Book contents
- Frontmatter
- Contents
- List of plates
- List of figures
- List of tables
- List of contributors
- Introduction: the constructive interdisciplinary viewpoint for understanding mechanisms and models of imitation and social learning
- Part I Correspondence problems and mechanisms
- Part II Mirroring and ‘mind-reading’
- 4 A neural architecture for imitation and intentional relations
- 5 Simulation theory of understanding others: a robotics perspective
- 6 Mirrors and matchings: imitation from the perspective of mirror-self-recognition, and the parietal region's involvement in both
- Part III What to imitate?
- Part IV Development and embodiment
- Part V Synchrony and turn-taking as communicative mechanisms
- Part VI Why imitate? – Motivations
- Part VII Social feedback
- Part VIII The ecological context
- Index
- Plate section
- References
4 - A neural architecture for imitation and intentional relations
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- List of plates
- List of figures
- List of tables
- List of contributors
- Introduction: the constructive interdisciplinary viewpoint for understanding mechanisms and models of imitation and social learning
- Part I Correspondence problems and mechanisms
- Part II Mirroring and ‘mind-reading’
- 4 A neural architecture for imitation and intentional relations
- 5 Simulation theory of understanding others: a robotics perspective
- 6 Mirrors and matchings: imitation from the perspective of mirror-self-recognition, and the parietal region's involvement in both
- Part III What to imitate?
- Part IV Development and embodiment
- Part V Synchrony and turn-taking as communicative mechanisms
- Part VI Why imitate? – Motivations
- Part VII Social feedback
- Part VIII The ecological context
- Index
- Plate section
- References
Summary
Imitation is an important form of learning, facilitating the acquisition of many skills without the time-consuming process of trial-and-error learning. Imitation is also associated with the ability to develop social skills and understand the goals, the intentions and the feelings of other people (Meltzoff and Prinz, 2002). The neural underpinnings of imitation and their possible evolutionary precursors have been recently investigated with different approaches, including neurological investigations, brain imaging, single cell recordings and computational models. This chapter discusses a neural architecture for imitation comprising superior temporal cortex, the rostral part of the posterior parietal cortex and inferior frontal cortex. The main thesis of the chapter is that the central role of imitation in the development of social skills is due to the functional properties of this neural architecture. These properties allow a common framework for third person knowledge (i.e. the observation of actions of others) and first person knowledge (i.e. internal motor plans).
Neurophysiology
Neurons in the superior temporal sulcus (STS) respond to moving biological stimuli, such as hands, faces and bodies (Jellema et al., 2002). The responses of some of these neurons occur only when the body or body part is engaged in goal-oriented actions, for instance when a hand reaches and grasps an object. The sight of a hand reaching toward the object but not grasping it will not activate these STS neurons. Point-light versions of the complete action, i.e. a hand reaching and grasping an object, however, do activate STS cells.
- Type
- Chapter
- Information
- Imitation and Social Learning in Robots, Humans and AnimalsBehavioural, Social and Communicative Dimensions, pp. 71 - 88Publisher: Cambridge University PressPrint publication year: 2007
References
- 4
- Cited by