Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T05:26:49.026Z Has data issue: false hasContentIssue false

3 - Evolutionary Genetics of Plasmodium falciparum, the Agent of Malignant Malaria

Published online by Cambridge University Press:  10 August 2009

Stephen M. Rich
Affiliation:
Division of Infectious Disease, Tufts University School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536
Francisco J. Ayala
Affiliation:
University of California, Irvine, Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, Irvine, CA 92697-2525
Krishna R. Dronamraju
Affiliation:
Foundation for Genetic Research, Houston, Texas
Get access

Summary

We have investigated the population structure of P. falciparum by analyzing several genes and conclude that the extant world populations of this parasite have evolved from a single strain within the past several thousand years. The evidence is based on a lack of synonymous polymorphisms among nuclear antigenic and nonantigenic genes; among introns; and among mitochondrial loci. Coalescence calculations for silent nucleotide variation converge in each case into a single ancestral allele. The extensive polymorphisms observed in the highly repetitive central region of the Csp gene, as well as the apparently very divergent two classes of alleles at the Msp-1 gene, are consistent with this conclusion.

Understanding the population structure and evolution of Plasmodium has important implications for the control of human malaria.

The human toll of malaria is stunning, perhaps the greatest of all human afflictions (Sherman, 1998). Malaria is caused by species of Plasmodium, a parasitic protozoan. Four species of Plasmodium are parasitic to humans: P. falciparum, P. malariae, P. ovale, and P. vivax. P. falciparum is the most pervasive and malignant human malarial parasite. It causes yearly 300 million to 500 million cases of clinical illness and 1.5 million to 2.7 million deaths in sub-Saharan Africa, plus 5–20 million clinical cases and 100,000 deaths elsewhere in the world, 80% of them in Asia (Trigg and Kondrachine, 1998).

The genus Plasmodium consists of nearly 200 named species that parasitize reptiles, birds, and mammals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, R. F., Coppel, R. L., Brown, G. V., and Kemp, D. J., 1988. Antigens with repeated amino acid sequences from the asexual blood stages of Plasmodium falciparum. Prog. Allergy 41: 148–72Google ScholarPubMed
Anders, R. F., McColl, D. J., and Coppel, R. L., 1993. Molecular variation in Plasmodium falciparum: polymorphic antigens of asexual erythrocytic stages. Acta Trop. 53: 239–53CrossRefGoogle ScholarPubMed
Anderson, T. J., Su, X. Z., Bockarie, M., Lagog, M., and Day, K. P., 1999. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology 119: 113–25CrossRefGoogle ScholarPubMed
Anderson, T. J., Su, X. Z., Roddam, A., and Day, K. P., 2000. Complex mutations in a high proportion of microsatellite loci from the protozoan parasite Plasmodium falciparum. Mol. Ecol. 9: 1599–608CrossRefGoogle Scholar
Arnot, D. E., 1991. Possible mechanisms for the maintenance of polymorphisms in Plasmodium populations. Acta Leiden 60: 29–35Google ScholarPubMed
Ayala, F. J., 1995. Adam, Eve, and other ancestors: a story of human origins told by genes. Pubbl. Stn. Zool. Napoli II 17: 303–13Google ScholarPubMed
Ayala, F., Escalante, A., Lal, A., and Rich, S., 1998. Evolutionary relationships of human malarias. In Malaria: Parasite Biology, Pathogenesis, and Protection, I. W. Sherman, Ed., pp. 285–300. American Society of Microbiology Press, Washington, D.C.
