R.J., and Merlin, C.. 2010. Navigational mechanisms of migrating monarch butterflies. Trends Neurosci. 33:399406.Google Scholar
Reppert, S.M., Guerra, P.A., and Merlin, C.. 2016. Neurobiology of monarch butterfly migration. Ann. Rev. Ent. 61:2542.Google Scholar
Revel, F.G., Herwig, A., Garidou, M.L., Dardente, H., Menet, J.S., Masson-Pevet, M., Simonneaux, V., Saboureau, M., and Pevet, P.. 2007. The circadian clock stops ticking during deep hibernation in the European hamster. Proc. Nat’l. Acad. Sci., USA 104:1381613820.Google Scholar
Rewitz, K.F., Yamanaka, N., Gilbert, L.I., and O’Conner, M.B.. 2009. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science 326:14031405.Google Scholar
Reynolds, J.A. 2017. Epigenetic influences on diapause. Adv. Insect Physiol. 53:115144.Google Scholar
Reynolds, J.A. 2019. Noncoding RNA regulation of dormant states in evolutionarily diverse animals. Biol. Bull. 237:192209.Google Scholar
Reynolds, J.A. and Hand, S.C.. 2009a. Decoupling development and energy flow during embryonic diapause in the cricket, Allonemobius socius. J. Exp. Biol. 212:20652074.CrossRefGoogle ScholarPubMed
Reynolds, J.A. and Hand, S.C.. 2009b. Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius. J. Exp. Biol. 212:20752084.Google Scholar
Reynolds, J.A., Poelchau, M.F., Rahman, Z., Armbruster, P., and Denlinger, D.L.. 2012. Transcript profiling reveals mechanisms for lipid conservation during diapause in the mosquito, Aedes albopictus. J. Insect Physiol. 58:966973.Google Scholar
Reynolds, J.A., Clark, J., Diakoff, S.J., and Denlinger, D.L.. 2013. Transcriptional evidence for small RNA regulation of pupal diapause in the flesh fly, Sarcophaga bullata. Insect Biochem. Mol. Biol. 76:2937.Google Scholar
Reynolds, J.A., Bautista-Jimenez, R., and Denlinger, D.L.. 2016. Histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. Insect Biochem. Mol. Biol. 76:2937.Google Scholar
Reynolds, J.A., Peyton, J.T., and Denlinger, D.L.. 2017. Changes in microRNA abundance may regulate diapause in the flesh fly Sarcophaga bullata. Insect Biochem. Mol. Biol. 84:114.Google Scholar
Reynolds, J.A., Nachman, R.J., and Denlinger, D.L.. 2019. Distinct microRNA and mRNA responses elicited by ecdysone, diapause hormone and a diapause hormone analog at diapause termination in pupae of the corn earworm, Helicoverpa zea. Gen. Comp. Endocrin. 278:6878.Google Scholar
Reznik, S.Y., Kats, T.S., Umarova, T.Y., and Voinovich, N.D.. 2002. Maternal age and endogenous variation in maternal influence on photoperiodic response in the progeny diapause in Trichogramma embryophgum (Hymenoptera: Trichogrammatidae). Eur. J. Ent. 99:175179.Google Scholar
Reznik, S.Y. and Vaghina, N.P.. 2011. Photoperiodic control of development and reproduction in Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Ent. 108:385390.Google Scholar
Reznik, S.Y., Voinovich, N.D., and Vaghina, N.P.. 2011. Maternal regulation of Trichogramma embryophagum Htg. (Hymenoptera: Trichogrammatidae) diapause: photoperiodic sensitivity of adult females. Biol. Cont. 57:158162.Google Scholar
Reznik, S.Y. and Samartsev, K.G.. 2015. Multigenerational maternal inhibition of prepupal diapause in two Trichogramma species (Hymenoptera: Trichogrammatidae). J. Insect Physiol. 81:1420.Google Scholar
Reznik, S.Y., Dolgovskaya, M.Y., and Ovchinnikov, A.N.. 2015. Effect of photoperiod on adult size and weight in Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Ent. 112:642647.Google Scholar
Reznik, S.Y. and Voinovich, N.. 2016. Diapause induction in Trichogramma telengai: the dynamics of maternal thermosensitivity. Physiol. Ent. 41:335343.Google Scholar
Reznik, S.Y., Ovchinnikova, A.A., Ovchinnikov, A.N., Barabanova, L.V., and Belyakova, N.A.. 2017. Inheritance of diapause regulation in the multicolored Asian ladybird Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Ent. 114:416421.Google Scholar
Reznik, S.Y., Samartsev, K.G., and Dolgovskaya, M.Y.. 2020. Intrapopulation variability of the qualitative and quantitative photoperiodic responses in Habrobracon hebetor (Say)(Hymenoptera, Braconidae). Ent. Rev. 100:277286.Google Scholar
Ricci, C., Ponti, L., and Pires, A.. 2005. Migratory flight and pre-diapause feeding of Coccinella septempunctata (Coleoptera) adults in agricultural and mountain ecosystems of Central Italy. Eur. J. Ent. 102:531538.Google Scholar
Rich, C. and Longcore, T., eds. 2006. Ecological Consequences of Artificial Night Lighting, Washington, DC: Island Press.Google Scholar
Richard, D.S. and Saunders, D.S.. 1987. Prothoracic gland function in diapause and non-diapause Sarcophaga argyrostoma and Calliphora vicina. J. Insect Physiol. 33:385392.Google Scholar
Richard, D.S., Watkins, N.L., Serfin, R.B., and Gilbert, L.I.. 1998. Ecdysteroids regulate yolk protein uptake by Drosophila melanogaster oocytes. J. Insect Physiol. 44:637644.Google Scholar
Richard, D.S., Gilbert, M., Crum, B., Hollinshead, D.M., Schelble, S., and Scheswohl, D.. 2001a. Yolk protein endocytosis by oocytes in Drosophila melanogaster: immunofluorescent localization of clathrin, adaptin and yolk protein receptor. J. Insect Physiol. 47:715723.Google Scholar
Richard, D.S., Jones, J.M., Barbarito, M.R., Cerula, S., Detweiler, J.P., Fisher, S.J., Brannigan, D.M., and Scheswohl, D.M.. 2001b. Vitellogenesis in diapausing and mutant Drosophila melanogaster: further evidence for the relative roles of ecdysteroids and juvenile hormones. J. Insect Physiol. 47:905913.Google Scholar
Riddle, D.L. 1997. The dauer larva. In C. elegans II, ed. Riddle, D.L, Blumenthal, T., Meyer, B.J., and Priess, J.R.. Cold Spring Harbor: CSHL Press, pp. 739768.Google Scholar
Rider, M.H., Hussain, N., Dilworth, S.M., Storey, J.M., and Storey, K.B.. 2011. AMP-activated protein kinase and metabolic regulation in cold-hardy insects. J. Insect Physiol. 57:14531462.Google Scholar
Ridsdill-Smith, J., Pavri, C., de Boer, E. and Kriticos, D.. 2005. Predictions of summer diapause in the redlegged earth mite, Halotydeus destructor (Acari: Penthaleidae), in Australia. J. Insect Physiol. 51:717726.Google Scholar
Riihimaa, A.J. and Kimura, M.T.. 1988. A mutant strain of Chymomyza costata (Diptera: Drosophilidae) insensitive to diapause-inducing action of photoperiod. Physiol. Ent. 13:441445.Google Scholar
Rinehart, J.P. and Denlinger, D.L.. 2000. Heat-shock protein 90 is down-regulated during pupal diapause in the flesh fly, Sarcophaga crassipalpis, but remains responsive to thermal stress. Insect Mol. Biol. 9:641645.Google Scholar
Rinehart, J.P., Yocum, G.D., and Denlinger, D.L.. 2000. Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem. Mol. Biol. 30:515521.Google Scholar
Rinehart, J.P., Cikra-Ireland, R.A., Flannagan, R.D., and Denlinger, D.L.. 2001. Expression of ecdysone receptor is unaffectedby pupal diapause in the flesh fly, Sarcophaga crassipalpis, while its dimerization partner, USP, is downregulated. J. Insect Physiol. 47:915921.Google Scholar
Rinehart, J.P., Diakoff, S.J., and Denlinger, D.L.. 2003. Sarcotoxin II from the flesh fly Sarcophaga crassipalpis (Diptera): a comparison of transcript expression in diapausing and nondiapausing pupae. Eur. J. Ent. 100:251254.Google Scholar
Rinehart, J.P., Robich, R.M., and Denlinger, D.L.. 2006. Enhanced cold and desiccation tolerance in diapausing adults of Culex pipiens, and a role for Hsp70 in response to cold shock but not as a component of the diapause program. J. Med. Ent. 43:713722.Google Scholar
Rinehart, J.P., Li, A., Yocum, G.D., Robich, R.M., Hayward, S.A.L., and Denlinger, D.L.. 2007. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc. Nat’l. Acad. Sci., USA 104:1113011137.Google Scholar
Rinehart, J.P., Robich, R.M., and Denlinger, D.L.. 2010. Isolation of diapause-regulated genes from the flesh fly, Sarcophaga crassipalpis by suppressive subtractive hybridization. J. Insect Physiol. 56:603609.Google Scholar
Ring, R.A. 1967. Maternal induction of diapause in larvae of Lucilia Caesar L. (Diptera: Calliphoridae). J. Exp. Biol. 46:123136.Google Scholar
Ritdachyeng, E., Manaboon, M., Tobe, S.S., and Singtripop, T.. 2013. Possible roles of juvenile hormone and juvenile hormone binding protein in changes in the integument during termination of larval diapause in the bamboo borer Omphisa fuscidentalis. Physiol. Ent. 38:183191.Google Scholar
Rivers, D.B. and Denlinger, D.L.. 1994. Redirection of metabolism in the flesh fly, Sarcophaga bullata, following envenomation by the ectoparasitoid Nasonia vitripennis and correlation of metabolic effects with the diapause status of the host. J. Insect Physiol. 40:207215.Google Scholar
Rivers, D.B. and Denlinger, D.L.. 1995. Fecundity and development of the ectoparasitic wasp Nasonia vitripennis are dependent on host quality. Ent. Exp. Appl. 76:1524.Google Scholar
Rivers, D.B., Lee, R.E. Jr., and Denlinger, D.L.. 2000. Cold hardiness of the fly pupal parasitoid Nasonia vitripennis is enhanced by its host, Sarcophaga crassipalpis. J. Insect Physiol. 46:99106.Google Scholar
Robbins, H. M., Van Stappen, G., Sorgeloos, P., Sung, Y.Y., MacRae, T.H., and Bossier, P.. 2010. Diapause termination and development of encysted Artemia embryos: roles for nitric oxide and hydrogen peroxide. J. Exp. Biol. 213:14641470.Google Scholar
Robich, R.M. and Denlinger, D.L.. 2005. Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony. Proc. Nat’l. Acad. Sci., USA 102:1591215917.Google Scholar
Robich, R.M., Rinehart, J.P., Kitchen, L.J., and Denlinger, D.L.. 2007. Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. J. Insect Physiol. 53:235245.Google Scholar
Rochefort, S., Berthiaume, R., Hebert, C., Charest, M., and Bauce, E.. 2011. Effect of temperature and host tree on cold hardiness of hemlock looper eggs along a latitudinal gradient. J. Insect Physiol. 57:751759.Google Scholar
Rock, G.C. 1983. Thermoperiodic effects on the regulation of larval diapause in the tufted apple budworm (Lepidoptera: Tortricidae). Environ. Ent. 12:15001503.Google Scholar
Rockey, S.J. and Denlinger, D.L.. 1983. Deuterium oxide alters pupal diapause response in the flesh fly, Sarcophaga crassipalpis. Physiol. Ent. 8:445449.Google Scholar
Rockey, S.J. and Denlinger, D.L.. 1986. Influence of maternal age on incidence of pupal diapause in the flesh fly, Sarcophaga bullata. Physiol. Ent. 11:199203.Google Scholar
Rockey, S.J., Hainze, J.H., and Scriber, J.M.. 1987. Evidence of a sex-linked diapause response in Papilio glaucus subspecies and their hybrids. Physiol. Ent. 12:181184.Google Scholar
Rockey, S.J., Miller, B.B., and Denlinger, D.L.. 1989. A diapause maternal effect in the flesh fly Sarcophaga bullata: transfer of information from mother to progeny. J. Insect Physiol. 35:553558.Google Scholar
Roditakis, N.E. and Karandinos, M.G.. 2001. Effects of photoperiod and temperature on pupal diapause induction of grape berry moth Lobesia botrana. Physiol. Ent. 26:329340.Google Scholar
Romney, A.L. and Podrabsky, J.E.. 2017. Transcriptomic analysis of maternally provisioned cues for phenotypic plasticity in the annual killifish, Austrofundulus limnaeus. EvoDevo 8:6.Google Scholar
Roncalli, V., Sommer, S.A., Cieslak, M.C., Clarke, C., Hopcroft, R.R., and Lenz, P.H.. 2018. Physiological characterization of the emergence from diapause: a transcriptomic approach. Sci. Rep. 8:12577.Google Scholar
Roseler, P.-F. 1985. A technique for year-round rearing of Bombus terrestris (Apidae, Bombini) colonies in captivity. Apidologie 16:165170.Google Scholar
Roubaud, E. 1930. Suspension évolutive et hibernation larvaire obligatoire, provoquées par la chaleur, chez le moustique commun, Culex pipiens L. Les diapauses vraies et les pseudo-diapauses chez les insectes. C.R. Acad. Sci., Paris 190:324326.Google Scholar
Roubik, D.W. and Michener, C.D.. 1980. The seasonal cycle and nests of Epicharis zonata, a bee whose cells are below the wet-season water table (Hymenoptera, Anthophoridae). Biotropica 12:5660.Google Scholar
Roulin, A.C., Bourgeois, Y., Stiefel, U., Walser, J.-C., and Ebert, D.. 2016. A photoreceptor contributes to the natural variation of diapause induction in Daphnia magna. Mol. Biol. Evol. 33:31943204.Google Scholar
Rowarth, N.M. and MacRae, T.H.. 2018a. Post-diapause synthesis of ArHsp40-2, a type 2J-domain protein from Artemia franciscana, is developmentally regulated and induced by stress. PLoS One 13:0201477.Google Scholar
Rowarth, N.M. and MacRae, T.H.. 2018b. ArHsp40 and ArHsp40-2 contribute to stress tolerance and longevity in Artemia franciscana, but only ArHp40 influences diapause entry. J. Exp. Biol. 221:189001.Google Scholar
Roy, D.B. and Sparks, T.H.. 2000. Phenology of British butterflies and climate change. Glob. Change Biol. 6:407416.Google Scholar
Rozsypal, J. and Koštál, V.. 2018. Supercooling and freezing as eco-physiological alternatives rather than mutually exclusive strategies: a case study in Pyrrhocoris apterus. J. Insect Physiol. 111:5362.Google Scholar
Rozsypal, J., Moos, M., Rudolf, I., and Koštál, V.. 2021. Do energy reserves and cold hardiness limit winter survival of Culex pipiens? Comp. Biochem. Physiol. A 255:110912.Google Scholar
Ruan, C.-C., Du, W.-M., Wang, X.-M., Zhang, J.-J., and Zang, L.-S.. 2012. Effect of long-term cold storage on the fitness of pre-wintering Harmonia axyridis (Pallas). BioControl 57:95102.Google Scholar
Rull, J., Tadeo, E., Lasa, R.L., and Aluja, M.. 2017. The effect of winter length on duration of dormancy and survival of specialized herbivorous Rhagoletis fruit flies from high elevation environments with acyclic climatic variability. Bull. Ent. Res. 108:461470.Google Scholar
Rull, J., Lasa, R., and Aluja, M.. 2019. The effect of seasonal humidity on survival and duration of dormancy on diverging Mexican Rhagoletis pomonella (Diptera: Tephritidae) populations inhabiting different environments. Environ. Ent. 48:11211128.Google Scholar
Rundle, B.J. and Hoffmann, A.A.. 2003. Overwintering of Trichogramma funiculatum Carver (Hymenoptera: Trichogrammatidae) under semi-natural conditions. Environ. Ent. 32:290298.Google Scholar
Ryan, S.F., Fontaine, M.C., Scriber, J.M., Pfrender, M.E., O’Neil, S.T., and Hellman, J.J.. 2016. Patterns of divergence across the geographic and genomic landscape of a butterfly hybrid zone associated with a climatic gradient. Mol. Ecol. 26:47254742.Google Scholar
Ryan, S.F., Valella, P., Thivierge, G., Aardema, M.L., and Scriber, J.M.. 2018. The role of latitudinal, genetic and temperature variation in the induction of diapause of Papilio glaucus (Lepidoptera: Papilionidae). Insect Sci. 25:328336.Google Scholar
Sadakiyo, S. and Ishihara, M.. 2011. Rapid seasonal adaptation of an alien bruchid after introduction: geographic variation in life cycle synchronization and critical photoperiod for diapause induction. Ent. Exp. Appl. 140:6976.Google Scholar
Sadakiyo, S. and Ishihara, M.. 2012. Cost of male diapause indirectly affects female reproductive performance. Ent. Exp. Appl. 143:4246.Google Scholar
Safranek, L. and Williams, C.M.. 1980. Studies on the prothoracicotropic hormone in the tobacco hornworm, Manduca sexta. Biol. Bull. 158:141153.Google Scholar
Sahoo, A., Dandapat, J., and Samanta, L.. 2015. Oxidative damaged products, level of hydrogen peroxide, and antioxidant protection in diapausing pupae of the Tasar silk worm, Antheraea mylitta: a comparative study in two voltine groups. Int’l. J. Insect Sci. 7:1117.Google Scholar
Sahota, T.S., Ruth, D.S., Ibaraki, A., Farris, S.H., and Peet, F.G.. 1982. Diapause in the pharate adult stage of insect development. Can. Ent. 114:11791183.Google Scholar
Sahota, T.S., Ibaraki, A., and Farris, S.H.. 1985. Pharate-adult diapause of Barbara colfaxiana (Kft.): differentiation of 1- and 2-year dormancy. Can. Ent. 117:873876.Google Scholar
Sakagami, S.F., Tanno, K., Tsutsui, H., and Honma, K.. 1985. The role of cocoons in overwintering of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae). J. Kans. Ent. Soc. 58:240247.Google Scholar
Sakamoto, T. and Tomioka, K.. 2007. Effects of unilateral compound eye removal on the photoperiodic response of nymphal development in the cricket Modicogryllus siamensis. Zool. Sci. 24:604610.Google Scholar
Sakamoto, T., Uryu, O., and Tomioka, K.. 2009. The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. J. Biol. Rhyth. 24:379390.Google Scholar
