Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T23:30:56.319Z Has data issue: false hasContentIssue false

3 - Cell assemblies and serial computation in neural circuits

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Introduction

Analogies between the brain and the digital computer have been out of fashion for a long time. The differences between brains and computers are numerous. Computers run pre-specified programs written by people. Computers store programs and data in specialized RAM circuits, and have one CPU (or at most a handful) which follows a coded list of instructions to the letter. A computer has a central clock, which allows all of its components to march through a program in lockstep. The brain, on the other hand, has billions of neurons operating in parallel, no central clock, no externally supplied list of instructions, and no separation of RAM and CPU. Although the inventors of the modern computer held the brain as a model, the analogy is rarely taken seriously today.

A more popular analogy for the brain in recent years has been artificial neural networks (ANNs). ANNs, although typically simulated on a digital computer, have an apparently more “brain-like” design. They consist of elements that function (at least a bit) like neurons, connected by “synapses” whose strength can be modified by the network's history. ANNs do not need an external program, but “learn” from a set of training examples. The most successful of these, the multilayer perceptron or “backprop” net, is good enough at generalizing from training examples to be used in real-world information processing tasks, by people who have no interest in how the brain works.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, M. and Gat, I. (2001). Detecting precise firing sequences in experimental data. J Neurosci Methods 107:141–154.CrossRefGoogle ScholarPubMed
Abeles, M., Bergman, H., Margalit, E., and Vaadia, E. (1993). Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70:1629–1638.CrossRefGoogle ScholarPubMed
Adrian, E. D. and Zotterman, Y. (1926). The impulses produced by sensory nerve endings. II. The response of a single end organ. J Physiol (Lond) 61:151–171.CrossRefGoogle ScholarPubMed
Amit, D. (1994). The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci 18:617–626.CrossRefGoogle Scholar
Baddeley, R., Abbott, L. F., Booth, M. C., et al. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc R Soc Lond B 264:1775–1783.CrossRefGoogle ScholarPubMed
Bair, W. and Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8:1185–1202.CrossRefGoogle ScholarPubMed
Bair, W., Zohary, E., and Newsome, W. T. (2001). Correlated firing in macaque visual area MT: time scales and relationship to behavior. J Neurosci 21:1676–1697.CrossRefGoogle Scholar
Baker, S. N. and Lemon, R. N. (2000). Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J Neurophysiol 84:1770–1780.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1972). Single units and sensation: a neuron doctrine for perceptual psychology?Perception 1:371–394.CrossRefGoogle ScholarPubMed
Bartho, P., Hirase, H., Monconduit, L., et al. (2004). Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J Neurophysiol 92:600–608.CrossRefGoogle ScholarPubMed
Berry, M. J., Warland, D. K., and Meister, M. (1997). The structure and precision of retinal spike trains. Proc Natl Acad Sci USA 94:5411–5416.CrossRefGoogle ScholarPubMed
Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10 464–10 472.CrossRefGoogle ScholarPubMed
Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A. (1993). Responses of neurons in macaque MT to stochastic motion signals. Vis Neurosci 10:1157–1169.CrossRefGoogle ScholarPubMed
Buracas, G. T., Zador, A. M., DeWeese, M. R., and Albright, T. D. (1998). Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20:959–969.CrossRefGoogle ScholarPubMed
Chance, F. S., Abbott, L. F., and Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron 35:773–782.CrossRefGoogle ScholarPubMed
Constantinidis, C., Franowicz, M. N., and Goldman-Rakic, P. S. (2001). Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J Neurosci 21:3646–3655.CrossRefGoogle ScholarPubMed
Cossart, R., Aronov, D., and Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature 423:283–288.CrossRefGoogle ScholarPubMed
Csicsvari, J., Hirase, H., Czurko, A., and Buzsáki, G. (1998). Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 21:179–189.CrossRefGoogle ScholarPubMed
Csicsvari, J., Jamieson, B., Wise, K. D., and Buzsáki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322.CrossRefGoogle ScholarPubMed
DeWeese, M. R. and Zador, A. M. (2004). Shared and private variability in the auditory cortex. J Neurophysiol 92:1840–1855.CrossRefGoogle ScholarPubMed
DeWeese, M. R., Wehr, M., and Zador, A. M. (2003). Binary spiking in auditory cortex. J Neurosci 23:7940–7949.CrossRefGoogle ScholarPubMed
deCharms, R. C. and Merzenich, M. M. (1996). Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381:610–613.CrossRefGoogle ScholarPubMed
deCharms, R. C. and Zador, A. (2000). Neural representation and the cortical code. Annu Rev Neurosci 23:613–647.CrossRefGoogle ScholarPubMed