Ayala, F. J., Escalante, A. A., and Rich, S. M., 1999. Evolution of Plasmodium and the recent origin of the world populations of Plasmodium falciparum. Parassitologia 41: 55–68Google ScholarPubMed
Babiker, H., and Walliker, D., 1997. Current views on the population structure of Plasmodium falciparum: implications for control. Parasitol. Today 13: 262–7CrossRefGoogle ScholarPubMed
Barta, J. R., 1989. Phylogenetic analysis of the class Sporozoea (phylum Apicomplexa Levine, 1970): evidence for the independent evolution of heteroxenous life cycles. J. Parasitol. 75: 195–206CrossRefGoogle ScholarPubMed
Barta, J. R., Jenkins, M. C., and Danforth, H. D., 1991. Evolutionary relationships of avian Eimeria species among other Apicomplexan protozoa: monophyly of the apicomplexa is supported. Mol. Biol. Evol. 8: 345–55Google ScholarPubMed
Bensch, S., Stjernman, M., Hasselquist, D., Ostman, O., Hansson, B., Westerdahl, H., and Pinheiro, R. T., 2000. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. R. Soc. B 267: 1583–9CrossRefGoogle ScholarPubMed
Bickle, Q., Anders, R. F., Day, K., and Coppel, R. L., 1993. The S-antigen of Plasmodium falciparum: repertoire and origin of diversity. Mol. Biochem. Parasitol. 61: 189–96CrossRefGoogle ScholarPubMed
Coatney, G. R., 1976. Relapse in malaria – an enigma. J. Parasitol. 62: 3–9CrossRefGoogle ScholarPubMed
Coluzzi, M., 1994. Malaria and the afro-tropical ecosystems impact of man-made environmental changes. Parassitologia 36: 223–7Google Scholar
Coluzzi, M., 1997. “Interazioni Evolutive Uomo-Plasmodìo-Anophele.” In Evoluzione Biologica & i Grandi Problemi della Biologia, pp. 263–85. Accademia dei Lincei, Rome
Coluzzi, M., 1999. The clay feet of the malaria giant and its African roots: hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia 41: 277–83Google ScholarPubMed
Coluzzi, M., Sabatini, A., della Torre, A., Di Deco, M. A., and Petrarca, V., 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298: 1415–18CrossRefGoogle ScholarPubMed
Conway, D. J., and Baum, J., 2002. In the blood – the remarkable ancestry of Plasmodium falciparum. Trends Parasitol. 18: 351–5CrossRefGoogle ScholarPubMed
Conway, D. J., Fanello, C., Lloyd, J. M., Al-Joubori, B. M., Baloch, A. H., Somanath, S. D., Roper, C., Oduola, A. M. J., Mulder, B., Povoa, M. M., Singh, B., and Thomas, A. W., 2000. Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Mol. Biochem. Parasitol. 111: 163–71CrossRefGoogle ScholarPubMed
Corliss, J. O., 1994. An interim utilitarian (“user-friendly”) hierarchical classification and characterization of the protists. Acta Protozool. 33: 1–51Google Scholar
Cowman, A. F., and Lew, A. M., 1989. Antifolate drug selection results in duplication and rearrangement of chromosome 7 in Plasmodium chabaudi. Mol. Cell Biol. 9: 5182–8CrossRefGoogle ScholarPubMed
Creasey, A., Fenton, B., Walker, A., Thaithong, S., Oliveira, S., Mutambu, S., and Walliker, D., 1990. Genetic diversity of Plasmodium falciparum shows geographical variation. Am. J. Trop. Med. Hyg. 42: 403–13CrossRefGoogle ScholarPubMed
Dame, J. B., Williams, J. L., McCutchan, T. F., Weber, J. L., Wirtz, R. A., Hockmeyer, W. T., Maloy, W. L., Haynes, J. D., Schneider, I., Roberts, D., Sanders, G. S., Reddy, E. P., Diggs, C. L., and Miller, L. H., 1984. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science 225: 593–9CrossRefGoogle ScholarPubMed
Zulueta, J., 1994. Malaria and ecosystems: from prehistory to posteradication. Parassitologia 36: 7–15Google ScholarPubMed
Zulueta, J., Blazquez, J., and Maruto, J. F., 1973. Entomological aspects of receptivity to malaria in the region of Navalmoral of Mata. Revista de Sanidad e Higiene Pública (Madrid) 47: 853–70Google ScholarPubMed