Salama, M. and Miller, T.A.. 1992. A diapause-associated protein of the pink bollworm Pectinophora gossypiella. Arch. Insect Biochem. Physiol. 21:111.Google Scholar
Salavert, V., Zamora-Munoz, C., Ruiz-Rodriguez, M., and Soler, J.J.. 2011. Female-biased size dimorphism in a diapausing caddisfly, Mesophylax aspersus: effect of fecundity and natural and sexual selection. Ecol. Ent. 36:389395.CrossRefGoogle Scholar
Salman, M.H.R., Hellrigl, K., Minerbi, S., and Battisti, A.. 2016. Prolonged pupal diapause drives population dynamics of the pine processionary moth (Thaumetopoea pityocampa) in an outbreak expansion area. Forest Ecol. Manag. 361:375381.Google Scholar
Salman, M.H.R., Bonsignore, C.P., El Fels, A.E.A., Giomi, F., Hodar, J.A., Laparie, M., Marini, L., Merel, C., Zalucki, M.P., Zamoum, M., and Battisti, A.. 2019a. Winter temperature predicts prolonged diapause in pine processionary moth species across geographic range. PeerJ 7:e6530.Google Scholar
Salman, M.H.R., Giomi, F., Laparie, M., Lehmann, P., Pitacco, A., and Battisti, A.. 2019b. Termination of pupal diapause in the pine processionary moth Thaumetopoea pityocampa. Physiol. Ent. 44:5359.Google Scholar
Salminen, T.S., Vesala, L., and Hoikkala, A.. 2012. Photoperiodic regulation of life-history traits before and after eclosion: egg-to-adult development time, juvenile body mass and reproductive diapause in Drosophila montana. J. Insect Physiol. 58:15411547.Google Scholar
Salminen, T.S. and Hoikkala, A.. 2013. Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. J. Insect Physiol. 59:450457.Google Scholar
Salminen, T.S., Vesala, L., Laiho, A., Merisalo, M., Hoikkala, A., and Kankare, M.. 2015. Seasonal gene expression kinetics between diapause phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Sci. Rep. 5:11197.Google Scholar
Salom, S.M., Sharov, A.A., Mays, W.T., and Neal, J.W. Jr. 2001. Evaluation of aestival diapause in hemlock woolly adelgid (Homoptera: Adelgidae). Environ. Ent. 30:877882.Google Scholar
Samayoa, A.C. and Hwang, S.-Y.. 2018. Degradation capacity and diapause effects on oviposition of Hermetia illucens (Diptera: Stratiomyidae). J. Econ. Ent. 111:16821690.Google Scholar
Sandrelli, F., Tauber, E., Pegoraro, M., Mazzotta, G., Cisotto, P. et al. 2007. A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316:18981900.Google Scholar
Santos, P.K.F., de Souza Araujo, N., Francoso, E., Zuntini, A.R., and Arias, M.C.. 2018. Diapause in a tropical oil-collecting bee: molecular basis unveiled by RNA-Seq. BMC Genomics 19:305.Google Scholar
Santos, P.K.F., Arias, M.C., and Kapheim, K.M.. 2019. Loss of developmental diapause as prerequisite for social evolution in bees. Biol. Lett. 15:20190398.Google Scholar
Saravanakumar, R., Ponnuvel, K.M., and Qadri, S.M.H.. 2010. Genetic stability analysis of diapause-induced multivoltine silkworm Bombyx mori germplasm using inter simple sequence repeat markers. Ent. Exp. Appl. 135:170176.Google Scholar
Sasibhushan, S., Rao, C.G.P., and Ponnuvel, K.M.. 2013. Genome wide microarray based expression profiles during early embryogenesis in diapause induced and non-diapause eggs of polyvoltine silkworm Bombyx mori. Genomics 102:379387.Google Scholar
Sato, A., Sokabe, T., Kashio, M., Yasukochi, Y., Tominaga, M., and Shiomi, K.. 2014. Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori. Proc. Nat’l. Acad. Sci., USA 111:E1249E1255.Google Scholar
Sato, K., Tanaka, H., Saito, Y., and Suzuki, K.. 2002. Baculovirus-mediated production and antifungal activity of a diapause-specific peptide, diapausin, of the adult leaf beetle, Gastrophysa atrocyanea (Coleoptera: Chrysomelidae). J. Insect Biotech. Ser. 71:6977.Google Scholar
Sato, Y., Oguchi, M., Menjo, N., Imai, K., Saito, H., Ikeda, M., Isobe, M., and Yamashita, O.. 1993. Precursor polyprotein for multiple neuropeptides secreted from the subesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proc. Nat’l. Acad. Sci., USA 90:32513255.Google Scholar
Sato, Y., Shiomi, K., Saito, H., Imai, K., and Yamashita, O.. 1998. Phe-X-Pro-Arg-Leu-NH2 peptide producing cells in the central nervous system of the silkworm, Bombyx mori. J. Insect Physiol. 44:333342.Google Scholar
Sato, Y., Yang, P., An, Y., Matsukawa, K., Ito, K., Imanishi, S., Matsuda, H., Uchiyama, Y., Imai, K., Ito, S., Ishida, Y., and Suzuki, K.. 2010. A palmitoyl conjugate of insect pentapeptide Yamamarin arrests cell proliferation and respiration. Peptides 31:827833.Google Scholar
Saulich, A.K. 2010. Long life cycles in insects. Ent. Rev. 90:11271152.Google Scholar
Saulich, A.K. and Musolin, D.L.. 2018. Summer diapause as a special seasonal adaptation in insects: diversity of forms, control mechanisms, and ecological importance. Ent. Rev. 97:11831212.Google Scholar
Saulich, A.K. and Musolin, D.L.. 2019. Seasonal development of plant bugs (Heteroptera, Miridae): subfamily Bryocorinae. Ent. Rev. 99:275291.Google Scholar
Saulich, A.K. and Musolin, D.L.. 2020. Seasonal development of plant bugs (Heteroptera, Miridae): subfamily Mirinae, tribe Mirini. Ent. Rev. 100:738.Google Scholar
Sauman, I., Briscoe, A.D., Zhu, H., Shi, D., Froy, O., Stalleicken, J., Yuan, Q., Casselman, A., and Reppert, S.M.. 2005. Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron 46:457467.Google Scholar
Sauman, I. and Reppert, S.M.. 1996. Molecular characterization of prothoracicotropic hormone (PTTH) from the giant silkmoth Antheraea pernyi: developmental appearance of PTTH-expressing cells and relationship to circadian clock cells in central brain. Dev. Biol. 178:418429.Google Scholar
Sauman, I. and Sehnal, F.. 1997. Immunohistochemistry of the products of male accessory glands in several hemimetabolous insects and the control of their secretion in Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur. J. Ent. 94:349360.Google Scholar
Saunders, D.S. 1965. Larval diapause of maternal origin: induction of diapause in Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). J. Exp. Biol. 42:395508.Google Scholar
Saunders, D.S. 1970. Circadian clock in insect photoperiodism. Science 169:601603.Google Scholar
Saunders, D.S. 1971. The temperature-compensated photoperiodic clock “programming” development and pupal diapause in the flesh-fly, Sarcophaga argyrostoma. J. Insect Physiol. 17:801812.Google Scholar
Saunders, D.S. 1973. Thermoperiodic control of diapause in an insect: theory of internal coincidence. Science 181:358360.Google Scholar
Saunders, D.S. 1974. Evidence for “dawn” and “dusk” oscillators in the Nasonia photoperiodic clock. J. Insect Physiol. 20:7788.Google Scholar
Saunders, D.S. 1975a. Spectral sensitivity and intensity thresholds in Nasonia photoperiodic clock. Nature 253:732734.Google Scholar
Saunders, D.S. 1975b. Skeleton photoperiods and the control of diapause and development in the flesh fly Sarcophaga argyrostoma. J. Comp. Physiol. A 97:97112.Google Scholar
Saunders, D.S. 1981. Insect photoperiodism – the clock and counter: a review. Physiol. Ent. 6:99116.Google Scholar
Saunders, D.S. 1984. Photoperiodic time measurement in Sarcophaga argyrostoma: an attempt to use daily temperature cycles to distinguish external from internal coincidence. J. Comp. Physiol. 154:789794.Google Scholar
Saunders, D.S. 1990. The circadian basis of ovarian diapause regulation in Drosophila melanogaster: is the period gene causally involved in photoperiodic time measurement? J. Biol. Rhyth. 5:315331.Google Scholar
Saunders, D.S. 1997. Under-sized larvae from short-day adults of the blow fly, Calliphora vicina, side-step the diapause programme. Physiol. Ent. 22:249255.Google Scholar
Saunders, D.S. 2000. Larval diapause duration and fat metabolism in three geographic strains of the blow fly, Calliphora vicina. J. Insect Physiol. 46:509517.Google Scholar
Saunders, D.S. 2002. Insect Clocks, 3rd ed., Amsterdam: Elsevier.Google Scholar
Saunders, D.S. 2005. Erwin Bünning and Tony Lees, two giants of chronobiology, and the problem of time measurement in insect photoperiodism. J. Insect Physiol. 51:599608.Google Scholar
Saunders, D.S. 2010a. Photoperiodism in insects: migration and diapause responses. In Photoperiodism, the Biological Calendar, ed. Nelson, R.J., Denlinger, D.L., and Somers, D.E., Oxford: Oxford University Press, pp. 218257.Google Scholar
Saunders, D.S. 2010b. Controversial aspects of photoperiodism in insects and mites. J. Insect Physiol. 56:14911502.Google Scholar
Saunders, D.S. 2011. Unity and diversity in the insect photoperiodic mechanism. Ent. Sci. 14:235244.Google Scholar
Saunders, D.S. 2012. Insect photoperiodism: seeing the light. Physiol. Ent. 37:207218.Google Scholar
Saunders, D.S. 2013. Insect photoperiodism: measuring the night. J. Insect Physiol. 59:110.Google Scholar
Saunders, D.S. 2016. The temporal “structure” and function of the insect photoperiodic clock: a tribute to Colin S. Pittendrigh. Physiol. Ent. 41:118.Google Scholar
Saunders, D.S. 2020a. Dormancy, diapause, and the role of the circadian system in insect photoperiodism. Ann. Rev. Ent. 65:373389.Google Scholar
Saunders, D.S. 2020b. Insect photoperiodism: seasonal development on a revolving planet. Eur. J. Ent. 117:328342.Google Scholar
Saunders, D.S., Sutton, D., and Jarvis, R.A.. 1970. The effect of host species on diapause induction in Nasonia vitripennis. J. Insect Physiol. 16:405416.Google Scholar
Saunders, D.S., Henrich, V.C., and Gilbert, L.I.. 1989. Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc. Nat’l. Acad. Sci., USA 86:37483752.Google Scholar
Saunders, D.S., Richard, D.S., Applebaum, S.W., Ma, M., and Gilbert, L.I.. 1990. Photoperiodic diapause in Drosophila melanogaster involves a block to juvenile hormone regulation of ovarian maturation. Gen. Comp. Endocrinol. 79:174184.Google Scholar
Saunders, D.S. and Cymborowski, B.. 1996. Removal of optic lobes of adult blow flies (Calliphora vicina) leaves photoperiodic induction of larval diapause intact. J. Insect Physiol. 42:807811.Google Scholar
Saunders, D.S. and Cymborowski, B.. 2003. Selection for high diapause incidence in blow flies (Calliphora vicina) maintained under long days increases the maternal critical daylength: some consequences for the photoperiodic clock. J. Insect Physiol. 49:777784.Google Scholar
Saunders, D.S., Lewis, R.D., and Warman, G.R.. 2004. Photoperiodic induction of diapause: opening the black box. Physiol. Ent. 29:115.Google Scholar
Saunders, D.S. and Bertossa, R.C.. 2011. Deciphering time measurement: the role of “circadian clock” genes and formal experimentation in insect photoperiodism. J. Insect Physiol. 57:557566.Google Scholar
Scarbrough, A.G., Sternberg, J.G., and Waldbauer, G.P.. 1977. Selection of the cocoon spinning site by the larvae of Hyalophora cecropia (Saturniidae). J. Lep. Soc. 31:153166.Google Scholar
Schafellner, C., Eizaguirre, M., López, C., and Sehnal, F.. 2008. Juvenile hormone esterase activity in the pupating and diapausing larvae of Sesamia nonagrioides. J. Insect Physiol. 54:916921.Google Scholar
Scharf, I., Bauerfeind, S.S., Blanckenhorn, W.U., and Schafer, M.A.. 2010. Effects of maternal and offspring environmental conditions on growth, development and diapause in latitudinal yellow dung fly populations. Climate Res. 43:115125.Google Scholar
Schebeck, M., Hansen, E.M., Schopf, A., Ragland, G.J., Stauffer, C., and Benz, B.J.. 2017. Diapause and overwintering of two spruce bark beetle species. Physiol. Entomol. 42:200210.Google Scholar
Schechter, M.S., Hayes, D.K., and Sullivan, W.N.. 1971. Manipulation of photoperiod to control insects. Israel J. Ent. 6:143166.Google Scholar
Scheltes, P. 1976. The role of graminaceous host-plants in the induction of aestivation-diapause in the larvae of Chilo zonellus Swinhoe and Chilo argyrolepia Hamps. Symp. Biol. Hung. 16:247253.Google Scholar
Scheltes, P. 1978. The condition of the host plant during aestivation-diapause of the stalk borers Chilo partellus and Chilo orichalcociliella (Lepidoptera, Pyralidae) in Kenya. Ent. Exp. Appl. 24:479488.Google Scholar
Schiesari, L., Kyriacou, C.P., and Costa, R.. 2011. The hormonal and circadian basis for insect photoperiodic timing. FEBS Lett. 585:14501460.Google Scholar
Schiesari, L., Andreatta, G., Kyriacou, C.P., O’Connor, M.B., and Costa, R.. 2016. The insulin-like proteins dILPs-2/5 determine diapause inducibility in Drosophila. PLoS One 11:e0163680.Google Scholar
Schill, R.O., Pfannkuchen, M., Fritz, G., Kohler, H.-R., and Brummer, F.. 2006. Quiescent gemmules of the freshwater sponge, Spongilla lacustris (Linnaeus, 1759), contains remarkably high levels of Hsp70 stress protein and hsp70 stress gene mRNA. J. Exp. Zool. 305:449457.Google Scholar
Schmidt, P.S., Matzkin, L., Ippolito, M., and Eanes, W.F.. 2005. Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster. Evolution 59:17211732.Google Scholar
Schmidt, P.S., Zhu, C.T., Das, J., Batavia, M., Yang, L., and Eanes, W.F.. 2008. An amino acid polymorphism in the couch potato gene forms the basis for climatic adaptation in Drosophila melanogaster. Proc. Nat’l. Acad. Sci., USA 105:1620716211.Google Scholar
Schneider, J.C. 2003. Overwintering of Heliothis virescens (F.) and Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in cotton fields of northeast Mississippi. J. Econ. Ent. 96:14331447.Google Scholar
Schneiderman, H.A. and Williams, C.M.. 1953. The respiratory metabolism of the Cecropia silkworm during diapause and metamorphosis. Biol. Bull. 105:320334.Google Scholar
Schneiderman, H.A. and Williams, C.M.. 1954. The physiology of insect diapause. IX. The cytochrome oxidase system in relation to the diapause and development of the Cecropia silkworm. Biol. Bull. 106:238252.Google Scholar
Schneiderman, H.A. and Horwitz, J.. 1958. Induction and termination of facultative diapause in the chalcid wasps Mormoniella vitripennis (Walker) and Tritneptis klugii (Ratzeburg). J. Exp. Biol. 35:520551.Google Scholar
Schoonhoven, L.M. 1963. Spontaneous electrical activity in the brains of diapausing insects. Science 141:173174.Google Scholar
Schwarzenberger, A., Chen, L., and Weiss, L.C.. 2020. The expression of circadian clock genes in Daphnia magna diapause. Sci. Rep. 10:19928.Google Scholar
Scriber, J.M., Maher, E., and Aardema, M.L.. 2012. Differential effects of short term winter thermal stress on diapausing tiger swallowtail butterflies (Papilio spp.). Insect Sci. 19:277285.Google Scholar
Seuge, J. and Veith, K.. 1976. Diapause de Pieris brassicae: role des photorecepteurs cephaliques, etude des carotenodes cerebraux. J. Insect Physiol. 22:12291235.Google Scholar
Seymour, J. and Jones, R.E.. 2000. Humidity terminated diapause in the tropical braconid Microplitis demolitor. Ecol. Ent. 25:481485.Google Scholar
Sgolastra, F., Bosch, J., Molowny-Horas, R., Maini, S., and Kemp, W.P.. 2010. Effect of temperature regime on diapause intensity in an adult-wintering hymenopteran with obligate diapause. J. Insect Phyiol. 56:185194.Google Scholar
Sgolastra, F., Kemp, W.P., Buckner, J.S., Pitts-Singer, T.L., and Maini, S.. 2011. The long summer: pre-winter temperatures affect metabolic expenditure and winter survival in a solitary bee. J. Insect Physiol. 57:16511659.Google Scholar
Sgolastra, F., Kemp, W.P., Maini, S., and Bosch, J.. 2012. Duration of prepupal summer dormancy regulates synchronization of adult diapause with winter temperatures in bees of the genus Osmia. J. Insect Physiol. 58:924933.Google Scholar
Sgolastra, F., Arnan, X., Pitt-Singer, T.L., Maini, S., Kemp, W.P., and Bosch, J.. 2016. Pre-winter conditions and post-winter performance in a solitary bee: does diapause impose an energetic cost on reproductive success? Ecol. Ent. 41:201210.Google Scholar
Sgrò, C.M., Terblanche, J.S., and Hoffmann, A.A.. 2016. What can plasticity contribute to insect responses to climate change? Ann. Rev. Ent. 61:433451.Google Scholar
Shah, M. T. Suzuki, N A. Ghazy, H. Amano, , and Ohyama, K.. 2011. Night-interruption light inhibits diapause induction in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). J. Insect Physiol. 57:11851189.Google Scholar
Sharma, A., Nuss, A.B., and Gulia-Nuss, M.. 2019. Insulin-like peptide signaling in mosquitoes: the road behind and the road ahead. Front. Physiol. 10:166.Google Scholar
