Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T14:48:52.816Z Has data issue: false hasContentIssue false

5 - G6PD Deficiency and Malarial Resistance in Humans: Insights from Evolutionary Genetic Analyses

Published online by Cambridge University Press:  10 August 2009

Sarah A. Tishkoff
Affiliation:
Department of Biology, Biology/Psychology Building, University of Maryland, College Park, MD 20742
Brian C. Verrelli
Affiliation:
Department of Biology, Biology/Psychology Building, University of Maryland, College Park, MD 20742
Krishna R. Dronamraju
Affiliation:
Foundation for Genetic Research, Houston, Texas
Get access

Summary

THE ROLE OF G6PD IN MALARIA RESISTANCE

Malaria, resulting from infection by the Plasmodium falciparum and Plasmodium vivax parasites, is the leading cause of death in the global human population. Each year 500 million people suffer from malaria, resulting in approximately 2 million deaths annually. During the course of human evolution in regions where malaria is prevalent, naturally occurring genetic defense mechanisms have evolved for resisting infection by the Plasmodium parasite. Most of the human genes that are thought to provide resistance against malarial infection are expressed in red blood cells or play a role in the immune system (Hill, 2001). These loci include: HLA, α- and β-globins, Duffy factor (FY), tumor necrosis factor (TNF), and glucose-6-phosphate dehydrogenase (G6PD).

G6PD is an important “housekeeping” enzyme in the glycolytic pathway for glucose metabolism. G6PD also plays a critical role in maintaining the balance of NADPH, a necessary cofactor for cell detoxification. Although several enzymes can recycle this essential cofactor, G6PD is the sole generator of NADPH in the red blood cells and alone may prevent oxidative damage and severe anemia. Because of its role in preventing oxidative stress within the cell, G6PD may also play a role in longevity (Ho et al., 2000).

G6PD deficiency is the most common enzymopathy of humans, affecting an estimated 400 million people worldwide (Vulliamy et al., 1992).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akashi, H. (1999). Inferring the fitness effects of DNA mutations from polymorphism and divergence data: statistical power to detect directional selection under stationary and free recombination. Genetics, 151, 221–238Google Scholar
Allison, A. C. (1960). Glucose-6-phosphate dehydrogenase deficiency in red blood cells of East Africans. Nature, 186, 531–532CrossRefGoogle ScholarPubMed
Allison, A. C., and Clyde, D. F. (1961). Malaria in African children with deficient erythrocyte glucose-6-phosphate dehydrogenase. Brit. Med. J., 1, 1346–1356CrossRefGoogle ScholarPubMed
Anderson, T. J., Haubold, B., Williams, J. T., Estrada-Franco, J. G., Richardson, L., and 11 colleagues. (2000). Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol. Biol. Evol., 17, 1467–1482CrossRefGoogle ScholarPubMed
Aquadro, C. F., DuMont, Bauer V., and Reed, F. A. (2001). Genome-wide variation in the human and fruitfly: a comparison. Curr. Opin. Genet. Dev., 11, 627–634CrossRefGoogle ScholarPubMed
Ayala, F. J., Escalante, A., O'Huigin, C., and Klein, J. (1994). Molecular genetics of speciation and human origins. Proc. Natl. Acad. Sci. USA, 91, 6787–6794CrossRefGoogle ScholarPubMed
Bernstein, S. C., Bowman, J. E., and Noche, L. K. (1980). Population studies in Cameroon. Hum. Hered., 30, 7–11CrossRefGoogle ScholarPubMed
