Published online by Cambridge University Press: 05 April 2019
Any white dwarf or neutron star that accretes enough material from a red giant companion, such that this interaction can be detected at some wavelength, is currently termed asymbiotic star (orbital period ∼2–3 years). In the majority of ∼400 known systems, the white dwarf burns nuclearly at its surface the accreted material, and the resulting high temperatureand luminosity allow ionisation of a large fraction of the cool giant’s wind. X-ray observations are revealing the existence of a parallel (and large ?) population of optically quiet, accreting-only symbiotic stars. Accretion flows and disks, ionisation fronts and shock, complex 3D geometries and new evolution channels are gaining relevance and are reshaping our understanding of symbiotic stars. The chapter reviews the different types of symbiotic stars currently in the family and their variegated outburst behaviours.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.