Shaub, L.P., Ravlin, F.W., Gray, D.R., and Logan, J.A.. 1995. Landscape framework to predict phenological events for gypsy moth (Lepidoptera: Lymantriidae) management programs. Environ. Ent. 24:1018.Google Scholar
Shelford, V.E. 1929. Laboratory and Field Ecology. Baltimore: Willimas & Wekins.Google Scholar
Sherr, C.J. 1996. Cancer cell cycles. Science 274:16721677.Google Scholar
Shiga, S. and Numata, H.. 1997. The adult blow fly (Protophormia terraenovae) perceives photoperiod through the compound eyes for induction of reproductive diapause. J. Comp. Physiol. A 181:3540.Google Scholar
Shiga, S. and Numata, H.. 2000. The role of neurosecretory neurons in the pars intercerebralis and pars lateralis in reproductive diapause of the blowfly, Protophormia terraenovae. Naturwissenschaften 87:125128.Google Scholar
Shiga, S., Hamanaka, Y., Tatsu, Y., Okuda, T., and Numata, H.. 2003a. Juvenile hormone biosynthesis in diapause and nondiapause females of the adult blow fly Protophormia terraenovae. Zool. Sci. 20:11991206.Google Scholar
Shiga, S., Davis, N.T., and Hildebrand, J.G.. 2003b. Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. J. Comp. Neur. 462:275285.Google Scholar
Shiga, S. and Numata, H.. 2007. Neuroanatomical approaches to the study of insect photoperiodism. Phytochem. Photobiol. 83:7686.Google Scholar
Shiga, S. and Numata, H.. 2009. Role of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae. J. Exp. Biol. 212:867877.Google Scholar
Shim, J.-K., Bang, H.-S., and Lee, K.-Y. 2013. Differential regulation of heat shock protein genes by temperature in relation to initial diapause in the egg of the katydid Paratlanticus ussuriensis. Physiol. Ent. 38:140149.CrossRefGoogle Scholar
Shimada, K. 2005. Photoperiod-sensitive developmental delay in facet mutants of the drosophilid fly, Chymomyza costata and the genetic interaction with timeless. J. Insect Physiol. 51:649653.CrossRefGoogle ScholarPubMed
Shimada, K. and Riihimaa, A.. 1990. Cold-induced freezing tolerance in diapausing and non-diapausing larvae of Chymomyza costata (Diptera: Drosophilidae) with accumulation of trehalose and proline. Cryo Letters 11:243250.Google Scholar
Shimizu, I., Aoki, S., and Ichikawa, T.. 1997. Neuroendocrine control of diapause hormone secretion in the silkworm, Bombyx mori. J. Insect Phyisol. 43:11011109.Google Scholar
Shimizu, K. and Kato, M.. 1984. Carotenoid functions in photoperiodic induction in the silkworm, Bombyx mori. Photochem. Photobiophys. 7:4752.Google Scholar
Shimizu, K., Yamakawa, Y., Shimazaki, Y., and Iwasa, T.. 2001. Molecular cloning of Bombyx cerebral opsin (Boceropsin) and cellular localization of its expression in the silkworm brain. Biochem. Biophys. Res. Com. 287:2734.Google Scholar
Shimizu, K. and Fjuisaki, K.. 2002. Sexual differences in diapause induction of the cotton bollworm, Helicoverpa armigera (Hb.)(Lepidoptera: Noctuidae). Appl. Ent. Zool. 37:527533.Google Scholar
Shimizu, K. and Fujisaki, K.. 2006. Geographic variation in diapause induction under constant and changing conditions in Helicoverpa armigera. Ent. Exp. Appl. 121:253260.Google Scholar
Shimizu, T. and Kawasaki, K.. 2001. Geographic variability in diapause response of Japanese Orius species. Ent. Exp. Appl. 98:303316.Google Scholar
Shimizu, Y., Mukai, A., and Goto, S.G.. 2018a. Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause. J. Insect Physiol. 106:147152.CrossRefGoogle ScholarPubMed
Shimizu, Y., Tamai, T., and Goto, S.G.. 2018b. Cell cycle regulator, small silencing RNA, and segmentation patterning gene expression in relation to embryonic diapause in the band-legged cricket. Insect Biochem. Mol. Biol. 102:7583.Google Scholar
Shingleton, A.W., Sisk, G.C., and Stern, D.L.. 2003. Diapause in the pea aphid (Acyrthosiphon pisum) is a slowing but not a cessation of development. BMC Dev. Biol. 3:7.Google Scholar
Shintani, Y. 2009a. Effect of seasonal variation in host-plant quality on the rice leaf bug, Trigonotylus caelestialium. Ent. Exp. Appl. 133:128135.Google Scholar
Shintani, Y. 2009b. Artificial selection for responsiveness to photoperiodic change alters the response to stationary photoperiods in maternal induction of egg diapause in the rice leaf bug Trigonotylus caelestialium. J. Insect Physiol. 55:818824.Google Scholar
Shintani, Y., Shiga, S., and Numata, H.. 2009. Different photoreceptor organs are used for photoperiodism in the larval and adult stages of the carabid beetle, Leptocarabus kumagaii. J. Exp. Biol. 212:36513655.Google Scholar
Shintani, Y. and Numata, H.. 2010. Photoperiodic response of larvae of the yellow-spotted longicorn beetle, Psacothea hilaris after removal of the stemmata. J. Insect Physiol. 56:11251129.CrossRefGoogle ScholarPubMed
Shintani, Y., Hirose, Y., and Terao, M.. 2011. Effects of temperature, photoperiod and soil humidity on induction of pseudopupal diapause in the bean blister beetle Epicauta gorhami. Physiol. Ent. 36:1420.Google Scholar
Shintani, Y. and Nagamine, K.. 2020. Microhabitat variation in egg diapause incidence in summer within a local population: an adaptation to decline in host-plant suitability in Trigonotylus caelestialium (Hemiptera: Miridae). Environ. Ent. 49:912917.Google Scholar
Shiomi, K., Fujiwara, Y., Yasukochi, Y., Kajiura, Z., Nakagaki, M., and Yaginuma, T.. 2007. The Pitx homeobox gene in Bombyx mori: regulation of DH-PBAN neuropeptide hormone gene expression. Mol. Cell Neurosci. 34:209218.Google Scholar
Shiomi, K., Takasu, Y., Kunii, M., Tsuchiya, R., Mukaida, M., Kobayashi, M., Sezutsu, H., Takahama, M. I., and Mizoguchi, A.. 2015. Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci. Rep. 5:15566.Google Scholar
Short, C.A., Meuti, M.E., Zhang, Q., and Denlinger, D.L.. 2016. Entrainment of eclosion and preliminary ontogeny of circadian clock gene expression in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 93–94:2835.Google Scholar
Showers, W.B. 1979. Effect of diapause on the migration of the European corn borer into the southeastern United States. In Movement of Highly Mobile Insects: Concepts and Methodology in Research, ed. Rabb, R.L. and Kennedy, G.G., Raleigh: North Carolina State University Press, pp. 420432.Google Scholar
Shroyer, D.A. and Craig, G.B. Jr. 1983. Egg diapause in Aedes triseriatus (Diptera: Culicidae): geographic variationin photoperiodic response and factors influencing diapause termination. J. Med. Ent. 20:601607.CrossRefGoogle Scholar
Siegert, K.J. 1986. The effects of chilling and integumentary injury on carbohydrate and lipid metabolism in diapause and non-diapause pupae of Manduca sexta. Comp. Biochem. Physiol. 85A:257262.Google Scholar
Sim, C. and Denlinger, D.L.. 2008. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Nat’l. Acad. Sci., USA 105:67776781.Google Scholar
Sim, C. and Denlinger, D.L.. 2009a. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol. Genomics 39:202209.Google Scholar
Sim, C. and Denlinger, D.L.. 2009b. A shut-down in expression of an insulin-like peptide, ILP-1, halts ovarian maturation during the overwintering diapause of the mosquito Culex pipiens. Insect Mol. Biol. 18:325332.Google Scholar
Sim, C. and Denlinger, D.L.. 2011. Catalase and superoxide dismutase-2 enhance survival and protect ovaries during overwintering diapause in the mosquito Culex pipiens. J. Insect Physiol. 57:628634.Google Scholar
Sim, C. and Denlinger, D.L.. 2013a. Insulin signaling and the regulation of insect diapause. Front. Physiol. 4:189.Google Scholar
Sim, C. and Denlinger, D.L.. 2013b. Juvenile hormone III suppresses forkhead of transcription factor in the fat body and reduces fat accumulation in the diapausing mosquito, Culex pipiens. Insect Mol. Biol. 22:111.Google Scholar
Sim, C., Kang, D.S., Kim, S., Bai, X., and Denlinger, D.L.. 2015. Identification of FOXO targets that generate the diverse features of the diapause phenotype in the mosquito Culex pipiens. Proc. Nat’l. Acad. Sci., USA 112:38113816.Google Scholar
Simard, F., Lehmann, T., Lemasson, J.-J., Diatta, M. and Fontenille, D.. 2000. Persistence of Anopheles arabiensis during the severe dry season conditions in Senegal: an indirect approach using microsatellite loci. Insect Mol. Biol. 9:467479.Google Scholar
Sims, S.R. 2007. Diapause dynamics, seasonal phenology, and pupal color dimorphism of Papilio polyxenes in southern Florida, USA. Ent. Exp. Appl. 123:239245.Google Scholar
Sinclair, B.J. and Marshall, K.E.. 2018. The many roles of fat in overwintering insects. J. Exp. Biol. 221:161836.Google Scholar
Singh, S.P. 1993. Species composition and diapause in citrus butterflies. J. Insect Sci. 6:4852.Google Scholar
Singtripop, T., Wanichacheewa, S., Tsuzuki, S., and Sakurai, S.. 1999. Larval growth and diapause in a tropical moth, Omphisa fuscidentalis Hampson. Zool. Sci. 16:725733.Google Scholar
Singtripop, T., Wanichacheewa, S., and Sakuri, S.. 2000. Juvenile hormone-mediated termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. Insect Biochem. Mol. Biol. 30:847854.Google Scholar
Singtripop, T., Oda, Y., Wanichacheewa, S., and Sakurai, S.. 2002. Sensitivities to juvenile hormone and ecdysteroid in diapause larvae of Omphisa fuscidentalis based on the hemolymph trehalose dynamics index. J. Insect Physiol. 48:817824.Google Scholar
Singtripop, T., Saeangsakda, M., Tatun, N., Kaneko, Y., and Sakurai, S.. 2007. Correlation of oxygen consumption, cytochrome c oxidase, and cytochrome c oxidase subunit I gene expression in the termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. J. Insect Physiol. 53:933939.Google Scholar
Singtripop, T., Manaboon, M., Tatun, N., Kaneko, Y., and Sakurai, S.. 2008. Hormonal mechanisms underlying termination of larval diapause by juvenilehormone in the bamboo borer, Omphisa fuscidentalis. J. Insect Physiol. 54:137145.Google Scholar
Skillman, V.P., Wilman, N.G., and Lee, J.C.. 2018. Nutrient declines in overwintering Halyomorpha halys populations. Ent. Exp. Appl. 166:778789.Google Scholar
Sláma, K. 1980. Homeostatic functions of ecdysteroids in ecdysis and oviposition. Acta Entomol. Bohem. 77:145168.Google Scholar
Sláma, K. 1988. A new look at insect respiration. Biol. Bull. 175:289300.CrossRefGoogle Scholar
Sláma, K. 2000. Extracardiac versus cardiac haemocoelic pulsations in pupae of the mealworm (Tenebrio molitor L.). J. Insect Physiol 46:977992.Google Scholar
Sláma, K. and Denlinger, D.L.. 1992. Infradian cycles of oxygen consumption in diapausing pupae of the flesh fly, Sarcophaga crassipalpis, monitored by a scanning microrespirographic method. Arch. Insect Biochem. Physiol. 20:135143.Google Scholar
Sláma, K. and Miller, T.A.. 2001. Physiology of heartbeat reversal in diapausing pupae of the tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae). Eur. J. Ent. 98:415431.Google Scholar
Sláma, K. and Denlinger, D.L.. 2013. Transitions in the heartbeat pattern during pupal diapause and adult development in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 59:767780.Google Scholar
Slifer, E.H. 1946. The effects of xylol and other solvents on diapause in the grasshopper eggs; together with a possible explanation for the action of these agents. J. Exp. Zool. 102:333356.Google Scholar
Slusarczyk, M. and Rybicka, B.. 2011. Role of temperature in diapause response to fish kairomones in crustacean Daphnia. J. Insect Physiol. 57:676680.Google Scholar
Smith, W.A., Bowen, M.F., Bollenbacher, W.E., and Gilbert, L.I.. 1986. Cellular changes in the prothoracic glands of diapausing pupae of Manduca sexta. J. Exp. Biol. 120:131142.Google Scholar
Smith, W.A., Lamattina, A., and Collins, M.. 2014. Insulin signaling pathways in lepidopteran ecdysone secretion. Front. Physiol. 5:19.Google Scholar
Smits, S.A., Leach, J., Sonnenburg, E.D., Gonzalez, C.G., Lichtman, J.S., Reid, G., Knight, R., Manjurano, A., Changaluch, J., Elias, J.E., Dominguez-Bello, M.G., and Sonnenburg, J.L.. 2017. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357:802806.Google Scholar
Smykal, V., Bajgar, A., Provazník, J., Fexova, S., Buricova, M., Takaki, K., Hodková, M., Jindra, M., and Doležel, D.. 2014. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 45:6976.Google Scholar
Smykal, V., Pivarč, M., Provazník, J., Bazalová, O., Jedlička, P., Lukšan, O. Horák, A., Vanečková, H., Beneš, V., Fiala, I., Hanus, R., and Doležel, D.. 2020. Complex evolution of insect insulin receptors and homologous decoy receptors, and functional significance of their multiplicity. Mol. Biol. Evol. 37:17751789.Google Scholar
Sniegula, S. and Johansson, F.. 2010. Photoperiod affects compensating developmental rate across latitudes in the damselfly Lestes sponsa. Ecol. Ent. 35:149157.Google Scholar
Snodgrass, G.L., Jackson, R.E., Perera, O.P., Allen, K.C., and Luttrell, R.G.. 2012. Effect of food and temperature on emergence from diapause in the tarnished plant bug (Hemiptera: Miridae). Environ. Ent. 41:13021310.Google Scholar
Socha, R. 2007. Factors terminating ovarian arrest in long-winged females of a flightless bug, Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur. J. Ent. 104:1522.Google Scholar
Socha, R. 2010. Pre-diapause mating and overwintering of fertilized adult females: new aspects of the life cycle of the wing-polymorphic bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur. J. Ent. 107:521525.Google Scholar
Socha, R. and Kodrik, D.. 1999. Differences in adipokinetic response of Pyrrhocoris apterus (Heteroptera) in relation to wing dimorphism and diapause. Physiol. Ent. 24:278284.Google Scholar
Socías, M.G., van Nieuwenhove, G., Casmuz, A.S., Willink, E., and Liljeström, G.G.. 2016. The role of rainfall in Sternechus subsignatus (Coleoptera: Curculionidae) adult emergence from the soil after its winter dormant period. Environ. Ent. 45:10491057.Google Scholar
Söderlind, L. and Nylin, S.. 2011. Genetics of diapause in the comma butterfly Polygonia c-album. Physiol. Ent. 36:813.Google Scholar
Soderstrom, E.L., Brandl, D.G., and Mackey, B.. 1990. Responses of codling moth (Lepidoptera: Tortricidae) life stages to high carbon dioxide or low oxygen atmospheres. J. Econ. Ent. 83:472475.Google Scholar
Solbreck, C. and Widenfalk, O.. 2012. Very long diapause and extreme resistance to population disturbance in a galling insect. Ecol. Ent. 37:5155.Google Scholar
Sonobe, H. and Yamada, R.. 2004. Ecdysteroids during early embryonic development in silkworm Bombyx mori: metabolism and functions. Zool. Sci. 21:503516.Google Scholar
Sonoda, S., Fukumoto, K., Izumi, Y., Ashfaq, M., Yoshida, H., and Tsumuki, H.. 2006. Methionine-rich storage protein gene in the rice stem borer, Chilo suppressalis, is expressed during diapause in response to cold. Insect Mol. Biol. 15:853859.Google Scholar
Soula, B. and Menu, F.. 2005. Extended life cycle in the chestnut weevil: prolonged or repeated diapause? Ent. Exp. Appl. 115:333340.Google Scholar
Spacht, D.E., Teets, N.M., and Denlinger, D.L.. 2018. Two isoforms of Pepck in Sarcophaga bullata and their distinct expression profiles through development, diapause, and in response to stresses of cold and starvation. J. Insect Physiol. 111:4146.Google Scholar
Spacht, D.E., Ganz, J.D., Lee, R.E. Jr., and Denlinger, D.L.. 2020. Onset of seasonal metabolic depression in the Antarctic midge, Belgica antarctica, appears to be independent of environmental cues. Physiol. Ent. 45:1621.Google Scholar
Spielman, A. 1964. Studies on autogeny in Culex pipiens populations in nature. I. Reproductive isolation between autogenous and anautogenous populations. Am. J. Hygiene 80:175183.Google Scholar
Spielman, A. and Wong, J.. 1973. Environmental control of ovarian diapause in Culex pipiens. Ann. Ent. Soc. Amer. 66:905907.Google Scholar
Spieth, H.R. 1995. Change in photoperiodic sensitivity during larval development of Pieris brassicae. J. Insect Physiol. 41:7783.Google Scholar
Spieth, H.R. 2002. Estivation and hibernation of Pieris brassicae (L.) in southern Spain: synchronization of two complex behavioral patterns. Pop. Ecol. 44:273280.Google Scholar
Spieth, H.R. and Schwarzer, E.. 2001. Aestivation in Pieris brassicae (Lepidoptera: Pieridae): implications for parasitism. Eur. J. Ent. 98:171176.Google Scholar
Spieth, H.R., Porschmann, U., and Teiwes, C.. 2011. The occurrence of summer diapause in the large white butterfly Pieris brassicae (Lepidoptera: Pieridae): a geographical perspective. Eur. J. Ent. 108:377384.Google Scholar