Beutler, E. (1993). Study of glucose-6-phosphate-dehydrogenase – history and molecular-biology. Am. J. Hematol., 42, 53–58CrossRefGoogle ScholarPubMed
Beutler, E. (1994). G6PD deficiency. Blood, 84, 3613–3636Google ScholarPubMed
Beutler, E., Johnson, C., Powars, D., and West, C. (1974). Prevalence of glucose-6-phosphate dehydrogenase deficiency in sickle cell disease. N. Engl. J. Med., 290, 826–828CrossRefGoogle ScholarPubMed
Beutler, E., Kuhl, W., Vives-Corrons, J. L., and Prchal, J. T. (1989). Molecular heterogeneity of glucose-6-phosphate dehydrogenase A-. Blood, 74, 2550–2555Google ScholarPubMed
Beutler, E., and Kuhl, W. (1990). The NT 1311 polymorphism of G6PD: G6PD Mediterranean mutation may have originated independently in Europe and Asia. Am. J. Hum. Genet., 47, 1008–1012Google ScholarPubMed
Bienzle, U., Sodeinde, O., Effiong, C. E., and Luzzatto, L. (1975). Glucose-6-phosphate dehydrogenase deficiency and sickle cell anemia: frequency and features of the association in an African community. Blood, 46, 591–597Google Scholar
Braverman, J. M., Hudson, R. R., Kaplan, N. L., Langley, C. H., and Stephan, W. (1995). The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics, 140, 783–796Google ScholarPubMed
Calabro, V., Mason, P. J., Filosa, S., Civitelli, D., Cittadella, R., and 4 colleagues. (1998). Genetic heterogeneity of glucose-6-phosphate dehydrogenase deficiency revealed by single-strand conformation and sequence analysis. Am. J. Hum. Genet., 52, 527–536Google Scholar
Cappadoro, M., Giribaldi, G., O'Brien, E., Turrini, F., Mannu, F., and 4 colleagues. (1998). Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood, 92, 2527–2534Google ScholarPubMed
Cavalli-Sforza, L. L., Piazza, A., and Menozzi, P. (1994). History and Geography of Human Genes. Princeton University Press, Princeton, NJ
Chen, E. Y., Cheng, A., Lee, A., Kuang, W.-J., Hillier, L., and 4 colleagues. (1991). Sequence of human glucose-6-phosphate dehydrogenase cloned in plasmids and a yeast artificial chromosome (YAC). Genomics, 10, 792–800CrossRefGoogle Scholar
Cittadella, B., Civitelli, D., Manna, I., Azzia, N., DiCataldo, A., Schiliroa, G. and Brancati, C. (1997). Genetic heterogeneity of glucose-6-phosphate dehydrogenase deficiency in south-east Sicily. Ann. Hum. Genet., 61, 229–234CrossRefGoogle ScholarPubMed
Coetzee, M. J., Bartleet, S. C., Ramsay, M., and Jenkins, T. (1992). Glucose-6-phosphate dehydrogenase (G6PD) electrophoretic variants and the PvuII polymorphism in Southern African populations. Hum. Genet., 80, 111–113CrossRefGoogle Scholar
Coluzzi, M. (1999). The clay feet of the malaria giant and its African roots: hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia, 41, 277–283Google ScholarPubMed
Deeb, S. S., Lindsey, D. T., Hibiya, Y., Sanocki, E., Winderickx, J., and 2 colleagues. (1992). Genotype-phenotype relationships in human red/green color-vision defects: molecular and psychophysical studies. Am. J. Hum. Genet., 51, 687–700Google ScholarPubMed
Delwiche, C. C. (1978). Legumes – past, present, and future. Bioscience, 28, 565–570CrossRefGoogle Scholar
Donnelly, M. J., Licht, M. C., and Lehmann, T. (2001). Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol. Biol. Evol., 18, 1353–1364CrossRefGoogle ScholarPubMed
Durando, F. (1997). Ancient Greece; The Dawn of the Western World. Syewart, Tabori, and Chang Publishers, New York
Durham, W. H. (1992). Coevolution: Genes, Culture, and Human Diversity. Stanford University Press, Stanford, CA