della Torre, A., Costantini, C., Besansky, N. J., Caccone, A., Petrarca, V., Powell, J. R., and Coluzzi, M., 2002. Speciation within Anopheles gambiae – the glass is half full. Science 298: 115–7CrossRefGoogle ScholarPubMed
Escalante, A. A., and Ayala, F. J., 1994. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc. Natl. Acad. Sci. U.S.A. 91: 11, 373–7CrossRefGoogle ScholarPubMed
Escalante, A. A., and Ayala, F. J., 1995. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. Proc. Natl. Acad. Sci. U.S.A. 92: 5793–97CrossRefGoogle ScholarPubMed
Escalante, A. A., Barrio, E, and Ayala, F. J., 1995. Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol. Biol. Evol. 12: 616–26Google ScholarPubMed
Escalante, A. A., Freeland, D. E., Collins, W. E., and Lal, A. A., 1998a. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc. Natl. Acad. Sci. U.S.A. 95: 8124–9CrossRefGoogle Scholar
Escalante, A. A., Lal, A. A., and Ayala, F. J., 1998b. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149: 189–202Google Scholar
Fandeur, T., Volney, B., Peneau, C., and Thoisy, B., 2000. Monkeys of the rainforest in French Guiana are natural reservoirs for P-brasilianum/P-malariae malaria. Parasitology 120: 11–21CrossRefGoogle ScholarPubMed
Forsdyke, D., 2002. Selective pressures that decrease synonymous mutations in Plasmodium falciparum. Trends Parasitol. 18: 411CrossRefGoogle ScholarPubMed
Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M. S., Nene, V., Shallom, S. J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M. W., Vaidya, A. B., Martin, D. M. A., Fairlamb, A. H., Fraunholz, M. J., Roos, D. S., Ralph, S. A., McFadden, G. I., Cummings, L. M., Subramanian, G. M., Mungall, C., Venter, J. C., Carucci, D. J., Hoffman, S. L., Newbold, C., Davis, R. W., Fraser, C. M., and Barrell, B., 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511CrossRefGoogle ScholarPubMed
Garnham, P. C. C., 1966. Malaria Parasites and Other Hemosporidia, pp. 60–84. Blackwell Scientific, Oxford
Gilles, H. M., and Warrell, D. A., 1993. Bruce-Chwatt's Essential Malariology. Edward Arnold, London
Gramzinski, R. A., Maris, D. C., Doolan, D., Charoenvit, Y., Obaldia, N., Rossan, R., Sedegah, M., Wang, R., Hobart, P., Margalith, M., and Hoffman, S., 1997. Malaria DNA vaccines in Aotus monkeys. Vaccine 15: 913–5CrossRefGoogle ScholarPubMed
Gysin, J., 1998. Animal models: primates. In Malaria: Parasite Biology, Pathogenesis, and Protection, I. W. Sherman, Ed., pp. 419–441. American Society of Microbiology Press, Washington, D.C.
Hancock, J. M., 1999. Microsatellites and other simple sequences: genomic context and mutational mechanisms. In Microsatellites, Evolution and Applications, D. B. Goldstein and C. Schlötterer, Eds., pp. 1–9. Oxford University Press, Oxford
Hartl, D. L., Volkman, S. K., Nielsen, K. M., Barry, A. E., Day, K. P., Wirth, D. F., and Winzeler, E. A., 2002. The paradoxical population genetics of Plasmodium falciparum. Trends Parasitol. 18: 266–72CrossRefGoogle ScholarPubMed
Holt, R. A., Subramanian, G. M., Halpern, A., Sutton, G. G., Charlab, R., Nusskern, D. R., Wincker, P., Clark, A. G., Ribeiro, J. M. C., Wides, R., Salzberg, S. L., Loftus, B., Yandell, M., Majoros, W. H., Rusch, D. B., Lai, Z. W., Kraft, C. L., Abril, J. F., Anthouard, V., Arensburger, P., Atkinson, P. W., Baden, H., Berardinis, V., Baldwin, D., Benes, V., Biedler, J., Blass, C., Bolanos, R., Boscus, D., Barnstead, M., Cai, S., Center, A., Chatuverdi, K., Christophides, G. K., Chrystal, M. A., Clamp, M., Cravchik, A., Curwen, V., Dana, A., Delcher, A., Dew, I., Evans, C. A., Flanigan, M., Grundschober-Freimoser, A., Friedli, L., Gu, Z. P., Guan, P., Guigo, R., Hillenmeyer, M. E., Hladun, S. L., Hogan, J. R., Hong, Y. S., Hoover, J., Jaillon, O., Ke, Z. X., Kodira, C., Kokoza, E., Koutsos, A., Letunic, I., Levitsky, A., Liang, Y., Lin, J. J., Lobo, N. F., Lopez, J. R., Malek, J. A., McIntosh, T. C., Meister, S., Miller, J., Mobarry, C., Mongin, E., Murphy, S. D., O'Brochta, D. A., Pfannkoch, C., Qi, R., Regier, M. A., Remington, K., Shao, H. G., Sharakhova, M. V., Sitter, C. D., Shetty, J., Smith, T. J., Strong, R., Sun, J. T., Thomasova, D., Ton, L. Q., Topalis, P., Tu, Z. J., Unger, M. F., Walenz, B., Wang, A. H., Wang, J., Wang, M., Wang, X. L., Woodford, K. J., Wortman, J. R., Wu, M., Yao, A., Zdobnov, E. M., Zhang, H. Y., Zhao, Q., Zhao, S. Y., Zhu, S. P. C., Zhimulev, I., Coluzzi, M., della