Spieth, H.R. and Cordes, R.. 2012. Geographic comparison of seasonal migration events of the large white butterfly, Pieris brassicae. Ecol. Ent. 37:439445.CrossRefGoogle Scholar
Squire, F.A. 1939. Observations on the pink bollworm, Platyedra gossypiella, Saund. Bull. Ent. Res. 30:475481.Google Scholar
Srygley, R. 2019. Coping with drought: diapause plasticity in katydid eggs at high, mid, and low elevations. Ecol. Ent. 45:485492.Google Scholar
Srygley, R. 2020. Parental photoperiod affects egg diapause in a montane population of Mormon crickets (Orthoptera: Tettigoniidae). Environ. Ent. 49:895901.Google Scholar
Srygley, R. and Senior, L.. 2018. The laboratory curse: variation in temperature stimulates embryonic development and shortens diapause. Environ. Ent. 47:725733.Google Scholar
Stålhandske, S., Lehmann, P., Pruisscher, P., and Leimar, O.. 2015. Effect of winter cold duration on spring phenology of the orange tip butterfly, Anthocharis cardamines. Ecol. Evol. 5:55095520.Google Scholar
Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K. et al. 1998. The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681692.Google Scholar
Stefanescu, C. 2001. The nature of migration in the red admiral butterfly Vanessa atalanta: evidence from the population ecology in its southern range. Ecol. Ent. 26:525536.Google Scholar
Stefanescu, C., Askew, R.R., Corbera, J., and Shaw, M.R.. 2012. Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur. J. Ent. 109:8594.Google Scholar
Stegwee, D., Kimmel, E.C., de Boer, J.A., and Henstra, S.. 1963. Hormonal control of reversible degeneration of flight muscle in the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera). J. Cell Biol. 19:519527.Google Scholar
Stehlik, J., Zavodska, R., Shimada, K., Sauman, I., and Kostal, V.. 2008. Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J. Biol. Rhyth. 23:129139.Google Scholar
Štetina, T.,Hula, P., Moos, M., Šimek, P., Šmilauer, P., and Koštál, V.. 2018. Recovery from supercooling, freezing, and cryopreservation stress in larvae of the drosophilid fly, Chymomyza costata. Sci. Rep. 8:4414.Google Scholar
Stevenson, T.J. and Prendergast, B.J.. 2013. Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc. Nat’l. Acad. Sci., USA 110:1665116656.Google Scholar
Stevenson, T.J., Visser, M.E., Arnold, W., Barrett, P., Biello, S., Dawson, A., Denlinger, D.L., Dominoni, D., Ebling, F.J., Elton, S., Evans, N., Ferguson, H.M., Foster, R.G., Hau, M., Haydon, D.T., Halerigg, D.G., Heideman, P., Hopcraft, J.G.C., Jonsson, N.N., Kronfeld-Schor, N., Kumar, V., Lincoln, G.A., MacLeod, R., Martin, S.A.M., Martinez-Bakker, M., Nelson, R.J., Reed, T., Robinson, J.E., Rock, D., Schwartz, W.J., Steffan-Dewenter, I., Tauber, E., Thackeray, S.J., Umstatter, C., Yoshimura, T., and Helms, B.. 2015. Disrupted seasonal biology impacts health, food security, and ecosystems. Proc. Roy. Soc. B 282:20151453.Google Scholar
Stoeckli, S., Hirschi, M., Spirig, C., Calanca, P., Rotach, M.W., and Samietz, J.. 2012. Impact of climate change on voltinism and prospective diapause induction of a global pest insect – Cydia pomonella (L.). PLoS One 7:e35723.Google Scholar
Stoffolano, J.G. Jr. 1967. The synchronization of the life cycle of diapausing face flies, Musca autumnalis, and of the nematode, Heterotylenchus autumnalis. J. Invert. Path. 9:395397.Google Scholar
Stoffolano, J.G. Jr. 1968. The effect of diapause and age on the tarsal acceptance threshold of the fly, Musca autumnalis. J. Insect Physiol. 14:12051214.Google Scholar
Stoffolano, J.G. Jr. 1975. Central control of feeding in the diapausing adult blowfly Phormia regina. J. Exp. Biol. 63:265271.Google Scholar
Storey, K.B. and Storey, J.M.. 1991. Biochemistry of cryoprotectants. In Insects at Low Temperature, ed. Lee, R.E. Jr. and Denlinger, D.L., New York: Chapman & Hall, pp. 6493.Google Scholar
Storey, K.B. and Storey, J.M.. 2004. Metabolic rate depression in animals: transcriptional and translational controls. Biol. Rev. Camb. Philos. Soc. 79:207233.Google Scholar
Storey, K.B. and Storey, J.M.. 2007. Putting life on “pause” – a molecular regulation of hypometabolism. J. Exp. Biol. 210:17001714.Google Scholar
Storey, K.B. and Storey, J.M.. 2010. Oxygen: stress and adaptation in cold-hardy insects. In Low Temperature Biology of Insects, ed. Denlinger, D.L. and Lee, R.E. Jr., Cambridge: Cambridge University Press, pp. 141165.Google Scholar
Storey, K.B. and Storey, J.M.. 2012. Insect cold hardiness: metabolic, gene, and protein adaptation. Can. J. Zool. 90:456475.Google Scholar
Stuckas, H., Mende, M.B., and Hundsdoerfer, A.K.. 2014. Response to cold acclimation in diapausing pupae of Hyles euphorbiae (Lepidoptera: Sphingidae): candidate biomarker identification using proteomics. Insect Mol. Biol. 23:444456.Google Scholar
Su, Y., Wei, L., Tan, H., Li, J., Li, W., Fu, L., Wang, T., Kang, L., and Yao, X.S.. 2019. OCT as a non-invasive 3D real time imaging tool for the rapid evaluation of phenotypic variations in insect embryonic development. J. Biophotonics 13:e201960047.Google Scholar
Su, Z.-H., Ikeda, M., Sato, Y., Saito, H., Imai, K., Isobe, M., and Yamashita, O.. 1994. Molecular characterization of ovary trehalase of the silkworm, Bombyx mori and its transcriptional activation by diapause hormone. Biochem. Biophys. Acta 1218:366374.Google Scholar
Suang, S., Manaboon, M., Chantawannakul, P., Singtripop, T., Hiruma, K., and Kaneko, Y.. 2015. Molecular cloning, developmental expression and tissue distribution of diapause hormone and pheromone biosynthesis activating neuropeptide in the bamboo borer Omphisa fuscidentalis. Physiol. Ent. 40:247256.Google Scholar
Sula, J., Kodrik, D., and Socha, R.. 1995. Hexameric haemolymph protein related to adult diapause in the red firebug, Pyrrhocoris apterus (L.) (Heteroptera). J. Insect Physiol. 41:793800.Google Scholar
Suman, D.S., Wang, Y., and Gaugler, R.. 2015. The insect growth regulator pyriproxyfen terminates egg diapause in the Asian tiger mosquito, Aedes albopictus PLoS One 10:e0130499.Google Scholar
Sunose, T. 1983. Insect prolonged diapause and its ecological significance. Bull. Jap. Soc. Pop. Ecol. (Kotaigun Seitai Gakkai Kaiho) 37:3548. (in Japanese)Google Scholar
Susset, E.C., Magro, A., and Hemptinne, J.-L.. 2017a. Using species distribution models to locate animal aggregations: a case study with Hippodamia undecimnotata (Schneider) overwintering aggregation sites. Ecol. Ent. 42:345354.Google Scholar
Susset, E.C., Hemptinne, J.-L., and Magro, A.. 2017b. Overwintering sites might not be safe haven for Hippodamia undecimnotata (Schneider) (Coleoptera: Coccinellidae). Coleop. Bull. 71:556564.Google Scholar
Susset, E.C., Hemptinne, J.-L., Danchin, E., and Magro, A.. 2018. Overwintering aggregations are part of Hippodamia undecimnotata’s (Coleoptera: Coccinellidae) mating system. PLoS One 13:e0197108.Google Scholar
Sussky, E.M. and Elkinton, J.S.. 2015. Survival and near extinction of hemlock woolly adelgid (Hemiptera: Adelgidae) during summer aestivation in a hemlock plantation. Ecol. Ent. 44:153159.Google Scholar
Suwa, A. and Gotoh, T.. 2006. Geographic variation in diapause induction and mode of diapause inheritance in Tetranychus pueraricola. J. Appl. Ent. 130:329335.Google Scholar
Suzuki, K., Minagawa, T., Kumagai, T., Naya, S.-I., Endo, Y., Osanai, M., and Kuwano, E.. 1990. Control mechanism of diapause of the pharate first-instar larva of the silkmoth Antheraea yamamai. J. Insect Physiol. 36:855860.Google Scholar
Suzuki, K., Nakamura, T., Yanbe, T., Kurihra, M., and Kuwano, E.. 1993. Termination of diapause in pharate first-instar larvae of the gypsy moth Lymantria dispar japonica by an imidazole derivative KK-42. J. Insect Physiol. 39:107110.Google Scholar
Suzuki, T. and Takeda, M.. 2009. Diapause-inducing signals prolong nymphal development in the two-spotted spider mite Tetranychus urticae. Physiol. Ent. 34:278283.Google Scholar
Szücs, M., Schaffner, U., Price, W.J., and Schwarzländer, M.. 2012. Post-introduction evolution in the biological control agent Longitarsus jacobaeae (Coleoptera: Chrysomelidae). Evol. Appl. 5:858868.Google Scholar
Tachibana, S.-I. and Numata, H.. 2004. Parental and direct effects of photoperiod and temperature on the induction of larval diapause in the blow fly Lucilia sericata. Physiol. Ent. 29:3944.Google Scholar
Tachibana, S.-I., Numata, H., and Goto, S.G.. 2005. Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata. J. Insect Physiol. 51:641647.Google Scholar
Tachibana, S.-I. and Watanabe, T.. 2007. Sexual differences in the crucial environmental factors for the timing of postdiapause development in the rice bug Leptocorisa chinensis. J. Insect Physiol. 53:10001007.Google Scholar
Tachibana, S.-I. and Watanabe, T.. 2008. Regulation of gonad development and respiratory metabolism associated with food availability and reproductive diapause in the rice bug Leptocorisa chinensis. J. Insect Physiol. 54:445453.Google Scholar
Tachibana, S.-I., Matsuzaki, S., Tanaka, M., Shiota, M., Motooka, D., Nakamura, S., and Goto, S.G.. 2019. The autophagy-related protein GABARAP is induced during overwintering in the bean bug (Hemiptera: Alydidae). J. Econ. Ent. 113:427434.Google Scholar
Tagaya, J., Numata, H., and Goto, S.. 2010. Sexual difference in the photoperiodic induction of pupal diapause in the flesh fly Sarcophaga similis. Ent. Sci.13:311319.Google Scholar
Takagi, S. and Miyashita, T.. 2008. Host plant quality influences diapause induction of Byasa alcinous (Lepidoptera: Papilionidae). Ann. Ent. Soc. Am. 101:392396.Google Scholar
Takano, Y., Ullah, M.S., and Gotoh, T.. 2017. Effect of temperature on diapause termination and post-diapause development in Eotetranychus smithi (Acari: Tetranychidae). Exp. Appl. Acarol. 73:353363.Google Scholar
Takeda, K., Musolin, D.L., and Fujisaki, K.. 2010. Dissecting insect responses to climate warming: overwintering and post-diapause performance in the southern green stink bug, Nezara viridula, under simulated climate-change conditions. Physiol. Ent. 35:343353.Google Scholar
Takeda, M. 2005. Differentiation in life cycle of sympatric populations of two forms of Hyphantria moth in central Missouri. Ent. Sci. 8:211218.Google Scholar
Takeda, M. and Masaki, S.. 1979. Asymmetric perception of twilight affecting diapause induction by the fall webworm, Hyphantria cunea. Ent. Exp. Appl. 25:317327.Google Scholar
Takeda, M. and Chippendale, G.M.. 1982. Environemental and genetic control of the larval diapause of the southwestern corn borer, Diatraea grandiosella. Physiol. Ent. 7:99110.Google Scholar
Takeda, S. and Hasegawa, K.. 1975. Alteration of egg diapause in Bombyx mori by ouabain injected into diapause egg producers. J. Insect Physiol. 21:19952003.Google Scholar
Tamai, T., Shiga, S., and Goto, S.G.. 2019. Roles of the circadian clock and endocrine regulator in the photoperiodic response of the brown-winger green bug Plautia stali. Physiol. Ent. 44:4352.Google Scholar
Tamaki, S., Takemoto, S., Uryu, O., Kamae, Y., and Tomioka, K.. 2013. Opsins are involved in nymphal photoperiodic responses in the cricket Modicogryllus siamensis. Physiol. Ent. 38:163172.Google Scholar
Tammariello, S.P. 2001. Regulation of the cell cycle during diapause. In Insect Timing: Circadian Rhythmicity to Seasonality, ed. Denlinger, D.L., Giebultowicz, J., and Saunders, D.S., Amsterdam: Elsevier, pp. 173183.Google Scholar
Tammariello, S.P. and Denlinger, D.L.. 1998. G0/G1 cell cycle arrest in the brain of Sarcophaga crassipalpis during pupal diapause and the expression of the cell cycle regulator proliferating cell nuclear antigen. Insect Biochem. Mol. Biol. 28:8389.Google Scholar
Tammariello, S.P., Rinehart, J.P., and Denlinger, D.L.. 1999. Desiccation elicits heat shock protein transcription in the flesh fly, Sarcophaga crassipalpis, but does not enhance tolerance to high or low temperatures. J. Insect Physiol. 45:933938.Google Scholar
Tan, Q.-Q., Liu, W., Zhu, F., Lei, C.-L., and Wang, X.-P.. 2017a. Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression. Sci. Rep. 7:40509.Google Scholar
Tan, Q.-Q., Liu, W., Zhu, F., Lei, C.-L., Hahn, D.A., and Wang, X.-P.. 2017b. Describing the diapause-preparatory proteome of the beetle Colaphellus bowringi and identifying candidates affecting lipid accumulation using isobaric tags for mass spectrometry-based proteome quantification (iTRAQ). Front. Physiol. 8:251.Google Scholar
Tanaka, A., Kuga, Y., Tanaka, Y., Goto, S.G., Numata, H., and Shiga, S.. 2013. Effects of ablation of the pars intercerbralis on ecdysteroid quantities and yolk protein expression in the blowfly Protophormia terraenovae. Physiol. Ent. 38:192201.Google Scholar
Tanaka, H., Sato, K., Saito, Y., Yamashita, T., Agoh, M., Okunishi, J., Tachikawa, E., and Suzuki, K.. 2003. Insect diapause-specific peptide from the leaf beetle has a consensus with a putative iridovirus peptide. Peptides 24:13271333.Google Scholar
Tanaka, K. 1997. Evolutionary relationship between diapause and cold hardiness in the house spider, Achaearanea tepidariorum (Araneae: Theridiidae). J. Insect Physiol. 43:271274.Google Scholar
Tanaka, K. and Murata, K.. 2016. Rapid evolution of photoperiodic response in a recently introduced pest Ophraella communa along geographic gradients. Ent. Sci. 19:207214.Google Scholar
Tanaka, K. and Murata, K.. 2017. Genetic basis underlying rapid evolution of an introduced insect Ophraella communa (Coleoptera: Chrysomelidae): heritability of photoperiodic response. Environ. Ent. 46:167173.Google Scholar
Tanaka, M., Tachibana, S.-I., and Numata, H.. 2008. Sensitive stages for photoperiodic induction of pupal diapause in the flesh fly Sarcophaga similis (Meade) (Diptera: Sarcophagidae). Appl. Entomol. Sci. 43:403407.Google Scholar
Tanaka, S. 2001. Endocrine mechanisms controlling body-color polymorphism in locusts. Arch. Insect Biochem. Physiol. 47:139149.Google Scholar
Tanaka, S. and Brookes, V.J.. 1983. Altitudinal adaptation of the life cycle in Allonemobius fasciatus DeGeer (Orthoptera: Gryllidae). Can. J. Zool. 61:19861990.Google Scholar
Tanaka, S. and Wolda, H.. 1987. Dormancy and aggregation in a tropical insect Jadera obscura (Hemiptera: Rhopalidae). Proc. Kon. Nederl. Akad. Wetensch. Ser. C. 90:351366.Google Scholar
Tanaka, S., Denlinger, D.L., and Wolda, H.. 1987a. Daylength and humidity as environmental cues for diapause termination in a tropical beetle. Physiol. Ent. 12:213224.Google Scholar
Tanaka, S., Wolda, H., and Denlinger, D.L.. 1987b. Abstinence from mating by sexually mature males of the fungus beetle, Stenotarsus rotundus, during a tropical dry season. Biotropica 19:252254.Google Scholar
Tanaka, S., Wolda, H., and Denlinger, D.L.. 1987c. Seasonality and its physiological regulation in three neotropical insect taxa from Barro Colorado Island, Panama. Insect Sci. Applic. 8:507514.Google Scholar
Tanaka, S., Wolda, H., and Denlinger, D.L.. 1988. Group size affects the metabolic rate of a tropical beetle. Physiol. Ent. 13:239241.Google Scholar
Tanaka, S. and Zhu, D.-H.. 2003. Presence of three diapauses in a subtropical cockroach: control mechanisms and adaptive significance. Physiol. Ent. 28:323330.Google Scholar
Tanaka, S., Yukuhiro, F., Yasui, H., Fukay, M., Akino, T., and Wakamura, S.. 2008. Presence of larval and adult diapauses in a subtropical scarab beetle: graded thermal response for synchronized sexual maturation and reproduction. Physiol. Ent. 33:334345.Google Scholar
Tanaka, S., Sakamoto, H., Hata, T., and Sugahara, R.. 2018. Hatching synchrony is controlled by a two-step mechanism in the migratory locust Locusta migratoria (Acrididae: Orthoptera): roles of vibrational stimuli. J. Insect Physiol. 107:125135.Google Scholar
Tanaka, S.I., Imai, C., and Numata, H.. 2002. Ecological significance of adult summer diapause after nymphal winter diapause in Poecilocoris lewisi (Distant)(Heteroptera: Scutelleridae). Appl. Entomol. Zool. 37:469475.Google Scholar
Tani, N., Kamada, G., Ochiai, K., Isobe, M., Suwan, S., and Kai, H.. 2001. Carbohydrate moiety of time-interval measuring enzyme regulates time measurement through its interaction with time-holding peptide PIN. J. Biochem. 129:221227.Google Scholar
Tanigawa, N.A., Shiga, S., and Numata, H.. 1999. Role of the corpus allatum in the control of reproductive diapause in the male blow fly, Protophormia terraenovae. Zool. Sci. 16:639644.Google Scholar