Fay, J. C., Wyckoff, G. J., and Wu, C.-I. (2001). Positive and negative selection on the human genome. Genetics, 158, 1227–1234Google ScholarPubMed
Filosa, S., Calabro, V., Lania, G., Vulliamy, T. J., Brancati, C., and 3 colleagues. (1993). G6PD haplotypes spanning Xq28 from F8C to red/green color vision. Genomics, 17, 6–14CrossRefGoogle ScholarPubMed
Friedman, M. J., and Trager, W. (1981). The biochemistry of resistance to malaria. Sci. Am., 244, 154–164CrossRefGoogle ScholarPubMed
Ganczakowski, M., Town, M., Bowden, D. K., Vulliamy, T. J., Kaneko, A., and 3 colleagues. (1995). Multiple glucose-6-phosphate dehydrogenase-deficient variants correlate with malaria endemicity in the Vanuatu Archipelago (Southwestern Pacific). Am. J. Hum. Genet., 56, 294–301Google Scholar
Gilles, H. M., Fletcher, K. A., Hendrickse, R. G., Lindner, R., Reddy, S., and colleagues. (1967). Glucose-6-phosphate dehydrogenase deficiency, sickling, and malaria in African children in South Western Nigeria. Lancet, 1, 138–140CrossRefGoogle ScholarPubMed
Griffiths, R. C., and Tavare, S. (1997). Computational methods for the coalescent. In Progress in Population Genetics and Human Evolution, edited by P. Donnelly and S. Tavare, pp. 165–182. Springer-Verlag, New YorkCrossRef
Haldane, J. B. S. (1949). Disease and evolution. La Ricerca Sci., 19, 1–20Google Scholar
Harding, R. M., Fullerton, S. M., Griffiths, R. C., Bond, J., Cox, M. J., and 3 colleagues. (1997). Archaic African and Asian lineages in the genetic ancestry of modern humans. Am. J. Hum. Genet., 60, 772–789Google ScholarPubMed
Hill, A. V. (2001). The genomics and genetics of human infectious disease susceptibility. Ann. Rev. Genomics Hum. Genet., 2, 373–400CrossRefGoogle ScholarPubMed
Hirono, A., Kawate, K., Honda, A., Fujil, H., and Miwa, S. (2002). A single mutation 202G > A in the human glucose-6-phosphate dehydrogenase gene (G6PD) can cause acute hemolysis by itself. Blood, 99, 1498–1499CrossRefGoogle Scholar
Ho, H. Y., Cheng, M. L., Lu, F. J., Chou, Y. H., Stern, A., and 2 colleagues. (2000). Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. Free Radic. Biol. Med., 29, 156–159CrossRefGoogle ScholarPubMed
Hudson, R. R. (1990). Gene genealogies and the coalescent process. In Oxford Series in Evolutionary Biology, edited by D. J. Futuyma and J. Antonovics, pp. 1–44. Oxford University Press, New York
Hudson, R. R., Kreitman, M., and Aguade, M. (1987). A test of neutral molecular evolution based on nucleotide data. Genetics, 116, 153–159Google ScholarPubMed
Hudson, R. R., Bailey, K., Skarecky, D., Kwiatowski, J., and Ayala, F. J. (1994). Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics, 136, 1329–1340Google ScholarPubMed
Hughes, A. L., and Verra, F. (2001). Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc. R. Soc. Lond. B., 268, 1855–1860CrossRefGoogle ScholarPubMed
Jacquemin, M., Lavend'homme, R., Benhida, A., Vanzieleghem, B., d'Oiron, R., and 10 colleagues. (2000). A novel cause of mild/moderate hemophilia A: mutations scattered in the factor VIII C1 domain reduce factor VIII binding to von Willebrand factor. Blood, 96, 958–965Google ScholarPubMed
Kaplan, N. L., Hudson, R. R., and Langley, C. H. (1989). The “hitchhiking effect” revisited. Genetics, 123, 887–899Google ScholarPubMed
Kay, A. C., Kuhl, W., Prchal, J. T., and Beutler, E. (1992). The origin of glucose-6-phosphate dehydrogenase (G6PD) polymorphisms in Afro-Americans. Am. J. Hum. Genet., 50, 394–398Google Scholar
Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press, London
Kreitman, M. (2000). Methods to detect selection in populations with applications to the human. Ann. Rev. Genomics Hum. Genet., 1, 539–559CrossRefGoogle ScholarPubMed
Lewis, R. A., and Hathorn, M. (1963). Glucose-6-phosphate dehydrogenase deficiency correlated with S hemoglobin. Ghana Med. J., 2, 131–141Google Scholar
Livingstone, F. B. (1958). Anthropological implications of sickle cell gene distribution in West Africa. Am. Anthropol., 60, 533–562CrossRefGoogle Scholar
Livingstone, F. B. (1971). Malaria and human polymorphisms. Ann. Rev. Genet., 5, 33–64CrossRefGoogle Scholar
Luzzatto, L., Usanga, E. A., and Reddy, S. (1969). Glucose 6-phosphate dehydrogenase deficient red cells: resistance to infection by malarial parasites. Science, 164, 839–842CrossRefGoogle ScholarPubMed
Luzzatto, L., O'Brien, S., Usanga, E., and Wanachiwanawin, W. (1986). Origin of G6PD polymorphism: malaria and G6PD deficiency. In Glucose-6-Phosphate Dehydrogenase, edited by A. Yoshida and E. Beutler, p. 181. Academic Press, Orlando, FLCrossRef
Luzzatto, L., Mehta, A., and Vulliamy, T. J. (2001). The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York
Martin, M. P., Dean, M., Smith, M. W., Winkler, C., Gerrard, B., and 11 colleagues. (1998). Genetic acceleration of AIDS progression by a promoter variant at CCR5. Science, 282, 1907–1911CrossRefGoogle ScholarPubMed
Martini, G., Toniolo, D., Vulliamy, T., Luzzatto, L., Dono, R., and colleagues. (1986). Structural analysis of the X-linked gene encoding human glucose-6-phosphate dehydrogenase. EMBO J., 5, 1849–1855Google ScholarPubMed
McDonald, J. H., and Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652–654CrossRefGoogle ScholarPubMed
Miller, L. H. (1994). Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans. Proc. Natl. Acad. Sci. USA, 91, 2415–2419CrossRefGoogle ScholarPubMed
Morral, N., Bertranpetit, J., Estivill, X., Nunes, V., Casals, T., and 26 colleagues. (1994). The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nat. Genet., 7, 169–175CrossRefGoogle Scholar
Motulsky, A. G. (1961). Glucose-6-phosphate dehydrogenase deficiency haemolytic disease of newborn, and malaria. Lancet, 1, 1168–1169CrossRefGoogle Scholar
Mu, J., Duan, J., Makova, K. D., Joy, D. A., Huynh, C. Q., and 3 colleagues. (2002). Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature, 18, 323–326CrossRefGoogle Scholar
Nachman, M. W. (2001). Single nucleotide polymorphisms and recombination rate in humans. Trends Genet., 17, 481–485CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D., and Hogness, D. S. (1986). Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science, 232, 193–202CrossRefGoogle ScholarPubMed
Nieuwenhuis, F., Wolf, B., Bomba, A., and Graaf, P. (1986). Haematological study in Cabo Delgado province, Mozambique; sickle cell trait and G6PD deficiency. Trop. Geogr. Med., 38, 183–187Google ScholarPubMed
Oppenheim, A., Jury, C. L., Rund, D., Vulliamy, T. J., and Luzzatto, L. (1993). G6PD Mediterranean accounts for the high prevalence of G6PD deficiency in Kurdish Jews. Hum. Genet., 91, 293–294CrossRefGoogle ScholarPubMed
Piomelli, S., Reindorf, C. A., Arzanian, M. T., and Corash, L. M. (1972). Clinical and biochemical interactions of glucose-6-phosphate dehydrogenase deficiency and sickle-cell anemia. N. Engl. J. Med., 287, 213–217CrossRefGoogle ScholarPubMed