Torre, A., Roth, C. W., Louis, C., Kalush, F., Mural, R. J., Myers, E. W., Adams, M. D., Smith, H. O., Broder, S., Gardner, M. J., Fraser, C. M., Birney, E., Bork, P., Brey, P. T., Venter, J. C., Weissenbach, J., Kafatos, F. C., Collins, F. H., and Hoffman, S. L., 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129–49CrossRefGoogle ScholarPubMed
Hudson, R. R., Sáez, A. G., and Ayala, F. J., 1997. DNA variation at the Sod locus of Drosophila melanogaster: an unfolding story of natural selection. Proc. Natl. Acad. Sci. U.S.A. 94: 7725–9CrossRefGoogle ScholarPubMed
Huff, C. A., 1938. Studies on the evolution of some disease-producing organisms. Q. Rev. Biol. 13: 196–206CrossRefGoogle Scholar
Hughes, A. L., 1992. Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum. Mol. Biol. Evol. 9: 381–93Google ScholarPubMed
Hughes, A. L., 1993. Coevolution of immunogenic proteins of Plasmodium falciparum and the host's immune system. In Mechanisms of Molecular Evolution, N. Takahata and A. G. Clark, Eds., pp. 109–27. Sinauer Assoc., Sunderland, MA
Hughes, A. L., and Hughes, M. K., 1995. Natural selection on Plasmodium surface proteins. Mol. Biochem. Parasitol. 71: 99–113CrossRefGoogle ScholarPubMed
Hughes, A. L., and Verra, F., 2001. Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc. R. Soc. London Ser. B-Biol. Sci. 268: 1855–60CrossRefGoogle ScholarPubMed
Hughes, K. T., Cookson, B. T., Ladika, D., Olivera, B. M., and Roth, J. R., 1983. 6-Aminonicotinamide-resistant mutants of Salmonella typhimurium. J. Bacteriol. 154: 1126–36Google ScholarPubMed
Kawamoto, F., Win, T. T., Mizuno, S., Lin, K., Kyaw, O., Tantular, I. S., Mason, D. P., Kimura, M., and Wongsrichanalai, C., 2002. Unusual Plasmodium malariae-like parasites in Southeast Asia. J. Parasitol. 88: 350–7CrossRefGoogle ScholarPubMed
Kemp, D. J., and Cowman, A. F., 1990. Genetic diversity of Plasmodium falciparum. Adv. Parasitol. 29: 75–133CrossRefGoogle ScholarPubMed
Kemp, D. J., Coppel, R. L., and Anders, R. F., 1987. Repetitive proteins and genes of malaria. Ann. Rev. Microbiol. 41: 181–208CrossRefGoogle ScholarPubMed
Krzywinski, J., and Besansky, N. J., 2002. Molecular systematics of Anopheles: from subgenera to subpopulations. Ann. Rev. Entomol. 27: 27Google Scholar
Levine, N. D., 1988. The Protozoan Phylum Apicomplexa, Vol. 1. CRC Press, Boca Raton, FL
Levinson, G., and Gutman, G. A., 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203–21Google Scholar
Li, W.-H., 1997. Molecular Evolution. Sinauer Assoc., Sunderland, MA
Livingston, F. B., 1958. Anthropological implications of sickle cell gene distribution in West Africa. Am. Anthropol. 60: 533–60CrossRefGoogle Scholar
López-Antuñano, F., and Schumunis, F., 1993. Plasmodia of humans. In Parasitic Protozoa, J. Kreier, Ed., pp. 135–265. Academic Press, New York
Manwell, R. D., 1955. Some evolutionary possibilities in the history of the malaria parasites. Indian J. Malariol. 9: 247–53Google ScholarPubMed
Margulis, L., McKhann, H. I., and Olendzenski, L., 1993. Illustrated Guide of Protoctista. Jones & Bartlett, Boston
Mason, S. J., Miller, L. H., Shiroishi, T., Dvorak, J. A., and McGinniss, M. H., 1977. The Duffy blood group determinants: their role in the susceptibility of human and animal erythrocytes to Plasmodium knowlesi malaria. Brit. J. Haematol. 36: 327–35CrossRefGoogle ScholarPubMed
