Published online by Cambridge University Press: 09 July 2009
Introduction
There have been numerous empirical analyses of the efficient markets hypothesis when applied to gambling markets (see, e.g., Sauer, 1998, and Vaughan Williams, 1999, for recent comprehensive surveys). The literature suggests that the null of market efficiency – at least where risk-neutrality is assumed – can be consistently rejected in three major areas of research application. However many of the rejections of the restrictions, required by the efficiency hypothesis, that are reported in the literature are based on classical least-squares regression procedures even though the regression residuals exhibit sometimes very pronounced deviations from normality and heteroscedasticity. As a consequence the inferences based on classical methods are suspect as the true size of the relevant test statistics is not the one hypothesised. Our purpose in this chapter is to reconsider some of the violations of efficiency, employing recently suggested bootstrap estimation procedures which allow for heteroscedasticity and any non-normality in OLS regression residuals. The procedures we employ might be found useful by other researchers in the area. At least they allow for more robust statistical inference than has hitherto often been the case. The chapter is organised as follows. In section 17.2 we first set out the wild bootstrap and then apply the wild bootstrap on a variety of datasets (sections 17.3 - 17.5). Section 17.6 draws some conclusions.
The bootstrap methods, statistical inference
Recent advances in computing offer an alternative approach to hypothesis testing when the error term in a regression is heteroscedastic and potentially non-normal.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.