Published online by Cambridge University Press: 05 November 2011
State-space models are one of the most prevalent tools in science and applied mathematics. In this lecture, we show how state spaces are related to classifications and how systems of state spaces are related to information channels. As a result, we will discover that state spaces provide a rich source of information channels. In later lectures, we will exploit the relationship between state spaces and classifications in our study of local logics.
State Spaces and Projections
Definition 8.1. A state space is a classification S for which each token is of exactly one type. The types of a state space are called states, and we say that a is in state σ if a ⊨s σ. The state space S is complete if every state is the state of some token.
Example 8.2. In Example 4.5 we pointed out that for any function f : A → B, there is a classification whose types are elements of B and whose tokens are elements of A and such that a ⊨b if and only if b = f(a). This classification is a state space and every state space arises in this way, so another way to put the definition is to say that a state space is a classification S in which the classification relation ⊨s is a total function. For this reason, we write states(a) for the state σ of a in S.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.