Tanigawa, N., Matsumoto, K., Yasuyama, K., Numata, H., and Shiga, S.. 2009. Early embryonic development and diapause stage in the band-legged ground cricket Dianemobius nigrofasciatus. Dev. Genes Evol. 219:589596.Google Scholar
Taniguchi, N. and Tomioka, K.. 2003. Duration of development and number of nymphal instars are differentially regulated by photoperiod in the cricket Modicogryllus siamensis (Orthoptera: Gryllidae). Eur. J. Ent. 100:275281.Google Scholar
Tanzubil, P.B., Mensah, G.W.K., and McCaffery, A.R.. 2002. Dry season survival, diapause duration and timing of diapause termination in the millet stem borer, Coniesta ignefusalis (Hampson) (Lepidoptera: Pyralidae) in northern Ghana. Int’l J. Pest Managment 48:3337.Google Scholar
Tarazona, E., Lucas-Liedó, J.I., Carmona, M.J., and García-Roger, E.M.. 2020. Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes. Sci. Rep. 10:21366.Google Scholar
Tarrant, A.M., Baumgartner, M.F., Verslycke, T., and Johnson, C.L.. 2008. Differential gene expression in diapausing and active Calanus finmarchicus (Copepoda). Mar. Ecol. Prog. Ser. 355:193207.Google Scholar
Tatar, M. and Yin, C.-M.. 2001. Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp. Gerontol. 36:723738.Google Scholar
Tatar, M., Chien, S.A., and Priest, N.K.. 2001. Negligible senescence during reproductive dormancy in Drosophila melanogaster. Am. Nat. 158:248258.Google Scholar
Tatun, N., Singtripop, T., and Sakurai, S.. 2008. Dual control of midgut trehalase activity by 20-hydroxyecdysone and an inhibitory factor in the bamboo borer Omphisa fuscidentalis Hampson. J. Insect Physiol. 54:351357.Google Scholar
Tauber, C.A., Tauber, M.J., and Nechols, J.R.. 1977. Two genes control seasonal isolation in sibling species. Science 197:592593.Google Scholar
Tauber, E., Zordan, M., Sandrelli, F., Pegoraro, M., Osterwalder, N., Breda, C., Daga, A., Selmin, A., Monger, K., Benna, C., Rosata, E., Kyriacou, C.P., and Costa, R.. 2007. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316:18951898.Google Scholar
Tauber, M.J. and Tauber, C.A.. 1970a. Adult diapause in Chrysopa carnea: stages sensitive to photoperiodic induction. J. Insect Physiol. 16:20752080.Google Scholar
Tauber, M.J. and Tauber, C.A.. 1970b. Photoperiodic induction and termination of diapause in an insect: response to changing daylength. Science 167:170.Google Scholar
Tauber, M.J., Tauber, C.A., and Denys, C.J.. 1970. Adult diapause in Chrysopa carnea: photoperiodic control of duration and colour. J. Insect Physiol. 16:949955.Google Scholar
Tauber, M.J. and Tauber, C.A.. 1973. Natural daylengths regulate insect seasonality by two mechanisms. Nature 258:711712.Google Scholar
Tauber, M.J. and Tauber, C.A.. 1976. Insect seasonality – diapause maintenance, termination, and postdiapause development. Ann. Rev. Ent. 21:81107.Google Scholar
Tauber, M.J. and Tauber, C.A.. 1981. Insect seasonal cycles: genetics and evolution. Ann. Rev. Ecol. Syst. 12:281308.Google Scholar
Tauber, M.J., Tauber, C.A., and Masaki, S.. 1986. Seasonal Adaptations of Insects. Oxford: Oxford University Press.Google Scholar
Tauber, M.J., Tauber, C.A., Obrycki, J.J., Gollands, B., and Wright, R.J.. 1988. Voltinism and the induction of aestival diapause in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Ann. Ent. Soc. Amer. 81:748754.Google Scholar
Tauber, M.J., Tauber, C.A., and Gardescu, S.. 1993. Prolonged storage of Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Ent. 22:843848.Google Scholar
Tauber, M.J., Albuquerque, G.S., and Tauber, C.A.. 1997. Storage of nondiapausing Chrysoperla externa adults: influence on survival and reproduction. Biol. Cont. 10:6972.Google Scholar
Tauber, M.J. and Tauber, C.A.. 2002. Prolonged dormancy in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): a ten-year field study with implications for crop rotation. Environ. Ent. 31:499504.Google Scholar
Tawfik, A.I., Tanaka, Y., and Tanaka, S.. 2002a. Possible involvement of ecdysteroids in photoperiodically induced suppression of ovarian development in a Japanese strain of the migratory locust, Locusta migratoria. J. Insect Physiol. 48:411418.Google Scholar
Tawfik, A.I., Tanaka, Y., and Tanaka, S.. 2002b. Possible involvement of ecdysteroids in embryonic diapause of Locusta migratoria. J. Insect Physiol. 48:743749.Google Scholar
Tazima, Y. 1964. The Genetics of the Silkworm. London: Logos Press.Google Scholar
Teder, T., Esperk, T., Remmel, T., Sang, A., and Tammaru, T.. 2010. Counterintuitive size patterns in bivoltine moths: late-season larvae grow larger despite lower food quality. Oecologia 162:117125.Google Scholar
Teets, N.M., Peyton, J.T., Colinet, H., Renault, D., Kelley, J., Kawarasaki, Y., Lee, R.E., and Denlinger, D.L.. 2012. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Proc. Nat’l. Acad. Sci., USA 109:2074420749.Google Scholar
Teets, N.M. and Denlinger, D.L.. 2013. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Ent. 38:105116.Google Scholar
Teixeira, L.A.F. and Polavarapu, S.. 2005. Diapause development in the blueberry maggot Rhagoletis mendax (Diptera: Tephritidae). Environ. Ent. 34:4753.Google Scholar
Terao, M., Hirose, Y., and Shintani, Y.. 2012. Effects of temperature and photoperiod on termination of pseudopupal diapause in the bean blister beetle, Epicauta gorhami. J. Insect Physiol. 58:737742.Google Scholar
Terblanche, J.S., Marais, E., Hetz, S.K., and Chown, S.L.. 2008. Control of discontinuous gas exchange in Samia cynthia: effects of atmospheric oxygen, carbon dioxide and moisture. J. Exp. Biol. 211:32723280.Google Scholar
Ti, X., Tuzuki, N., Tani, N., Morigami, E., Isobe, M., and Kai, H.. 2004. Demarcation of diapause development by cold and its relations to time-interval activation of TIME-ATPase in eggs of the silkworm, Bombyx mori. J. Insect Physiol. 50:10531064.Google Scholar
Tian, K. and Xu, W.-H.. 2013. High expression of PP2A-Aa is associated with diapause induction during the photoperiod-sensitive stage of the cotton bollworm Helicoverpa armigera. J. Insect Physiol. 59:588594.Google Scholar
Tikkanen, O.-P. and Lyytikäinen-Saarenmaa, P.. 2002. Adaptation of a generalist moth, Operophtera brumata, to variable budburst phenology of host plants. Ent. Exp. Appl. 103:123133.Google Scholar
Tobin, P.C., Nagarkatti, S., Loeb, G., and Saunders, M.C.. 2008. Historical and projected interaction between climate change and insect voltinism in a multivoltine species. Global Change Biol. 14:951957.Google Scholar
Toepfer, S., Gu, H., and Dorn, S.. 2000. Selection of hibernation sites by Anthonomus pomorum: preferences and ecological consequences. Ent. Exp. Appl. 95:241249.Google Scholar
Toepfer, S., Gu, H., and Dorn, S.. 2002. Phenological analysis of spring colonization of apple trees by Anthonomus pomorum. Ent. Exp. Appl. 103:151159.Google Scholar
Togashi, K. 2014. Effects of larval food shortage on diapause induction and adult traits in Taiwanese Monochamus alternatus alternatus. Ent. Exp. Appl. 151:3442.Google Scholar
Tojo, S., Nagase, Y., and Filippi, L.. 2005. Reduction of respiration rates by forming aggregations in diapausing adults of the shield bug, Parastrachia japonensis. J. Insect Physiol. 51:10751082.Google Scholar
Tomioka, K., Agui, N., and Bollenbacher, W.E.. 1995. Electrical properties of the cerebral prothoracicotropic hormone cells in diapausing and non-diapausing pupae of the tobacco hornworm, Manduca sexta. Zool. Sci. 12:165173.Google Scholar
Toni, L.S. and Padilla, P.A.. 2016. Developmentally arrested Austrofundulus limnaeus embryos have changes in post-translational modifications of histone H3. J. Exp. Biol. 219:544552.Google Scholar
Toprak, U. 2020. The role of peptide hormones in insect lipid metabolism. Front. Physiol. 11:434.Google Scholar
Torson, A.S., Yocum, G.D., Rinehart, J.P., Kemp, W.P., and Bowsher, J.H.. 2015. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata. J. Exp. Biol. 218:10601068.Google Scholar
Tougeron, K., Hraoui, G., Le Lann, C., van Baaren, J., and Brodeur, J.. 2018. Intraspecific maternal competition induces summer diapause in insect parasitoids. Insect Sci. 25:10801088.Google Scholar
Tougeron, K., Brodeur, J., van Baaren, J., Renault, D., and Le Lann, C.. 2019. Sex makes them sleepy: host reproductive status induces diapause in a parasitoid population experiencing harsh winters. bioRxiv 371385, ver 6 recommended by PCI Ecology. doi: 10.1101/37138.Google Scholar
Tougeron, K., Devogel, M, van Baaren, J, Le Lann, C, and Hance, T. 2020. Trans-generational effects on diapause and life-history-traits of an aphid parasitoid. J. Insect Physiol. 121:104001.Google Scholar
Toxopeus, J., Jakobs, R., Ferguson, L.V., Gariepy, T.D., and Sinclair, B.J.. 2016. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. J. Insect Physiol. 89:3751.Google Scholar
Toxopeus, J. and Sinclair, B.J.. 2018. Mechanisms underlying insect freeze tolerance. Biol. Rev. 93:18911914.Google Scholar
Tschinkel, W.R. 1993. Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol. Monogr. 63:425457.Google Scholar
Tsuchiya, R., Kaneshima, A., Kobayashi, M., Yamazaki, M., Takasu, Y., Sezutsu, H., Tanaka, Y., Mizoguchi, A., and Shiomi, K.. 2021. Maternal GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of the silkworm Bombyx mori. Proc. Nat’l. Acad. Sci., USA 118:e2020028118.Google Scholar
Tsumuki, H. and Kanehisa, K.. 1980. Changes in enzyme activities related to glycerol synthesis in hibernating larvae of the rice stem borer Chilo suppressalis. Appl. Ent. Zool. 15:285292.Google Scholar
Tsunoda, T., Chaves, L.F., Nguyen, G.T.T., Nguyen, Y.T., and Takagi, M.. 2015. Winter activity and diapause of Aedes albopictus (Diptera: Culicidae) in Hanoi, North Vietnam. J. Med. Ent. 52:12031212.Google Scholar
Tsurumaki, J., Ishiguro, J., Yamanaka, A., and Endo, K.. 1999. Effects of photoperiod and temperature on seasonal morph development and diapause egg oviposition in a bivoltine race (Diazo) of the silkmoth, Bombyx mori (L.). J. Insect Physiol. 45:101106.Google Scholar
Tsurumaru, S., Kawamori, A., Mitsumasu, K., Niimi, T., Imai, K., Yamashita, O., and Yaginuma, T.. 2010. Disappearance of chorion proteins from Bombyx mori eggs treated with HCl solution to prevent diapause. J. Insect Physiol. 56:17211727.Google Scholar
Tu, M.-P., Yin, C.-M., and Tatar, M.. 2002. Impaired ovarian ecdysone synthesis of Drosophila melanogaster insulin receptor mutants. Aging Cell 1:158160.Google Scholar
Tu, M.-P., Yin, C.-M., and Tatar, M.. 2005. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen. Comp. Endocrin. 142:347356.Google Scholar
Tu, X., Wang, J., Hao, K., Whitman, D.W., Fan, Y., Cao, G., and Zhang, Z.. 2015. Transcriptomic and proteomic analysis of pre-diapause and nondiapause eggs of migratory locust, Locusta migratoria L. (Orthoptera: Acridoidea). Sci. Rep. 5:11402.St.Google Scholar
Tungjitwitayakul, J., Singtripop, T., Nettagul, A., Oda, Y., Tatun, N., Sekimoto, T., and Sakurai, S.. 2008. Identification, characterization, and developmental regulation of two storage proteins in the bamboo borer Omphis fuscidentalis. J. Insect Phyisol. 54:6276.Google Scholar
Turnock, W.J. and Fields, P.G.. 2005. Winter climates and cold hardiness in terrestrial insects. Eur. J. Ent. 102:561576.Google Scholar
Tyukmaeva, V., Lankinen, P., Kinnunen, J., Kauranen, H., and Hoikkala, A.. 2020. Latitudinal clines in timing and temperature-sensitivity of photoperiodic reproductive diapause in Drosophila montana. Ecography 43:111.Google Scholar
Tyukmaeva, V.I., Salminen, T.S., Kankare, M., Knott, K.E., and Hoikkala, A.. 2011. Adaptation to a seasonally varying environment: a strong latitudinal cline in reproductive diapause combined with high gene flow in Drosophila montana. Ecol. Evol. 1:160168.Google Scholar
Tyukmaeva, V.I., Veltsos, P., Slate, J., Gregson, E., Kauranen, H., Kankare, M., Ritchie, M.G., Butlin, R.K., and Hoikkala, A.. 2015. Localization of quantitative trait loci for diapause and other photoperiodically regulated life history traits important in adaptation to seasonally varying environments. Mol. Ecol. 24:28092819.Google Scholar
Uehara, H., Senoh, Y., Yoneda, K., Kato, Y., and Shiomi, K.. 2011. An FXPRL neuropeptide induces seasonal reproductive polyphenism underlying a life-history tradeoff in the tussock moth. PLoS One 6(8):e24213.Google Scholar
Uno, T., Nakasuji, A., Shimoda, M., and Aizono, Y.. 2004. Expression of cytochrome c oxidase subunit I gene in the brain at any early stage in the termination of pupal diapause in the sweet potato hornworm, Agrius convolvuli. J. Insect Physiol. 50:3542.Google Scholar
Urbanová, V., Bazalová, O., Vanečková, H., and Doležel, D.. 2016. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 70:184190.Google Scholar
Urbanski, J.M., Aruda, A., and Armbruster, P.. 2010a. A transcriptional element of the diapause program in the Asian tiger mosquito, Aedes albopictus, identified by suppressive subtractive hybridization. J. Insect Physiol. 56:11471154.Google Scholar
Urbanski, J.M., Benoit, J.B., Michaud, M.R., Denlinger, D.L., and Armbruster, P.. 2010b. The molecular physiology of increased egg desiccation resistance during diapause in the invasive mosquito, Aedes albopictus. Proc. Roy. Soc. B 277:26832692.Google Scholar
Urbanski, J.M., Mogi, M., O’Donnell, D., DeCotiis, M., Toma, T., and Armbruster, P.. 2012. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am. Nat. 179:490500.Google Scholar
Urquhart, F.A. and Urquhart, N.R.. 1976. The overwintering site of the eastern population of the monarch butterfly (Danaus p. plexippus; Danaidae) in southern Mexico. J. Lep. Soc. 30:153158.Google Scholar
Uryu, M., Ninomiya, Y., Yokoi, T., Tsuzuki, S., and Hayakawa, Y.. 2003. Enhanced expression of genes in the brains of larvae of Mamestra brassicae (Lepidoptera; Noctuidae) exposed to short daylengths or fed Dopa. Eur. J. Ent. 100:245250.Google Scholar
Ushatinskaya, R.S. 1976a. Insect dormancy and classification. Zool. Jb. Syst. 103:7697.Google Scholar
Ushatinskaya, R.S. 1976b. Prolonged diapause in Colorado beetle and conditions of its formation. In Ecology and Physiology of Diapause in the Colorado Beetle, ed. Arnoldi, K.V., New Dehli: Indian National Scientific Documentation Centre, (translation from Russian), pp. 168200.Google Scholar
Ushatinskaya, R.S. 1984. A critical review of the superdiapause in insects. Ann. Zool. 21:330.Google Scholar
Usua, E.J. 1970. Diapause in the maize stemborer. J. Econ. Ent. 63:16051610.Google Scholar
Uzelac, I., Avramov, M., Celić, T., Vukašinović, E., Gošić-Dondo, S., Purać, J., Kojić, D., Blagojević, D., and Popović, Z.D.. 2020. Effect of cold acclimation on selected metabolic enzymes during diapause in the European corn borer Ostrinia nubilalis (Hbn.). Sci. Rep. 10:9085.Google Scholar
Vanatoa, A., Kuusik, A., Tartes, U., Metspalu, L., and Hiiesaar, K.. 2006. Respiration rhythms and heartbeats of diapausing Colorado potato beetles, Leptinotarsa decemlineata, at low temperatures. Ent. Exp. Appl. 118:2131.Google Scholar
Varpe, Ø. and Ejsmond, M.J.. 2018. Trade-offs between storage and survival affect diapause timing in capital breeders. Evol. Ecol. 32:623641.Google Scholar
Vaz Nunes, M. and Veerman, A.. 1982. Photoperiodic time measurement in the spider mite Tetranychus urticae: a novel concept. J. Insect Physiol. 28:10411053.Google Scholar
Vaz Nunes, M. and Hardie, J.. 1993. Circadian rhythmicity is involved in photoperiodic time measurement in the aphid Megoura viciae. Cell. Mol. Life Sci. 49:711713.Google Scholar
Vaz Nunes, M. and Saunders, D.S.. 1999. Photoperiodic time measurement in insects: a review of clock models. J. Biol. Rhyth. 14:84104.Google Scholar
Vaze, K.M. and Helfrich-Förster, C.. 2016. Drosophila ezoana uses an hour-glass or highly damped circadian clock for measuring night length and inducing diapause. Physiol. Ent. 41:378389.Google Scholar
Veerman, A. 1985. Diapause. In Spider Mites: Their Biology, Natural Enemies and Control, ed. Helle, W. and Sabelis, M.W., Vol. 1A, Amsterdam: Elsevier, pp. 279316.Google Scholar
Veerman, A. 2001. Photoperiodic time measurement in insects and mites: a critical evaluation of the oscillator-clock hypothesis. J. Insect Physiol. 47:10971109.Google Scholar