Mattingly, P. F., 1965. In Evolution of Parasites, A. E. R. Taylor, Ed., pp. 29–45. Blackwell Scientific, Oxford
McConkey, G. A., Waters, A. P., and McCutchan, T. F., 1990. The generation of genetic diversity in malarial parasites. Ann. Rev. Microbiol. 44: 479–98CrossRefGoogle Scholar
McCutchan, T. F., and Waters, A. P., 1990. Mutations with multiple independent origins in surface antigens mark the targets of biological selective pressure. Immunol. Lett. 25: 23–6CrossRefGoogle ScholarPubMed
McCutchan, T. F., Kissinger, J. C., Touray, M. G., Rogers, M. J., Li, J., Sullivan, M., Braga, E. M., Krettli, A. U., and Miller, L., 1996. Comparison of circumsporozoite proteins from avian and mammalian malaria: biological and phylogenetic implications. Proc. Natl. Acad. Sci. U.S.A. 93: 11, 889–94CrossRefGoogle ScholarPubMed
Miller, L. H., Mason, S. J., Clyde, D. F., and McGinniss, M. H., 1976. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295: 302–4CrossRefGoogle Scholar
Miller, L. H., Roberts, T., Shahabuddin, M., and McCutchan, T. F., 1993. Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol. Biochem. Parasitol. 59: 1–14CrossRefGoogle Scholar
Miller, R. L., Ikram, S., Armelagos, G. J., Walker, R., Harer, W. B., Shiff, C. J., Baggett, D., Carrigan, M., and Maret, S. M., 1994. Diagnosis of Plasmodium falciparum infections in mummies using the rapid manual ParaSight-F test. Trans. R. Soc. Trop. Med. Hyg. 88: 31–2CrossRefGoogle ScholarPubMed
Morrison, D. A., and Ellis, J. T., 1997. Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of apicomplexa. Mol. Biol. Evol. 14: 428–41CrossRefGoogle ScholarPubMed
Mu, J. B., Duan, J. H., Makova, K. D., Joy, D. A., Huynh, C. Q., Branch, O. H., Li, W. H., and Su, X. Z., 2002. Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 418: 323–6CrossRefGoogle ScholarPubMed
Powell, J. R., Petrarca, V., della Torre, A., Caccone, A., and Coluzzi, M., 1999. Population structure, speciation, and introgression in the Anopheles gambiae complex. Parassitologia 41: 101–13Google ScholarPubMed
Qari, S. H., Collins, W. E., Lobel, H. O., Taylor, F., and Lal, A. A., 1994. A study of polymorphism in the circumsporozoite protein of human malaria parasites. Am. J. Trop. Med. Hyg. 50: 45–51CrossRefGoogle ScholarPubMed
Rich, S. M., and Ayala, F. J., 1998. The recent origin of allelic variation in antigenic determinants of Plasmodium falciparum. Genetics 150: 515–7Google ScholarPubMed
Rich, S. M., and Ayala, F. J., 1999. Circumsporozoite polymorphism, silent mutations and the evolution of Plasmodium falciparum. Reply. Parasitol. Today 15: 39–40CrossRefGoogle Scholar
Rich, S. M., and Ayala, F. J., 2000. Population structure and recent evolution of Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 97: 6994–7001CrossRefGoogle ScholarPubMed
Rich, S. M., Hudson, R. R., and Ayala, F. J., 1997. Plasmodium falciparum antigenic diversity: evidence of clonal population structure. Proc. Natl. Acad. Sci. U.S.A. 94: 13,040–5CrossRefGoogle ScholarPubMed
Rich, S. M., Licht, M. C., Hudson, R. R., and Ayala, F. J., 1998. Malaria's Eve: evidence of a recent bottleneck in the global Plasmodium falciparum population. Proc. Natl. Acad. Sci. U.S.A. 95: 4425–30CrossRefGoogle Scholar
Rich, S. M., Ferreira, M. U., and Ayala, F. J., 2000. The origin of antigenic diversity in Plasmodium falciparum. Parasitol. Today 16: 390–6CrossRefGoogle ScholarPubMed
Ricklefs, R. E., and Fallon, S. M., 2002. Diversification and host switching in avian malaria parasites. Proc. R. Soc. London Ser. B-Biol. Sci. 269: 885–92CrossRefGoogle ScholarPubMed
Sáez, A. G., Tatarenkov, A., Barrio, E., Becerra, N. H., and Ayala, F. J., 2003. Patterns of DNA sequence polymorphism at Sod vicinities in Drosophila melanogaster: unraveling the footprint of a recent selective sweep. Proc. Natl. Acad. Sci. U.S.A. 100: 1793–8CrossRefGoogle ScholarPubMed