Przeworski, M., Hudson, R. R., and Di Rienzo, A. (2000). Adjusting the focus on human variation. Trends Genet., 16, 296–302CrossRefGoogle ScholarPubMed
Rich, S. M., and Ayala, F. J. (2000). Population structure and recent evolution of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 97, 6994–7001CrossRefGoogle ScholarPubMed
Roth, E. F., Suarez, Raventos C., Rinaldi, A., and Nagel, R. L. (1983). The effect of X chromosome inactivation on the inhibition of Plasmodium falciparum malaria growth by glucose-6-phosphate-dehydrogenase- deficient red cells. Blood, 62, 866–868Google ScholarPubMed
Ruwende, C., and Hill, A. (1998). Glucose-6-phosphate dehydrogenase deficiency and malaria. J. Mol. Med., 76, 581–588CrossRefGoogle ScholarPubMed
Ruwende, C., Khoo, S. C., Snow, R. W., Yates, S. N., Kwiatkowski, D., and colleagues. (1995). Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature, 376, 246–249CrossRefGoogle ScholarPubMed
Saad, S. T. O., and Costa, F. F. (1992). Glucose-6-phosphate dehydrogenase deficiency and sickle cell disease in Brazil. Hum. Hered., 42, 125–128CrossRefGoogle Scholar
Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z., Richter, D. J., Schaffner, S. F., Gabriel, S. B., Platko, J. V., Patterson, N. J., McDonald, G. J., Ackerman, H. C., Campbell, S. J., Altshuler, D., Cooper, R., Kwiatkowski, D., Ward, R., Lander, E. S. (2002). Detecting recent positive selection in the human genome from haplotype structure. Nature, 419 (6909), 832–837CrossRefGoogle ScholarPubMed
Samuel, A. P. W., Saha, N., Acquaye, J. K., Omer, A., Ganeshaguru, K., and 1 colleague. (1986). Association of red cell glucose-6-phosphate dehydrogenase with haemoglobinopathies. Hum. Hered., 36, 107–112CrossRefGoogle ScholarPubMed
Saunders, M. A., Hammer, M. F., and Nachman, M. W. (2002). Nucleotide variability at G6PD and the signature of malarial selection in humans. Genetics, 162, 1849–1861Google ScholarPubMed
Sherman, I. W. (1998). A brief history of malaria and discovery of the parasite's life cycle. In Malaria: Parasite Biology, Pathogenesis, and Protection, edited by I. W. Sherman, pp. 3–10. American Society for Microbiology, Washington, D.C.
Siniscalco, M., Bernini, L., Latte, B., and Motulsky, A. G. (1961). Favism and thalassaemia in Sardinia and their relationship to malaria. Nature, 190, 1179–1180CrossRefGoogle Scholar
Slatkin, M., and Rannala, B. (2000). Estimating allele age. Ann. Rev. Genomics Hum. Genet., 1, 225–249CrossRefGoogle ScholarPubMed
Steinberg, M. H., and Dreiling, B. J. (1974). Glucose-6-phosphate dehydrogenase deficiency in sickle cell anemia. Ann. Intern. Med., 80, 217–220CrossRefGoogle ScholarPubMed
Steinberg, M. H., West, M. S., Gallagher, D., and Mentzer, W. C. J. (1988). The cooperative study of sickle cell diseases: effects of glucose-6-phosphate dehydrogenase deficiency upon sickle cell anemia. Blood, 71, 748–752Google Scholar
Stephens, J. C., Reich, D. E., Goldstein, D. B., Shin, H. D., Smith, M. W., and 34 colleagues. (1998). Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet., 62, 1507–1515CrossRefGoogle ScholarPubMed
Tagarelli, A., Bastone, L., Cittadella, R., Calabro, V., Bria, M., and colleagues. (1991). Glucose-6-phosphate dehydrogenase (G6PD) deficiency in southern Italy: a study on the population of the Cosenza province. Gene Geogr., 5, 141–150Google ScholarPubMed