Veerman, A., Overmeer, W.P.J., Alderliest, M.F.J, and Veenendaal, R.L.. 1985. Photoperiodic induction of diapause in an insect is vitamin A dependent. Experientia 41:11941195.Google Scholar
Veerman, A. and Veenendaal, R.L.. 2003. Experimental evidence for a non-clock role of the circadian system in spider mite photoperiodism. J. Insect Physiol. 49:727732.Google Scholar
Ventura Garcia, P., Wajnberg, E., Pizzol, J., and Oliveira, M.L.M.. 2002. Diapause in the egg parasitoid Trichogramma cordubensis: role of temperature. J. Insect Physiol. 48:349355.Google Scholar
Vermeulen, A., Engels, S., Engqvist, L., and Sauer, K.P.. 2009. Phenotypic plasticity in sperm traits in scorpionflies (Mecoptera: Panorpidae): Consequences of larval history and seasonality on sperm length and sperm transfer. Eur. J. Ent. 106:347352.Google Scholar
Vermunt, A.M.W., Koopmanschap, A.B., Vlak, J.M., and de Kort, C.A.D.. 1999. Expression of the juvenile hormone esterase gene in the Colorado potato beetle, Leptinotarsa decemlineata: photoperiodic and juvenile hormone analog response. J. Insect Physiol. 45:135142.Google Scholar
Verspagen, N., Ikonen, S., Saastamoinen, M., and van Bergen, E.. 2020. Multidimensional plasticity in the Glanville fritillary butterfly: larval performance is temperature, host and family specific. Proc. R. Soc. B 287:20202577.Google Scholar
Vesala, L., Salminen, T.S., Kankare, M., and Hoikkala, A.. 2012a. Photoperiodic regulation of cold tolerance and expression levels of regucalcin gene in Drosophila montana. J. Insect Physiol. 58:704709.Google Scholar
Vesala, L., Salminen, T.S., Koštál, V., Zahradníčková, H., and Hoikkala, A.. 2012b. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosohilid fly. J. Exp. Biol. 215:28912897.Google Scholar
Vinogradova, E.B. 1974. The pattern of reactivation of diapausing larvae in the blowfly, Calliphora vicina. J. Insect Physiol. 20:24872496.Google Scholar
Vinogradova, E.B. 2000. Culex pipiens pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control. Sofia: Pensoft.Google Scholar
Vinogradova, E.B. and Zinovjeva, K.B.. 1972. Maternal induction of larval diapause in the blowfly, Calliphora vicina. J. Insect Physiol. 18:24012409.Google Scholar
Vinogradova, E.B. and Reznik, S.Ya.. 2013. Induction of larval diapause in the blowfly, Calliphora vicina R.D. (Diptera, Calliphoridae) under field and laboratory conditions. Ent. Rev. 93:935941.Google Scholar
Vinogradova, E.B. and Reznik, S.Ya.. 2015. Photothermal control of larval diapause in the blowfly, Calliphora vicina R.D. (Diptera, Calliphoridae) from the Lofoten Islands (Northern Norway). Ent. Rev. 95:296304.Google Scholar
Visser, B., Williams, C.M., Hahn, D.A., Short, C.A., and López-Martinez, G.. 2018. Hormetic benefits of prior anoxia exposure in buffering anoxia stress in a soil-pupating insect. J. Exp. Biol. 221:jeb167825.Google Scholar
Voinovich, N.D., Vaghina, N.P., and Reznik, S.Y.. 2013. Comparative analysis of maternal and grand-mother photoperiodic responses of Trichogramma species (Hymenoptera: Trichogrammatidae). Eur. J. Ent. 110:451460.Google Scholar
Voinovich, N.D. and Reznik, S.Y.. 2017. On the factors inducing the inhibition of diapause in progeny of diapause females of Trichogramma telengai. Physiol. Ent. 42:274281.Google Scholar
Voinovich, N.D. and Reznik, S.Y.. 2020. Grandmaternal temperature effect on diapause induction in Trichogramma telengai (Hymenoptera: Trichogrammatidae). J. Insect Physiol. 124:104072.Google Scholar
Vu, H.M., Pennoyer, J.E., Ruiz, K.R., Portmann, P., and Duman, J.G.. 2019. Beetle, Dendroides canadensis, antifreeze proteins increased high temperature survivorship in transgenic fruit flies, Drosophila melanogaster. J. Insect Physiol. 112:6872.Google Scholar
Vuillaume, M. and Berkaloff, A.. 1974. LSD treatment of Pieris brassicae and consequences on the progeny. Nature 251:314315.Google Scholar
Vukašinović, E., Pond, D.W., Grubor-Lajšić, G., Worland, M.R., Kojić, D., Purać, J., Popović, Z.D., and Blagojević, D.P.. 2017. Temperature adaptation of lipids in diapausing Ostrinia nubilalis: an experimental study to distinguish environmental versus endogenous controls. J. Comp. Physiol. B 188:2736.Google Scholar
Waddington, C.H. 1952. The Epigenetics of Birds, Cambridge: Cambridge University Press.Google Scholar
Wade, F.A. and Leather, S.R.. 2002. Overwintering of the sycamore aphid, Drepanosiphum platanoidis. Ent. Exp. Appl. 104:241253.Google Scholar
Wadsworth, C.B., Woods, W.A., Hahn, D.A., and Dopman, E.B.. 2013. One phase of the dormancy developmental pathway is critical for the evolution of insect seasonality. J. Evol. Biol. 26:23592368.Google Scholar
Wadsworth, C.B. and Dopman, E.B.. 2015. Transcriptome profiling reveals mechanisms for the evolution of insect seasonality. J. Exp. Biol. 218:36113622.Google Scholar
Wadsworth, C.B., Okada, Y., and Dopman, E.B.. 2020. Phenology-dependent cold exposure and thermal performance of Ostrinia nubilalis ecotypes. BMC Evol. Biol. 20:34.Google Scholar
Wagner, D., Doak, P., Sformo, T., Steiner, P.M., and Carlson, B.. 2012. Overwintering physiology and microhabitat use of Phyllocnistis populiella (Lepidoptera: Gracilliariidae) in interior Alaska. Environ. Ent. 41:180187.Google Scholar
Waldbauer, G.P. 1978. Phenological adaptation and the polymodal emergence patterns of insects. In Evolution of Insect Migration and Diapause, ed. Dingle, H., New York: Springer-Verlag, pp. 127144.Google Scholar
Waldbauer, G. 1996. Insects through the Seasons. Cambridge: Harvard University Press.Google Scholar
Waldbauer, G., Sternburg, J.G., and Wilson, G.R.. 1978. The effect of injections of β-ecdysterone on the bimodal emergence of Hyalophora cecropia. J. Insect Physiol. 24:623628.Google Scholar
Waldbauer, G. and Sternburg, J.S.. 1986. The bimodal emergence of adult Hyalophora cecropia: conditions required for initiation of development by second mode pupae. Ent. Exp. Appl. 41:315317.Google Scholar
Walker, T.J. 1980. Mixed oviposition in individual females of Gryllus firmus: graded proportions of fast-developing and diapause eggs. Oecologia 47:291298.Google Scholar
Wallingford, A.K. and Loeb, G.M.. 2016. Developmental acclimation of Drosophila suzukii (Diptera: Drosophilidae) and its effect on diapause and winter stress tolerance. Eviron. Ent. 45:10811089.Google Scholar
Walsh, B.D. 1867. The apple-worm and the apple-maggot. Am. J. Hortic. 2:338343.Google Scholar
Waltrick, D., Awruch, C., and Simpfendorfer, C.. 2012. Embryonic diapause in the elasmobranchs. Rev. Fish Biol. Fisheries 22:849859.Google Scholar
Wang, F., Gong, H., and Qin, J.. 1999. Termination of pupal diapause in the bollworm Helicoverpa armigera by an imidazole derivative KK-42. Ent. Exp. Appl. 93:331333.Google Scholar
Wang, J. and Kim, S.K.. 2003. Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130:16211634.Google Scholar
Wang, J., Fan, H., Wang, P., and Liu, Y.-H.. 2019a. Expression analysis reveals the association of several genes with pupal diapause in Bactrocera minax (Diptera: Tephritidae). Insects 10:169.Google Scholar
Wang, J., Ran, L.-L., Li, Y., and Liu, Y.-H.. 2020. Comparative proteomics provides insights into diapause program of Bactrocera minax (Diptera: Tephritidae). PLoS One 15:e0244493.Google Scholar
Wang, J.D. and Levin, P.A.. 2009. Metabolism, cell growth and the bacterial cell cycle. Nature Rev. Microbiol. 7:822827.Google Scholar
Wang, M.C., O’Rourke, E.J., and Ruvkun, G.. 2008. Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957960.Google Scholar
Wang, Q., Mohamed, A.A.M., and Takeda, M.. 2013. Serotonin receptor B may lock the gate of PTTH release/synthesis in the Chinese silk moth, Antheraea pernyi; a diapause initiation/maintenance mechanism? PLoS One 8:e79381.Google Scholar
Wang, Q., Egi, Y., Takeda, M., Oishi, K., and Sakamoto, K.. 2015a. Melatonin pathway transmits information to terminate pupal diapause in the Chinese oak silkmoth Antheraea pernyi and through reciprocated inhibition of dopamine pathway functions as a photoperiodic counter. Ent. Sci. 18:7484.Google Scholar
Wang, Q., Hanatani, I., Takeda, M., Oishi, K., and Sakamoto, K.. 2015b. D2-like dopamine receptors mediate regulation of pupal diapause in Chinese oak silkmoth Antheraea pernyi. Ent. Sci. 18:193198.Google Scholar
Wang, T., Geng, S.-L., Guan, Y.-M., and Xu, W.-H.. 2018. Deacetylation of metabolic enzymes by Sirt2 modulates pyruvate homeostasis to extend insect lifespan. Aging 10:10531072.Google Scholar
Wang, X., Fan, J., Zhou, M., Gao, G., Wei, L., and Kang, L.. 2021. Interactive effect of photoperiod and temperature on the inductionand termination of embryonic diapause in the migratory locust. Pest Manag. Sci. 77:28542862.Google Scholar
Wang, X.-P., Xue, F.-S., Ge, F., Zhou, C.-A., and You, L.-S.. 2004. Effects of thermoperiods on diapause induction in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). Physiol. Ent. 29:419425.Google Scholar
Wang, X.-P., Xue, F.-S., Hua, A., and Ge, F.. 2006a. Effects of diapause duration on future reproduction in the cabbage beetle, Colaphellus bowringi: positive or negative? Physiol. Ent. 31:190196.Google Scholar
Wang, X.-P., Ge, F., and Xue, F.-S.. 2006b. Host plant mediation of diapause induction in the cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae). Insect Sci. 13:189193.Google Scholar
Wang, X.-P., Xue, F.-S., Tan, Y.-Q., and Lei, C.-L.. 2007a. The role of temperature and photoperiod in diapause induction in the brassica leaf beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). Eur. J. Ent. 104:693697.Google Scholar
Wang, X.-P., Xue, F.-S., Zhou, X.-M., and Lei, C.-L.. 2007b. Thermoperiodic response and effect of photoperiod on thermoperiodic induction of diapause in Colaphellus bowringi. Ent. Exp. Appl. 124:299304.Google Scholar
Wang, X.-P., Yang, Q.-S., Zhou, X.-M., Xu, S., and Lei, C.-L.. 2009. Effects of photoperiod and temperature on diapause induction and termination in the swallowtail, Sericinus montelus. Physiol. Ent. 34:158162.Google Scholar
Wang, Z., Chen, Y., Diaz, R., and Laine, R.A.. 2019b. Physiology of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana), associated with seasonally altered cold tolerance. J. Insect Physiol. 112:18.Google Scholar
Wasserthal, L.T. 1996. Interaction of circulation and tracheal ventilation in holometabolous insects. Adv. Insect Physiol. 26:297351.Google Scholar
Wassielewski, O., Wojciechowicz, T., Giejdasz, K., and Krishnan, N.. 2011. Influence of methoprene and temperature on diapause termination in adult females of the over-wintering solitary bee, Osmia rufa L. J. Insect Physiol. 57:16821688.Google Scholar
Watanabe, K., Hull, J.J., Niimi, T., Imai, K., Matsumoto, S., Yaginuma, T., and Kataoka, H.. 2007. FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori. Mol. Cell. Endocrin. 273:5158.Google Scholar
Watanabe, M. and Tanaka, K.. 1998. Adult diapause and cold hardiness in Aulacophora nigripennis (Coleoptera: Chrysomelidae). J. Insect Physiol. 44:11031110.Google Scholar
Watari, Y. 2005. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the change in rhythmicity. J. Insect Physiol. 51:1116.Google Scholar
Webb, M.-L. and Denlinger, D.L.. 1998. GABA and picrotoxin alter expression of a maternal effect that influences pupal diapause in the flesh fly, Sarcophaga bullata. Physiol. Ent. 23:184191.Google Scholar
Weed, A.S., Elkinton, J.S., and Lany, N.K.. 2016. Density-dependent recruitment and diapause in the spring-feeding generation of hemlock woolly adelgid (Hemiptera: Adelgidae) in western North America. Environ. Ent. 45:13521359.Google Scholar
Wei, L.-H. and Guo, J.U.. 2020. Coding functions of “noncoding” RNAs. Science 367:10741075.Google Scholar
Wei, X., Xue, F., and Li, A.. 2001. Photoperiodic clock of diapause induction in Pseudopidorus fasciata (Lepidoptera: Zygaenidae). J. Insect Physiol. 47:13671375.Google Scholar
Wei, X.-T., Zhou, Y.-C., Xiao, H.-J., Wang, X.-P., Bao, Z.-M., and Xue, F.-S.. 2010. Relationship between the natural duration of diapause and the post-diapause reproduction in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). Eur. J. Ent. 107:337340.Google Scholar
Wei, Y., Zhang, J., Xu, S., Peng, X., Yan, X., Li, X., Wang, H., Chang, H., and Gao, Y.. 2018. Controllable oxidative stress and tissue specificity in major tissues during the torpor-arousal cyle in hibernating Daurian ground squirrels. Open Biol. 8:180068.Google Scholar
Wei, Z.-J., Zhang, Q.-R., Kang, L., Xu, W.-H., and Denlinger, D.L.. 2005. Molecular characterization and expression of prothoracicotropic hormone during development and pupal diapause in the cotton bollworm, Helicoverpa armigera. J. Insect Physiol. 51:691700.Google Scholar
Wellso, S.G. and Adkisson, P.L.. 1966. A long-day short-day effect in the photoperiodic control of the pupal diapause of the bollworm, Heliothis zea (Boddie). J. Insect Physiol. 12:14551465.Google Scholar
West-Eberhard, M.J. 2003. Developmental Plasticity and Evolution, Oxford: Oxford University Press.Google Scholar
Westby, K.M. and Medley, K.A.. 2020. Cold nights, city lights: artificial light at night reduces photoperiodically induced diapause in urban and rural populations of Aedes albopictus (Diptera: Culicidae). J. Med. Ent. 57:16941699.Google Scholar
Weyda, F., Pflegerova, J., Staskova, T., Tomala, A., Prenerova, E., Zemek, R., Volter, L., and Kodrik, D.. 2015. Ultrastructural and biochemical comparison of summer active and summer diapausing pupae of the horse chestnut leaf miner, Cameraria ohridella (Lepidoptera: Gracillariidae). Eur. J. Ent. 112:197203.Google Scholar
Wheeler, W.M. 1893. A contribution to insect embryology. J. Morph. 8:141160.Google Scholar
White, W.H. 2008. Utilizing diapause in a sugarcane borer (Lepidoptera: Crambidae) laboratory colony as a cost saving measure. Midsouth Ent. 1:7680.Google Scholar
Whitman, D.W. and Agrawal, A.A.. 2009. What is phenotypic plasticity and why is it important?. In Phenotypic Plasticity in Insects. Mechanisms and Consequences, ed. Whitman, D.W. and Ananthakrishnan, T.N., Einfield: Science Publishers, pp. 1–63.Google Scholar
Whitney, T.D., Philip, B.N., and Harwood, J.D.. 2014. Tradeoff in two winter-active wolf spiders: increased mortality for increased growth. Ent. Exp. Appl. 153:191198.Google Scholar
Wijayaratne, L.K.W. and Fields, P.G.. 2012. Effects of rearing conditions, geographic origin, and selection on larval diapause in the Indianmeal moth, Plodia interpunctella. J. Insect Sci. 12:119.Google Scholar
Wiklund, C., Wickman, P.-O., and Nylin, S.. 1992. A sex difference in the propensity to enter direct/diapause development: a result of selection for protandry. Evolution 46:519528.Google Scholar
Wiklund, C. and Tullberg, B.S.. 2004. Seasonal polyphenism and leaf mimicry in the comma butterfly. Animal Behav. 68:621627.Google Scholar
Wiklund, C., Vallin, A., Friberg, M., and Jakobsson, S.. 2008. Rodent predation on hibernating peacock and small tortoiseshell butterflies. Behav. Ecol. Sociobiol. 62:379389.Google Scholar
Wiklund, C., Stefnecu, C., and Friberg, M.. 2017. Host plant exodus and larval wandering behavior in a butterfly: diapause generation larvae wander for longer periods than do non-diapause generation larvae. Ecol. Ent. 42:531534.Google Scholar
Wiklund, C., Lehmann, P., and Friberg, M.. 2019. Diapause decision in the small tortoiseshell butterfly, Aglais urticae. Ent. Exp. Appl. 167:433441.Google Scholar
Wilches, D.M., Laird, R.A., Floate, K.D., and Fields, P.G.. 2017. Effects of acclimation and diapause on the cold tolerance of Trogoderma granarium. Ent. Exp. Appl. 165:169178.Google Scholar
de Wilde, J. and Bonga, H.. 1958. Observations on threshold intensity and sensitivity of different wavelengths of photoperiodic response in the Colorado beetle (Leptinotarsa decemlineata Say). Ent. Exp. Appl. 1:301307.Google Scholar
de Wilde, J., Duintjer, C.S., and Mook, L.. 1959. Physiology of diapause in the adult Colorado potato beetle (Leptinotarsa decemlineata Say). I. The photoperiod as a controlling factor. J. Insect Physiol. 3:7585.Google Scholar
de Wilde, J. and de Boer, J.A.. 1961. Physiology of diapause in the adult Colorado beetle. II. Diapause as a case of pseudoallatectomy. J. Insect Physiol. 6:152161.Google Scholar
de Wilde, J., Bongers, W., and Schooneveld, H.. 1969. Effects of hostplant age on phytophagous insects. Ent. Exp. Appl. 12:714720.Google Scholar