Saul, A., 1999. Circumsporozoite polymorphisms, silent mutations and the evolution of Plasmodium falciparum. Parasitol. Today 15: 38–9CrossRefGoogle ScholarPubMed
Saul, A., and Battistutta, D., 1988. Codon usage in Plasmodium falciparum. Mol. Biochem. Parasitol. 27: 35–42CrossRefGoogle ScholarPubMed
Schug, M. D., Hutter, C. M., Noor, M. A., and Aquadro, C. F., 1998. Mutation and evolution of microsatellites in Drosophila melanogaster. Genetica 102–103: 359–67CrossRefGoogle ScholarPubMed
Sharakhov, I. V., Serazin, A. C., Grushko, O. G., Dana, A., Lobo, N., Hillenmeyer, M. E., Westerman, R., Romero-Severson, J., Costantini, C., Sagnon, N., Collins, F. H., and Besansky, N. J., 2002. Inversions and gene order shuffling in Anopheles gambiae and A. funestus. Science 298: 182–5CrossRefGoogle ScholarPubMed
Sherman, I. W., 1998. A brief history of malaria and the discovery of the parasite's life cycle. In Malaria: Parasite Biology, Pathogenesis, and Protection, I. W. Sherman, Ed., pp. 3–10. American Society of Microbiology Press, Washington, D.C.
Sinnis, P., and Wellems, T. E., 1988. Long range restriction maps of Plasmodium falciparum chromosomes: crossing over and size variation in geographically distant isolates. Genomics 3: 287–95CrossRefGoogle ScholarPubMed
Slatkin, M., and Hudson, R. R., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555–62Google ScholarPubMed
Su, X., and Wellems, T. E., 1996. Toward a high-resolution Plasmodium falciparum linkage map: polymorphic markers from hundreds of simple sequence repeats. Genomics 33: 430–44CrossRefGoogle Scholar
Tanabe, K., Mackay, M., Goman, M., and Scaife, J. G., 1987. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 195: 273–87CrossRefGoogle Scholar
Tishkoff, S. A., Varkonyi, R., Cahinhinan, N., Abbes, S., Argyropoulos, G., Destro-Bisol, G., Drousiotou, A., Dangerfield, B., Lefranc, G., Loiselet, J., Piro, A., Stoneking, M., Tagarelli, A., Tagarelli, G., Touma, E. H., Williams, S. M., and Clark, A. G., 2001. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293: 455–62CrossRefGoogle ScholarPubMed
Trigg, P. I., and Kondrachine, A. V., 1998. The current global malaria situation. In Malaria: Parasite Biology, Pathogenesis, and Protection, I. W. Sherman, Ed., pp. 11–22. ASM Press, Washington, D.C.
Peer, Y., Auwera, G., and Wachter, R., 1996. The evolution of stramenopiles and alveolates as derived by “substitution rate calibration” of small ribosomal subunit RNA. J. Mol. Evol. 42: 201–10CrossRefGoogle ScholarPubMed
Vivier, E., and Desportes, I., 1989. Apicomplexa. In Handbook of Protoctista, L. Margulis, J. O. Corliss, M. Melkonia, and D. J. Chapman, Eds., pp. 549–73. Jones & Bartlett, Boston
Volkman, S. K., Barry, A. E., Lyons, E. J., Nielsen, K. M., Thomas, S. M., Choi, M., Thakore, S. S., Day, K. P., Wirth, D. F., and Hartl, D. L., 2001. Recent origin of Plasmodium falciparum from a single progenitor. Science 293: 482–84CrossRefGoogle ScholarPubMed
Walton, C., Handley, J. M., Tun-Lin, W., Collins, F. H., Harbach, R. E., Baimai, V., and Butlin, R. K., 2000. Population structure and population history of Anopheles dirus mosquitoes in Southeast Asia. Mol. Biol. Evol. 17: 962–74CrossRefGoogle ScholarPubMed
Weisenfeld, S. L., 1967. Sickle-cell trait in human biological and cultural evolution. Development of agriculture causing increased malaria is bound to gene-pool changes causing malaria reduction. Science 157: 1134–40CrossRefGoogle Scholar
Zevering, Y., Khamboonruang, C., and Good, M. F., 1998. Human and murine T-cell responses to allelic forms of a malaria circumsporozoite protein epitope support a polyvalent vaccine strategy. Immunology 94: 445–54CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×