Taillon-Miller, P., Bauer-Sardina, I., Saccone, N. L., Putzel, J., Laitinen, T., and colleagues. (2000). Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat. Genet., 25, 324–328CrossRefGoogle ScholarPubMed
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595Google ScholarPubMed
Takizawa, T., Huang, I. Y., Ikuta, T., and Yoshida, A. (1986). Human glucose-6-phosphate dehydrogenase: primary structure and cDNA cloning. Proc. Natl. Acad. Sci. USA, 83, 4157–4161CrossRefGoogle ScholarPubMed
Tishkoff, S. A., Dietzsch, E., Speed, W., Pakstis, A. J., Kidd, J. R., and 5 colleagues. (1996). Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science, 271, 1380–1387CrossRefGoogle ScholarPubMed
Tishkoff, S. A., Varkonyi, R., Cahinhinan, N., Abbes, S., Argyropoulos, G., and colleagues. (2001). Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science, 293, 455–462CrossRefGoogle ScholarPubMed
Tishkoff, S. A., and Williams, S. M. (2002). Genetic analysis of African populations: human evolution and complex disease. Nature Rev. Genet., 3, 611–621CrossRefGoogle ScholarPubMed
Toole, J. J., Pittman, D. D., Orr, E. C., Murtha, P., Wasley, L. C., and Kantman, R. J. (1986). A large region (approximately equal to 95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proc. Natl. Acad. Sci. USA, 83, 5939–5942CrossRefGoogle ScholarPubMed
Usanga, E. A., and Luzzatto, L. (1985). Adaptation of Plasmodium falciparum to glucose 6-phosphate dehydrogenase-deficient host red cells by production of parasite-encoded enzyme. Nature, 313, 793–795CrossRefGoogle ScholarPubMed
Verra, F., and Hughes, A. L. (2000). Evidence for ancient balanced polymorphism at the Apical Membrane Antigen-1 (AMA-1) locus of Plasmodium falciparum. Mol. Biochem. Parasit., 105, 149–153CrossRefGoogle ScholarPubMed
Verrelli, B. C., McDonald, J. H., Argyropoulos, G., Destro-Bisol, G., Froment, A., and 5 colleagues. (2002). Evidence for balancing selection from nucleotide sequence analyses of human G6PD. Am. J. Hum. Genet., 71, 1112–1128CrossRefGoogle ScholarPubMed
Volkman, S. K., Barry, A. E., Lyons, E. J., Nielsen, K. M., Thomas, S. M., and colleagues. (2001). Recent origin of Plasmodium falciparum from a single progenitor. Science, 293, 482–484CrossRefGoogle ScholarPubMed
Vulliamy, T. J., Othman, A., Town, M., Nathwani, A., Falusi, A. G., and 2 colleagues. (1991). Polymorphic sites in the African population detected by sequence analysis of the glucose-6-phosphate dehydrogenase gene outline the evolution of the variants A and A-. Proc. Natl. Acad. Sci. USA, 88, 8568–8571CrossRefGoogle ScholarPubMed
Vulliamy, T., Mason, P., and Luzzatto, L. (1992). The molecular basis of glucose-6-phosphate dehydrogenase deficiency. Trends Genet., 8, 138–143CrossRefGoogle ScholarPubMed
Vulliamy, T., Beutler, E., and Luzzatto, L. (1993). Variants of glucose-6-phosphate-dehydrogenase are due to missense mutations spread throughout the coding region of the gene. Hum. Mutat., 2, 159–167CrossRefGoogle ScholarPubMed
Wall, J. D., and Przeworski, M. (2000). When did the human population size start increasing? Genetics, 155, 1865–1874Google ScholarPubMed
Warsy, A. S. (1985). Frequency of glucose-6-phosphate dehydrogenase deficiency in sickle-cell disease. Hum. Hered., 35, 143–147CrossRefGoogle ScholarPubMed
Wiesenfeld, S. L. (1967). Sickle-cell trait in human biological and cultural evolution. Development of agriculture causing increased malaria is bound to gene-pool changes causing malaria reduction. Science, 157, 1134–1140CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×