Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T15:18:51.039Z Has data issue: false hasContentIssue false

2 - Arithmetical preliminaries

Published online by Cambridge University Press:  30 March 2017

Torkel Franzén
Affiliation:
Luleå Tekniska Universitet, Sweden
Get access

Summary

Numbers

Counting things is an extraordinarily useful and important part of our everyday thinking. Suppose you are taking the ducklings Quacky, Beaky, Tailfeather, Downhead, and Webfoot on an outing. At several points — getting off the bus, distributing worms, returning home — you're anxious to make sure that none of the ducklings has slipped away or been inadvertently left behind. You can do this by looking for and locating each of the ducklings, or by having them respond when you call out their names. However, if you don't know the ducklings personally and don't have a list of their names it may be quite difficult to keep track of them this way. You can then adopt the expedient of simply counting the ducklings at each check, making sure there are five of them. This way, you don't need to look for Quacky, Beaky, etc. individually, and it doesn't matter if you don't know them or their names.

There is a price to pay for this greater convenience. Counting the ducklings means abstracting from, or in other words disregarding, their particular identities. The only information noted is their number. Thus it is quite compatible with there being at all times five ducklings in your charge that Quacky has absconded and his place been taken by another duckling. If, as is to be assumed, such an event is undesirable, counting will replace individual inspection only when the risk that a substitution will occur is thought to be negligible.

In other cases, it doesn't matter if a substitution takes place, as long as the item substituted is recognizably of the proper kind. This is the case since ancient times when people count coins, sacks of grain or other commercial items, and when generals count soldiers.

The great usefulness of counting amply justifies and explains the occurrence in language of names and notations for the counting numbers 1,2,3,and the very concept of “number” associated with them. “Three soldiers”, “three sacks of grain”, “three days”, are recognized as having in common that there are three of them. When counting, the items counted are tallied against the names of the numbers in a memorized order, and thus a total is arrived at. These totals can be checked and compared with other totals, giving useful information of various kinds.

Type
Chapter
Information
Inexhaustibility
A Non-Exhaustive Treatment
, pp. 15 - 36
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×