Williams, C.M. 1946. Physiology of insect diapause: the role of the brain in the production and termination of pupal dormancy in the giant silkworm Platysamia cecropia. Biol. Bull. 90:234243.Google Scholar
Williams, C.M. 1952. Physiology of insect diapause. IV. The brain and prothoracic glands as an endocrine system in the cecropia silkworm. Biol. Bull. 103:120138.Google Scholar
Williams, C.M. 1969. Photoperiodism and the endocrine aspects of insect diapause. Symp. Soc. Exp. Biol. 23:285300.Google Scholar
Williams, C.M. and Adkisson, P.L.. 1964. Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm Antheraea pernyi. Biol. Bull. 127:511525.Google Scholar
Williams, C.M., Adkisson, P.L., and Walcott, C.. 1965. Physiology of insect diapause. XV. The transmission of photoperiod signals to the brain of the oak silkworm, Antheraea pernyi. Biol. Bull. 128:497507.Google Scholar
Williams, C.M., Marshall, K.E., MacMillan, H.A., Dzurisin, J.D.K., Hellmann, J.J., and Sinclair, B.J.. 2012. Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. PLoS One 7:e34470.Google Scholar
Williams, C.M., Henry, H.A.L., and Sinclair, B.J.. 2015. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90:214235.Google Scholar
Williams, D.R., Epperson, L.E., Li, W., Hughes, M.A., Taylor, R., Rogers, J., Martin, S.L., Cossins, A.R., and Gracey, A.Y.. 2005. Seasonally hibernating phenotype assessed through transcript screening. Physiol. Genomics 24:1322.Google Scholar
Williams, K.D., Busto, M., Suster, M.L., So, A.K.-C., Ben-Shahar, Y., Leevers, S.J., and Sokolowski, M.B.. 2006. Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proc. Nat’l. Acad. Sci., USA 103:1591115915.Google Scholar
Wilson, R.L. and Abel, C.A.. 1996. Storage conditions for maintaining Osmia cornifrons (Hymenoptera: Megachilidae) for use in germplasm pollination. J. Kansas Ent. Soc. 69:270272.Google Scholar
Win, A.T. and Ishikawa, Y.. 2015. Effects of diapause on post-diapause reproductive investment in the moth Ostrinia scapulalis. Ent. Exp. Appl. 157:346353.Google Scholar
Winder, D., Gunzburg, W.H., Erfle, V., and Salmons, B.. 1998. Expression of antimicrobial peptides has an antitumor effect in human cells. Biochem. Biophys. Res. Com. 242:608612.Google Scholar
Winston, M. 1987. The Biology of the Honey Bee, Cambridge: Harvard University Press.Google Scholar
Wipking, W. 1988. Repeated larval diapause and diapause-free development in geographic strains of the burnet moth Zygaena trifolii Esp. (Insecta, Lepidoptera). Oecologia 77:557564.Google Scholar
Wipking, W., Viebahn, M., and Neumann, D.. 1995. Oxygen consumption, water, lipid and glycogen content of early and late diapause and non-diapause larvae of the burnet moth Zygaena trifolii. J. Insect Physiol. 41:4756.Google Scholar
Wipking, W. and Kurtz, J.. 2000. Genetic variability in the diapause response of the burnet moth Zygaena trifolii (Lepidoptera: Zygaenidae). J. Insect Physiol. 46:127134.Google Scholar
Wobschall, A. and Hetz, S.K.. 2004. Oxygen uptake by convection and diffusion in diapausing moth pupae (Attacus atlas). Animals Environ. 1275:157164.Google Scholar
Wolda, H. 1978. Fluctuations in abundance of tropical insects. Am. Nat. 112:10171045.Google Scholar
Wolda, H. 1988. Insect seasonality: Why? Ann. Rev. Ecol. Syst. 19:118.Google Scholar
Wolda, H. and Denlinger, D.L.. 1984. Diapause in a large aggregation of a tropical beetle. Ecol. Ent. 9:217230.Google Scholar
Woll, S.C. and Podrabsky, J.E.. 2017. Insulin-like growth factor signaling regulates developmental trajectory associated with diapause in embryos of the annual killifish Austrofundulus limnaeus. J. Exp. Biol. 220:27772786.Google Scholar
Wolschin, F. and Gadau, J.. 2009. Deciphering proteomic signatures of early diapause in Nasonia. PLoS One 4:e6394.Google Scholar
Woods, H.A. and Lane, S.J.. 2016. Metabolic recovery from drowning by insect pupae. J. Exp. Biol. 219:31263136.Google Scholar
Wu, S., Kostromytska, O.S., Xue, F., and Koppenhöfer, A.M.. 2017. Chilling effect on termination of reproductive diapause in Listronotus maculicollis (Coleoptera: Curculionidae). J. Insect Physiol. 104:2532.Google Scholar
Wu, S.-B., Wang, M.-Q., and Zhang, G.. 2010. Effects of putrescine on diapause induction and intensity, and post-diapause development of Helicoverpa armigera. Ent. Exp. Appl. 136:199205.Google Scholar
Wu, S.-H., Yang, D., Lai, X.-T., and Xue, F.-S.. 2006. Induction and termination of prepupal summer diapause in Pseudopidorus fasciata (Lepidoptera: Zygaenidae). J. Insect Physiol. 52:10951104.Google Scholar
Wu, T., Chen, Y., Chen, W., Zou, S., Zhang, Y., Lin, Y., and Tang, D.. 2013. Transgenic expression of an insect diapause-specific peptide (DSP) in Arabidopsis resists phytopathogenic fungal attacks. Eur. J. Plant Path. 137:93101.CrossRefGoogle Scholar
Wu, Q. and Brown, M.R.. 2006. Signaling and function of insulin-like peptides in insects. Ann. Rev. Ent. 51:124.Google Scholar
Wylie, H.G. 1980. Factors affecting diapause of Microctonus vittatae (Hymenoptera: Braconidae). Can. Ent. 112:747749.Google Scholar
Xiao, H.-J., Yang, D., and Xue, F.-S.. 2006. Effect of photoperiod on the duration of summer and winter diapause in the cabbage butterfly, Pieris melete (Lepidoptera: Pieridae). Eur. J. Ent. 103:537540.Google Scholar
Xiao, H.-J., Li, F., Wei, X.-T., and Xue, F.-S.. 2008a. A comparison of photoperiodic control of diapause between aestivation and hibernation in the cabbage butterfly Pieris melete. J. Insect Physiol. 54:755764.Google Scholar
Xiao, H.-J., He, H.-M., Li, F., and Xue, F.-S.. 2008b. Influence of pre-diapause temperature on intensity of summer and winter diapause in the cabbage butterfly Pieris melete (Lepidoptera: Pieridae). Eur. J. Ent. 105:607611.Google Scholar
Xiao, H.-J, Mou, F.-C., Zhu, X.-F., and Xue, F.-S.. 2010. Diapause induction, maintenance and termination in the rice stem borer Chilo suppressalis (Walker). J. Insect Physiol. 56:15581564.Google Scholar
Xie, D., Luo, L., Sappington, T.W., Jiang, X., and Zhang, L.. 2012. Comparison of reproductive and flight capacity of Loxostege sticticalis (Lepidoptera: Pyralidae), developing from diapause and non-diapause larvae. Environ. Ent. 41:11991207.Google Scholar
Xinxin, Z., Shuang, Y., Xunming, Z., Shang, W., Juhong, Z., and Jinghui, X.. 2020. TMT-based quantitative proteomic profiling of overwintering Lissorhoptrus oryzophilus. Front. Physiol. 10:1623.Google Scholar
Xu, S., Wang, M.-L., Ding, N., Ma, W.-H., Li, Y.-N., Lei, C.-L., and Wang, X-P.. 2011. Relationship between body weight of overwintering larvae and supercooling capacity; diapause intensity and post-diapause reproductive potential in Chilo suppressalis Walker. J. Insect Physiol. 57:653659.Google Scholar
Xu, W.-H., Sato, Y., Ikeda, M., and Yamashita, O.. 1995. Stage-dependent and temperature controlled expression of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. J. Biol. Chem. 270:38043808.Google Scholar
Xu, W.-H. and Denlinger, D.L.. 2003. Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol. Biol. 12:509516.Google Scholar
Xu, W.-H. and Denlinger, D.L.. 2004. Identification of a cDNA encoding DH, PBAN and other FXPRL neuropeptides from the tobacco hornworm, Manduca sexta, and expression associated with pupal diapause. Peptides 25:10991106.Google Scholar
Xu, W.-H., Lu, Y.-X., and Denlinger, D.L.. 2012. Cross-talk between the fat body and brain regulates insect developmental arrest. Proc. Nat’l. Acad. Sci., USA 109:1468714692.Google Scholar
Xue, F., Kalenborn, H.G., and Wei, H.-Y.. 1997. Summer and winter diapause in pupae of the cabbage butterfly, Pieris melete Menetries. J. Insect Physiol. 43:701707.Google Scholar
Xue, F., Spieth, H.R., Li, A. and Ai, H.. 2002. The role of photoperiod and temperature in determination of summer and winter diapause in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). J. Insect Physiol. 48:279286.Google Scholar
Yagi, S. and Fukaya, M.. 1974. Juvenile hormone as a key factor regulating larval diapause of the rice stem borer Chilo suppressalis (Lepidoptera: Pyralidae). App. Ent. Zool. 9:247255.Google Scholar
Yaginuma, T. and Yamashita, O.. 1999. Oxygen consumption in relation to sorbitol utilization at the termination of diapause in eggs of the silkworm, Bombyx mori. J. Insect Physiol. 45:621627.Google Scholar
Yamada, N. and Mizoguchi, A.. 2017. Endocrine changes during diapause development in the cabbage army moth Mamestra brassicae. Physiol. Ent. 42:239245.Google Scholar
Yamada, N., Kataoka, H., and Mizoguchi, A.. 2017. Myosuppression is involved in the regulation of pupal diapause in the cabbage army moth Mamestra brassicae. Sci. Rep. 7:41651.Google Scholar
Yamaguchi, K. and Nakamura, K.. 2015. Effects of environmental factors on the regulation of egg diapause in the walking-stick insect, Ramulus irregulariterdentatus (Phasmatodea: Phasmatidae). Eur. J. Ent. 111:3540.Google Scholar
Yamaguchi, K. and Goto, S.G.. 2019. Distinct physiological mechanisms induce latitudinal and sexual differences in the photoperiodic induction of diapause in a fly. J. Biol. Rhyth. 34:293306.Google Scholar
Yamamoto, K., Tsujimura, Y., Kometani, M., Kitazawa, C., Islam, A.T.M.F., and Yamanaka, A.. 2011. Diapause pupal color diphenism induced by temperature and humidity conditions in Byasa alcinous (Lepidoptera: Papilionidae). J. Insect Physiol. 57:930934.Google Scholar
Yamamoto, T., Mase, K., and Sawada, H.. 2013. Diapause prevention effect of Bombyx mori by dimethyl sulfoxide. PLoS One 8:64124.Google Scholar
Yamanaka, A., Adachi, M., Imai, H., Uchiyama, T., Inoue, M., Islam, A.T.M.F., Kitazawa, C., and Endo, K.. 2006. Properties of orange-pupa-inducing factor (OPIF) in the swallowtail butterfly, Papilio zuthus L. Peptides 27:534538.Google Scholar
Yamanaka, A., Kometani, M., Yamamoto, K., Tsujimura, Y., Motomura, M., Kitazawa, C., and Endo, K.. 2009. Hormonal control of pupal coloration in the painted lady butterfly Vanessa cardui. J. Insect Physiol. 55:512517.Google Scholar
Yamanaka, N., Rewitz, K.F., and O’Connor, M.B.. 2013a. Ecdysone control of developmental transitions: lessons from Drosophila research. Ann. Rev. Ent. 58:497516.Google Scholar
Yamanaka, N., Romero, N.M., Martin, F.A., Rewitz, K.F., Sun, M., O’Connor, M.B., and Léopold, P.. 2013b. Neuroendocrine control of Drosophila larval light preference. Science 3431:11131116.Google Scholar
Yamashita, O. 1996. Diapause hormone of the silkworm, Bombyx mori: structure, gene expression and function. J. Insect Physiol. 42:669679.Google Scholar
Yamashita, O. and Hasegawa, K.. 1985. Embryonic diapause. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, ed. Kerkut, G.A. and Gilbert, L.I., Vol. 1, Oxford: Pergamon Press, pp. 407434.Google Scholar
Yang, D., Lai, X.-T., Sun, L., and Xue, F.-S.. 2007a. Parental effects: physiological age, mating pattern, and diapause duration on incidence of progeny in the cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae). J. Insect Physiol. 53:900908.Google Scholar
Yang, H., Berry, S., Olsson, T.S.G., Hartley, M., Howard, M., and Dean, C.. 2017a. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 357:11421149.Google Scholar
Yang, H.-Z., Tu, X.-Y., Xia, Q.-W., He, H.-M., Chen, C., and Xue, F.-S.. 2014. Photoperiodism of diapause induction and diapause termination in Ostrinia furnacalis. Ent. Exp. Appl. 153:3446.Google Scholar
Yang, J., Zhu, J., and Xu, W.-H.. 2010. Differential expression, phosphorylation of COX subunit 1 and COX activity during diapause phase in the cotton bollworm, Helicoverpa amigera. J. Insect Physiol. 56:19921998.Google Scholar
Yang, L., Denlinger, D.L., and Piermarini, P.. 2017b. The diapause program impacts renal excretion and molecular expression of aquaporins in the northern house mosquito, Culex pipiens. J. Insect Physiol. 98:141148.Google Scholar
Yang, P., Abe, S., Zhao, Y.-P., An, Y., and Suzuki, K.. 2004. Growth suppression of rat hepatoma cells by a pentapeptide from Antheraea yamamai. J. Insect Biotech. Ser. 73:713.Google Scholar
Yang, P., Abe, S., Sato, Y., Yamashita, T., Matsuda, F., Hamayasu, T., Imai, K., and Suzuki, K.. 2007b. A palmitoyl conjugate of an insect pentapeptide causes growth arrest in mammalian cells and mimics the action of diapause hormone. J. Insect Biotech. Ser. 76:6369.Google Scholar
Yang, P., Tanaka, H., Kuwano, E., and Suzuki, K.. 2008. A novel cytochrome P450 gene (CYP4G25) of the silkmoth Antheraea yamamai: cloning and expression pattern in pharate first instar larvae in relation to diapause. J. Insect Physiol. 54:636643.Google Scholar
Yaro, A.S., Traore, A.I., Huestis, D.L., Adamou, A., Timbine, S., Kassogue, Y., Diallo, M., Dao, A., Traore, S.F., and Lehmann, T.. 2012. Dry season reproductive depression of Anopheles gambiae in the Sahel. J. Insect Physiol. 58:10501059.Google Scholar
Ye, H.-L., Li, D.-R, Yang, J.-S., Chen, D.-F., de Vos, S., Vuylsteke, M., Sorgeloos, P., van Stappen, G., Bossier, P., Nagasawa, H., and Yang, W.-J.. 2017. Molecular characterization and functional analysis of a diapause hormone receptor-like gene in parthenogenetic Artemia. Peptides 90:100110.Google Scholar
Yin, C.M. and Chippendale, G.M.. 1973. Juvenile hormone regulation of the larval diapause of the southwestern corn borer, Diatraea grandiosella. J. Insect Physiol. 19:24032420.Google Scholar
Yin, C.M., Wang, Z.S., and Chaw, W.D.. 1985. Brain neurosecretory cell and ecdysiotropin activity of the nondiapausing, pre-diapausing and diapausing southwestern cornborer, Diatraea grandiosella Dyar. J. Insect Physiol. 31:659667.Google Scholar
Yin, Z.-J., Dong, X.-L., Kang, K., Chen, H., Dai, X.-Y., Wu, G.-A., Zheng, L. Yu, Y., and Zhai, Y.-F.. 2018. FoxO transcription factor regulates hormone mediated signaling on nymphal diapause. Front. Physiol. 9:1654.Google Scholar
Yocum, G.D. 2001. Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. J. Insect Physiol. 47:11391145.Google Scholar
Yocum, G.D. 2003. Isolation and characterization of three diapause-associated transcripts from the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 49:161169.Google Scholar
Yocum, G.D., Joplin, K.H., and Denlinger, D.L.. 1998. Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem. Mol. Biol. 28:677682.Google Scholar
Yocum, G.D., Kemp, W.P., Bosch, J., and Knoblett, J.N.. 2005. Temporal variation in overwintering gene expression and respiration in the solitary bee Megachile rotundata. J. Insect Physiol. 51:621629.Google Scholar
Yocum, G.D., Kemp, W.P., Bosch, J., and Knoblett, J.N.. 2006. Thermal history influences diapause development in the solitary bee Megachile rotundata. J. Insect Physiol. 52:11131120.Google Scholar
Yocum, G.D., Rinehart, J.P., Chirumamilla-Chapara, A., and Larson, M.L.. 2009a. Characterization of gene expression patterns during the inititation and maintenance phases of diapause in the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 55:3239.Google Scholar
Yocum, G.D., Rinehart, J.P., and Larson, M.L.. 2009b. Down-regulation of gene expression between the diapause initiation and maintenance phases of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Eur. J. Ent. 106:471476.Google Scholar
Yocum, G.D., Rinehart, J.P., and Larson, M.L.. 2011a. Monitoring diapause development in the Colorado potato beetle, Leptinotarsa deemlineata, under field conditions using molecular biomarkers. J. Insect Physiol. 57:645652.Google Scholar
Yocum, G.D., Buckner, J.S., and Fatland, C.L. 2011b. A comparison of internal and external lipids of nondiapausing and diapause initiation phase adult Colorado potato beetles, Leptinotarsa decemlineata. Comp. Biochem. Physiol. B 159:163170.Google Scholar
Yocum, G.D., Rinehart, J.P., and Boetel, M.A.. 2012. Water balance in the sugarbeet root maggot Tetanops myopaeformis, during long-term low-temperature storage and after freezing. Physiol. Ent. 37:340344.Google Scholar
Yocum, G.D., Rinehart, J.P., and Kemp, W.P.. 2014. Cell position during larval development affects postdiapause development in Megachile rotundata (Hymenoptera: Megachilidae). Environ. Ent. 43:10451052.Google Scholar
Yocum, G.D., Rinehart, J.P., Horvath, D.P., Kemp, W.P., Bosch, J., Alroobi, R., and Salem, S.. 2015. Key molecular processes of the diapause to post-diapause quiescence transition in the alfalfa leafcutting bee Megachile rotundata identified by comparative transcriptome analysis. Physiol. Ent. 40:103112.Google Scholar