Di Lorenzo, P. M. and Victor, J. D. (2003). Taste response variability and temporal coding in the nucleus of the solitary tract of the rat. J Neurophysiol 90:1418–1431.CrossRefGoogle ScholarPubMed
Engel, A. K., Fries, P., and Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2:704–716.CrossRefGoogle ScholarPubMed
Fellous, J. M., Tiesinga, P. H., Thomas, P. J., and Sejnowski, T. J. (2004). Discovering spike patterns in neuronal responses. J Neurosci 24:2989–3001.CrossRefGoogle ScholarPubMed
Fenton, A. A. and Muller, R. U. (1998). Place cell discharge is extremely variable during individual passes of the rat through the firing field. Proc Natl Acad Sci USA 95:3182–3187.CrossRefGoogle ScholarPubMed
Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563.CrossRefGoogle ScholarPubMed
Furukawa, S., Xu, L., and Middlebrooks, J. C. (2000). Coding of sound-source location by ensembles of cortical neurons. J Neurosci 20:1216–1228.CrossRefGoogle ScholarPubMed
Gabbiani, F., Metzner, W., Wessel, R., and Koch, C. (1996). From stimulus encoding to feature extraction in weakly electric fish. Nature 384:564–567.CrossRefGoogle ScholarPubMed
Gardner-Medwin, A. R. (1976). The recall of events through the learning of associations between their parts. Proc R Soc Lond B 194:375–402.CrossRefGoogle Scholar
Gerstein, G. L. and Mandelbrot, B. (1964). Random walk models for the spike activity of a single neuron. Biophys J 71:41–68.CrossRefGoogle Scholar
Ghazanfar, A. A., Stambaugh, C. R., and Nicolelis, M. A. (2000). Encoding of tactile stimulus location by somatosensory thalamocortical ensembles. J Neurosci 20:3761–3775.CrossRefGoogle ScholarPubMed
Gibbon, J., Malapani, C., Dale, C. L., and Gallistel, C. (1997). Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184.CrossRefGoogle Scholar
Gray, C. M., Konig, P., Engel, A. K., and Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337.CrossRefGoogle ScholarPubMed
Harris, K. D., Henze, D. A., Hirase, H., et al. (2002). Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417:738–741.CrossRefGoogle ScholarPubMed
Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsáki, G. (2003). Organization of cell assemblies in the hippocampus. Nature 424:552–556.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior. New York: John Wiley.Google Scholar
Hegde, J. and Essen, D. C. (2004). Temporal dynamics of shape analysis in macaque visual area V2. J Neurophysiol 92:3030–3042.CrossRefGoogle ScholarPubMed
Hirase, H., Leinekugel, X., Czurko, A., Csicsvari, J., and Buzsáki, G. (2001). Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc Natl Acad Sci USA 98:9386–9390.CrossRefGoogle ScholarPubMed
Hoffman, K. L. and McNaughton, B. L. (2002). Coordinated reactivation of distributed memory traces in primate neocortex. Science 297:2070–2073.CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558.CrossRefGoogle ScholarPubMed
Huxter, J., Burgess, N., and O'Keefe, J. (2003). Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425:828–832.CrossRefGoogle ScholarPubMed
Ikegaya, Y., Aaron, G., Cossart, R., et al. (2004). Synfire chains and cortical songs: temporal modules of cortical activity. Science 304:559–564.CrossRefGoogle ScholarPubMed
Izhikevich, E. M., Gally, J. A., and Edelman, G. M. (2004). Spike-timing dynamics of neuronal groups. CerebCortex 14:933–944.CrossRefGoogle Scholar
Kara, P., Reinagel, P., and Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27:635–646.CrossRefGoogle ScholarPubMed
Katz, D. B., Simon, S. A., and Nicolelis, M. A. (2001). Dynamic and multimodal responses of gustatory cortical neurons in awake rats. J Neurosci 21:4478–4489.CrossRefGoogle ScholarPubMed
Kudrimoti, H. S., Barnes, C. A., and McNaughton, B. L. (1999). Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19:4090–4101.CrossRefGoogle ScholarPubMed
Laurent, G. (1996). Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci 19:489–496.CrossRefGoogle ScholarPubMed
Lee, A. K. and Wilson, M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194.CrossRefGoogle ScholarPubMed
Louie, K. and Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156.CrossRefGoogle ScholarPubMed
Luczak, A., Bartho, P., Marguet, S. L., Buzsáki, G., and Harris, K. D. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci USA 104:347–352.CrossRefGoogle ScholarPubMed
MacLean, J. N., Watson, B. O., Aaron, G. B., and Yuste, R. (2005). Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811–823.CrossRefGoogle ScholarPubMed
MacLeod, K., Backer, A., and Laurent, G. (1998). Who reads temporal information contained across synchronized and oscillatory spike trains?Nature 395:693–698.CrossRefGoogle ScholarPubMed
Magee, J. C. and Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213.CrossRefGoogle ScholarPubMed
Mainen, Z. F. and Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science 268:1503–1506.CrossRefGoogle ScholarPubMed
Mao, B. Q., Hamzei-Sichani, F., Aronov, D., Froemke, R. C., and Yuste, R. (2001). Dynamics of spontaneous activity in neocortical slices. Neuron 32:883–898.CrossRefGoogle ScholarPubMed