Yocum, G.D., Childers, A.K., Rinehart, J.P., Rajamohan, A., Pitts-Singer, T.L., Greenlee, K.J., and Bowsher, J.H.. 2018. Environmental history impacts gene expression during diapause development in the alfalfa leafcutter bee, Megachile rotundata. J. Exp. Biol. 221:jeb173443.Google Scholar
Yoder, J.A. and Denlinger, D.L.. 1991. Water balance in flesh fly pupae and water vapor absorption associated with diapause. J. Exp. Biol. 157:273286.Google Scholar
Yoder, J.A. and Denlinger, D.L.. 1992. Water vapour uptake by diapausing eggs of a tropical walking stick. Physiol. Ent. 17:97103.Google Scholar
Yoder, J.A., Denlinger, D.L., Dennis, M.W., and Kolattukudy, P.E.. 1992a. Enhancement of diapausing flesh fly puparia with additional hydrocarbons and evidence for alkane biosynthesis by a decarbonylation mechanism. Insect Biochem. Mol. Biol. 22:237243.Google Scholar
Yoder, J.A., Denlinger, D.L., and Wolda, H.. 1992b. Aggregation promotes water conservation during diapause in the tropical fungus beetle, Stenotarsus rotundus. Ent. Exp. Appl. 63:203205.Google Scholar
Yoder, J.A., Rivers, D.B., and Denlinger, D.L.. 1994. Water relationships in the ectoparasitoid Nasonia vitripennis during larval diapause. Physiol. Ent. 19:373378.Google Scholar
Yoder, J.A., Blomquist, G.J., and Denlinger, D.L.. 1995. Hydrocarbon profiles from puparia of diapausing and nondiapausing flesh flies (Sarcophaga crassipalpis) reflect quantitative rather than qualitative differences. Arch. Insect Biochem. Physiol. 28:377385.Google Scholar
Yoder, J.A., Benoit, J.B., Denlinger, D.L., and Rivers, D.B.. 2006. Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. J. Insect Physiol. 52:202214.Google Scholar
Yoshimura, H. and Yamada, Y.Y.. 2018. Caste-fate determination primarily occurs after adult emergence in a primitively eusocial paper wasp: significance of the photoperiod during the adult stage. Sci. Nature 105:15.Google Scholar
Young, A.M. 1982. Population Biology of Tropical Insects. New York: Plenum.Google Scholar
Yuan, Q., Metterville, D., Briscoe, A.D., and Reppert, S.M.. 2007. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24:948955.Google Scholar
Zalucki, M.P. and Clarke, A.R.. 2004. Monarchs across the Pacific: the Columbus hypothesis revisited. Biol. J. Linn. Soc. 81:111121.Google Scholar
Zani, D., Crowther, T.W., Mo, L., Renner, S.S., and Zohner, C.M.. 2020. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370:10661071.Google Scholar
Ždárek, J. and Denlinger, D.L.. 1975. Action of ecdysteroids, juvenoids, and non-hormonal agents on termination of pupal diapause in the flesh fly. J. Insect Physiol. 21:11931202.Google Scholar
Ždárek, J. and Denlinger, D.L.. 1987. Pupal ecdysis in flies: the role of ecdysteroids in its regulation. J. Insect Physiol. 33:123128.Google Scholar
Ždárek, J., Čtvrtečka, R., Hovorka, O., and Koštál, V.. 2000. Activation of gonads and disruption of imaginal diapause in the apple blossom weevil, Anthomomus pomorum (Coleoptera: Curculionidae), with juvenoids in laboratory and field trials. Eur. J. Ent. 97:2531.Google Scholar
Zeender, V., Roy, J., Wegmann, A., Schafer, M.A., Gourgoulianni, N., Blanckenhorn, W.U., and Rohner, P.T.. 2019. Comparative reproductive dormancy differentiation in European black scavenger flies (Diptera: Sepsidae). Oecologia 189:905917.Google Scholar
Zeng, J.P., Wang, Y., and Liu, X.-P.. 2013. Influence of photoperiod on the development of diapause in larvae and its cost for individuals of a univoltine population of Dendrolimus punctatus (Lepidoptera: Lasiocampidae). Eur. J. Ent. 110:95101.Google Scholar
Zhai, Y., Dong, X., Gao, H., Chen, H., Yang, P., Li, P., Yin, Z., Zheng, L., and Yu, Y.. 2019. Quantitative proteomic and transcriptomic analyses of metabolic regulation of adult reproductive diapause in Drosophila suzukii (Diptera: Drosophilidae) females. Front. Physiol. 10:344.Google Scholar
Zhan, S., Merlin, C., Boore, J.L., and Reppert, S.M.. 2011. The monarch butterfly genome yields insights into long-distance migration. Cell 147:11711185.Google Scholar
Zhan, S., Zhang, W., Niitepold, K., Hsu, J., Haeger, J.F., Zalucki, M.P., Altizer, S., de Roode, J.C., Reppert, S.M., and Kronforst, M.R.. 2014. The genetics of monarch butterfly migration and warning colouration. Nature 514:317321.Google Scholar
Zhang, B., Peng, Y., Zhao, X.-J., Hoffmann, A.A., Liu, R., and Ma, C.-S.. 2016a. Emergence of the overwintering generation of peach fruit moth (Carposina sasakii) depends on diapause and spring soil temperatures. J. Insect Physiol. 86:3239.Google Scholar
Zhang, B., Zhao, F., Hoffmann, A., Ma, G., Ding, H.-M., and Ma, C.-S.. 2016b. Warming accelerates carbohydrate consumption in the diapausing overwintering peach fruit moth Carposin sasakii (Lepidoptera: Carposinidae). Environ. Ent. 45:12871293.Google Scholar
Zhang, B., Zhao, L., Ning, J., Wickham, J.D., Tian, H., Zhang, X., Yang, M., Wang, X., and Sun, J.. 2020a. miR-31-5p regulates cold acclimation of the wood-boring beetle Monochamus alternatus via ascaroside signaling. BMC Biol. 18:184.Google Scholar
Zhang, C., Wei, D., Shi, G., Huang, X., Cheng, P., Liu, G., Guo, X., Liu, L., Wang, H., Miao, F., and Gong, M.. 2019. Understanding the regulation of overwintering diapause molecular mechanisms in Culex pipiens pallens through comparative proteomics. Sci. Rep. 9:6485.Google Scholar
Zhang, C., Daubnerova, I., Jang, Y.-H., Kondo, S., Žitnan, D., and Kim, Y.-J.. 2021. The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc. Nat’l. Acad. Sci., USA 118:e2016878118.Google Scholar
Zhang, H., Lin, Y., Shen, G., Tan, X., Lei, C., Long, W., Liu, H., Zhang, Y., Xu, Y., Wu, J., Gu, J., Xia, Q., and Zhao, P.. 2017a. Pigmentary analysis of eggs of the silkworm Bombyx mori. J. Insect Physiol. 101:142150.Google Scholar
Zhang, H.-Z., Li, Y.-Y., An, T., Huang, F.-X., Wang, M.-Q., Liu, C.-X., Mao, J.-J., and Zhang, L.-S.. 2018a. Comparative transcriptome and iTRAQ proteome analyses reveal the mechanisms of diapause in Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae). Front. Physiol. 9:1697.Google Scholar
Zhang, J.-J., Zhang, X., Zang, L.-S., Du, W.-M., Hou, Y.-Y., Ruan, C.-C., and Desneux, N.. 2018b. Advantages of diapause in Trichogramma dendrolimi mass production on eggs of the Chinese silkworm, Antheraea pernyi. Pest Manag. Sci. 74:959965.Google Scholar
Zhang, T.-Y., Kang, L., Zhang, Z.-F., and Xu, W.-H.. 2004a. Identification of a POU factor involved in regulating the neuron-specific expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Bombyx mori. Biochem. J. 380:255263.Google Scholar
Zhang, T.-Y., Sun, J.-S., Zhang, L.-B., Shen, J.-L., and Xu, W.-H.. 2004b. Cloning and expression of the cDNA encoding the FXPRL family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera. J. Insect Physiol. 50:2533.Google Scholar
Zhang, T.-Y., Sun, J.-S., Zhang, Q.-R., Xu, J., Jiang, R.-J., and Xu, W.-H.. 2004c. The diapause hormone-pheromone biosynthesis activating neuropeptide gene of Helicoverpa armigera encodes multiple peptides that break, rather than induce, diapause. J. Insect Physiol. 50:547554.Google Scholar
Zhang, Q., Ždárek, J., Nachman, R.J., and Denlinger, D.L.. 2008. Diapause hormone in the corn earworm, Helicoverpa zea: optimum temperature for activity, structure-activity relationships, and efficacy in accelerating flesh fly pupariation. Peptides 29:196205.Google Scholar
Zhang, Q., Nachman, R.J., Zubrzak, P., and Denlinger, D.L.. 2009. Conformational aspects and hyperpotent agonists of diapause hormone for termination of pupal diapause in the corn earworm. Peptides 30:596602.Google Scholar
Zhang, Q. and Denlinger, D.L.. 2011a. Molecular structure of the prothoracic hormone gene in the northern house mosquito, Culex pipiens, and its expression analysis in association with diapause and blood feeding. Insect Mol. Biol. 20:201213.Google Scholar
Zhang, Q. and Denlinger, D.L.. 2011b. Elevated couch potato transcripts associated with adult diapause in the mosquito Culex pipiens. J. Insect Physiol. 57:620627.Google Scholar
Zhang, Q., Nachman, R.J., Kaczmarek, K., Zabrocki, J., and Denlinger, D.L.. 2011a. Disruption of insect diapause using agonists and an antagonist of diapause hormone. Proc. Nat’l. Acad. Sci., USA 108:1692216926.Google Scholar
Zhang, Q. and Denlinger, D.L.. 2012. Dynamics of diapause hormone and prothoracicotropic hormone transcript expression at diapause termination in pupae of the corn earworm, Helicoverpa zea. Peptides 34:120126.Google Scholar
Zhang, Q., Lu, Y.-X., and Xu, W.-H.. 2013. Proteomic and metabolomic profiles of larval hemolymph associated with diapause in the cotton bollworm, Helicoverpa armigera. BMC Genomics 14:751.Google Scholar
Zhang, Q., Piermarini, P.M., Nachman, R.J., and Denlinger, D.L.. 2014. Molecular identification and expression analysis of a diapause hormone receptor in the corn earworm, Helicoverpa zea. Peptides 53:250257.Google Scholar
Zhang, Q., Nachman, R.J., and Denlinger, D.L.. 2015a. Diapause hormone in the Helicoverpa/Heliothis complex: a review of gene expression, peptide structure and activity, analog and antagonist development, and the receptor. Peptides 72:196201.Google Scholar
Zhang, Q., Nachman, R.J., Kaczmarek, K., Kierus, K., Zabrocki, J., and Denlinger, D.L.. 2015b. Development of neuropeptide analogs capable of traversing the integument: a case study using diapause hormone analogs in Helicoverpa zea. Insect Biochem. Mol. Biol. 67:8793.Google Scholar
Zhang, X., Zabinsky, R., Teng, Y., Cui, M., and Han, M.. 2011b. microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause. Proc. Nat’l. Acad. Sci., USA 108:1799718002.Google Scholar
Zhang, X., Du, W., Zhang, J., Zou, Z., and Ruan, C.. 2020b. High-throughput profiling of diapause regulated genes from Trichogramma dendrolimi, an important egg parasitoid. BMC Genomics 21:664.Google Scholar
Zhang, X.-S., Wang, T., Lin, X.-W., Denlinger, D.L., and Xu, W.-H.. 2017b. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proc. Nat’l. Acad. Sci., USA 114:e7832–7840.Google Scholar
Zhang, Y., Markert, M.J., Groves, S.C., Hardin, P.E., and Merlin, C.. 2017c. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc. Nat’l. Acad. Sci., USA 114:e7516e7525.Google Scholar
Zhao, J.-Y., Zhao, X.-T., Sun, J.-T., Zou, L.-F., Yang, S.-X., Han, X., Zhu, W.-C., Yin, Q., and Hong, X.-Y.. 2017. Transcriptome and proteome analysis reveal complex mechanisms of reproductive diapause in the two-spotted spider mite, Tetranychus urticae. Insect Mol. Biol. 26:215232.Google Scholar
Zhao, L., Wit, J., Svetic, N., and Begun, D.J.. 2015. Parallel gene expression differences between low and high latitude populations of Drosophila melanogaster and D. simulans. PLoS Genet. 11:e1005184.Google Scholar
Zhao, L., Wang, W., Qiu, Y., and Torson, A.S.. 2021. Physiological mechanisms of variable nutrient accumulation patterns between diapausing and non-diapausing fall webworm (Lepidoptera: Arctiidae) pupae. Environ. Ent. (in press).Google Scholar
Zhao, L.-L., Jin, F., Ye, X., Zhu, L., Yang, J.-S., and Yang, W.-J.. 2015. Expression profiles of miRNAs and involvement of miR-100 and miR-34 in regulation of cell cycle arrest in Artemia. Biochem. J. 470:223231.Google Scholar
Zhao, X., Bergland, A.O., Behrman, E.L., Gregory, B.D., Petrov, D.A., and Schmidt, P.S.. 2016. Global transcriptional profiling of diapause and climatic adaptation in Drosophila melanogaster. Mol. Biol. Evol. 33:707720.Google Scholar
Zhou, C.-M., Zhang, T.-Q., Wang, Xi, Yu, S., Lian, H., Tang, H., Feng, Z.-Y., Zozomova-Lihová, J., and Wang, J.-W.. 2013. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340: 10971100.Google Scholar
Zhou, G. and Miesfeld, R.L.. 2009. Energy metabolism during diapause in Culex pipiens mosquitoes. J. Insect Physiol. 55:4046.Google Scholar
Zhou, H.-Z. and Topp, W.. 2000. Diapause and polyphenism of life-history of Lagria hirta. Ent. Exp. Appl. 94:201210.Google Scholar
Zhou, J., Li, J., Wang, R., Sheng, X., Zhong, S., Weng, Q., and Luo, Y.. 2016. Ecdysteroid titers and expression of Halloween genes and ecdysteroid receptor in relation to overwintering and the long larval phase in the seabuckthorn carpenterworm, Holcocerus hippophaecolus. Ent. Exp. Appl. 160:133146.Google Scholar
Zhou, X., Oi, F.M., and Scharf, M.E.. 2006. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Nat’l. Acad. Sci., USA 103:44994504.Google Scholar
Zhou, Y., Sun, D., Quan, W.-L., Ding, N., Liu, W., Ma, W.-H., and Wang, X.-P.. 2018. Divergence in larval diapause induction between the rice and water-oat populations of the striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae). Environ. Sci. Pollut. Res. 25:2971529724.Google Scholar
Zhou, Z., Li, Y., Yuan, C., Doucet, D., Zhang, Y., and Qu, L.. 2016. Overexpression of TAT-PTD-diapause hormone fusion protein in tobacco and its effect on the larval development of Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag. Sci. 73:11971203.Google Scholar
Zhou, Z., Dong, X., Su, Q., Xia, Z., Wang, Z., Yuan, J., and Li, C.. 2020. Effects of pre-diapause temperature and body weight on the diapause intensity of the overwintering generation of Bactrocera minax (Diptera: Tephritidae). J. Insect Sci. 20(12):16.Google Scholar
Zhu, D.-H. and Tanaka, S.. 2004. Photoperiod and temperature affect the life cycle of a subtropical cockroach, Opisoplatia orientalis: seasonal pattern shaped by winter mortality. Physiol. Ent. 29:1623.Google Scholar
Zhu, D.-H., Yang, Y.-P., and Liu, Z.. 2009. Reversible change in embryonic diapause intensity by mild temperature in the Chinese rice grasshopper, Oxya chinensis. Ent. Exp. Appl. 133:18.Google Scholar
Zhu, F., Xue, F., and Lei, C.. 2006. The effect of environmental conditions on diapause in the blister beetle, Mylabris phalerata (Coleoptera: Meloidae). Eur. J. Ent. 103:531535.Google Scholar
Zhu, H., Yuan, Q., Froy, O., Casselman, A., and Reppert, S.M.. 2005. The two CRYs of the butterfly. Curr. Biol. 15:953954.Google Scholar
Zhu, H., Gegear, R.J., Casselman, A., Kanginakudru, S., and Reppert, S.M.. 2009. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol. 7:14.Google Scholar
Zhu, L., Tian, Z., Guo, S., Liu, W., Zhu, F., and Wang, X.-P.. 2019. Circadian clock genes link photoperiodic signals to lipid accumulation during diapause preparation in the diapause-destined female cabbage beetles Colaphellus bowringi. Insect Biochem. Mol. Biol. 104:110.Google Scholar
van Zon, A.C., Overmeer, W.P.J., and Veerman, A.. 1981. Carotenoids function in photoperiodic induction of diapause in a predacious mite. Science 213:11311133.Google Scholar
Zonato, V., Fedele, G., and Kyricou, C.P.. 2016. An intonic polymorphism in couch potato is not distributed clinally in European Drosophila melanogaster populations nor does it affect diapause inducibility. PLoS One 11:e0162370.Google Scholar
Zonato, V., Collins, L., Pegoraro, M., Tauber, E., and Kyriacou, C.P.. 2017. Is diapause an ancient adaptation in Drosophila? J. Insect Physiol. 98:267274.Google Scholar
Zonato, V., Vanin, S., Costa, R., Tauber, E., and Kyriacou, C.P.. 2018. Inverse european latitudinal cline at the timeless locus of Drosophila melanogaster reveals selection on a clock gene: population genetics of ls-tim. J. Biol. Rhyth. 33:1523.Google Scholar
Zverev, V., Kozlov, M.V., Forsman, A., and Zvereva, E.L.. 2018. Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: roles of thermal melanism and developmental plasticity. J. Therm. Biol. 74:100109.Google Scholar
Zvereva, E.L. 2002. Effects of host plant quality on overwintering success of the leaf beetle Chrysomela lapponica (Coleoptera: Chrysomelidae). Eur. J. Ent. 99:189195.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David L. Denlinger, Ohio State University
  • Book: Insect Diapause
  • Online publication: 13 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108609364.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David L. Denlinger, Ohio State University
  • Book: Insect Diapause
  • Online publication: 13 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108609364.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David L. Denlinger, Ohio State University
  • Book: Insect Diapause
  • Online publication: 13 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108609364.014
Available formats
×