Marr, D. (1971). Simple memory: a theory for archicortex. Phil Trans R Soc Lond B 262:23–81.CrossRefGoogle ScholarPubMed
Marshall, L., Henze, D. A., Hirase, H., et al. (2002). Hippocampal pyramidal cell-interneuron spike transmission is frequency dependent and responsible for place modulation of interneuron discharge. J Neurosci 22:RC197.CrossRefGoogle ScholarPubMed
Mazurek, M. E. and Shadlen, M. N. (2002). Limits to the temporal fidelity of cortical spike rate signals. Nat Neurosci 5:463–471.CrossRefGoogle ScholarPubMed
Mehta, M. R., Lee, A. K., and Wilson, M. A. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–746.CrossRefGoogle ScholarPubMed
Middlebrooks, J. C., Clock, A. E., Xu, L., and Green, D. M. (1994). A panoramic code for sound location by cortical neurons. Science 264:842–844.CrossRefGoogle ScholarPubMed
Mokeichev, A., Okun, M., Barak, O., et al. (2007). Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo. Neuron 53:413–425.CrossRefGoogle ScholarPubMed
Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., and Buzsáki, G. (1999). Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497–9507.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330.CrossRefGoogle ScholarPubMed
Optican, L. M. and Richmond, B. J. (1987). Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. J Neurophysiol 57:162–178.CrossRefGoogle ScholarPubMed
Oram, M. W., Foldiak, P., Perrett, D. I., and Sengpiel, F. (1998). The ‘Ideal Homunculus': decoding neural population signals. Trends Neurosci 21:259–265.CrossRefGoogle ScholarPubMed
Oram, M. W., Wiener, M. C., Lestienne, R., and Richmond, B. J. (1999). Stochastic nature of precisely timed spike patterns in visual system neuronal responses. J Neurophysiol 81:3021–3033.CrossRefGoogle ScholarPubMed
Oram, M. W., Hatsopoulos, N. G., Richmond, B. J., and Donoghue, J. P. (2001). Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures. J Neurophysiol 86:1700–1716.CrossRefGoogle ScholarPubMed
Panzeri, S., Petersen, R. S., Schultz, S. R., Lebedev, M., and Diamond, M. E. (2001). The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29:769–777.CrossRefGoogle ScholarPubMed
Perez-Orive, J., Bazhenov, M., and Laurent, G. (2004). Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input. J Neurosci 24:6037–6047.CrossRefGoogle ScholarPubMed
Prut, Y., Vaadia, E., Bergman, H., et al. (1998). Spatiotemporal structure of cortical activity: properties and behavioral relevance. J Neurophysiol 79:2857–2874.CrossRefGoogle ScholarPubMed
Riehle, A., Grun, S., Diesmann, M., and Aertsen, A. (1997). Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278:1950–1953.CrossRefGoogle ScholarPubMed
Romo, R., Hernandez, A., Zainos, A., Lemus, L., and Brody, C. D. (2002). Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5:1217–1225.CrossRefGoogle ScholarPubMed
Shadlen, M. N. and Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896.CrossRefGoogle ScholarPubMed
Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374.CrossRefGoogle Scholar
Skaggs, W. E. and McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870–1873.CrossRefGoogle ScholarPubMed
Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis. New York: Appleton-Century.Google Scholar
Softky, W. R. and Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334–350.CrossRefGoogle ScholarPubMed
Spruston, N. and Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol 67:508–529.CrossRefGoogle ScholarPubMed
Stevens, C. F. and Zador, A. M. (1998). Input synchrony and the irregular firing of cortical neurons. Nat Neurosci 1:210–217.CrossRefGoogle ScholarPubMed
Stopfer, M., Bhagavan, S., Smith, B. H., and Laurent, G. (1997). Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74.Google ScholarPubMed
Stopfer, M., Jayaraman, V. and Laurent, G. (2003). Intensity versus identity coding in an olfactory system. Neuron 39:991–1004.CrossRefGoogle Scholar
Teich, M. C. (1989). Fractal character of the auditory neural spike train. IEEE Trans Biomed Eng 36:150–160.CrossRefGoogle ScholarPubMed
Tolman, E. C. (1932). Purposive Behavior in Animals and Men. New York: Century.Google Scholar
Usrey, W. M. and Reid, R. C. (1999). Synchronous activity in the visual system. Annu Rev Physiol 61:435–456.CrossRefGoogle ScholarPubMed
Vaadia, E., Haalman, I., Abeles, M., et al. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373:515–518.CrossRefGoogle ScholarPubMed
Stein, A., Chiang, C., and Konig, P. (2000). Top–down processing mediated by interareal synchronization. Proc Natl Acad Sci USA 97:14 748–14 753.CrossRefGoogle Scholar
Wallenstein, G. V. and Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J Neurophysiol 78:393–408.CrossRefGoogle ScholarPubMed
Wehr, M. and Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446.CrossRefGoogle ScholarPubMed
Wilson, M. A. and McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679.CrossRefGoogle ScholarPubMed
Wood, E. R., Dudchenko, P. A., Robitsek, R. J., and Eichenbaum, H. (2000). Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–633.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×