Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T15:22:42.445Z Has data issue: false hasContentIssue false

Chapter 1 - Imaging Biomarkers for Febrile Status Epilepticus and Other Forms of Convulsive Status Epilepticus

from Part I - Imaging the Development and Early Phase of the Disease

Published online by Cambridge University Press:  07 January 2019

Andrea Bernasconi
Affiliation:
Montreal Neurological Institute, McGill University
Neda Bernasconi
Affiliation:
Montreal Neurological Institute, McGill University
Matthias Koepp
Affiliation:
Institute of Neurology, University College London
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berg, AT, Berkovic, SF, Brodie, MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85.Google Scholar
Meldrum, B. Physiological changes during prolonged seizures and epileptic brain damage. Neuropadiatrie. 1978;9(3):203–12.Google Scholar
Fujikawa, DG. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res. 1996;725(1):1122.Google Scholar
Lowenstein, DH, Bleck, T, Macdonald, RL. It’s time to revise the definition of status epilepticus. Epilepsia. 1999;40(1):120–2.Google Scholar
Neligan, A, Shorvon, SD. Frequency and prognosis of convulsive status epilepticus of different causes: a systematic review. Arch Neurol. 2010;67(8):931–40.Google Scholar
Sutter, R, Kaplan, PW, Ruegg, S. Outcome predictors for status epilepticus—what really counts. Nat Rev Neurol. 2013;9(9):525–34.CrossRefGoogle ScholarPubMed
Goyal, MK, Sinha, S, Ravishankar, S, Shivshankar, JJ. Role of MR imaging in the evaluation of etiology of status epilepticus. J Neurol Sci. 2008;272(1–2):143–50.Google Scholar
Maytal, J, Shinnar, S, Moshé, SL, Alvarez, LA. Low morbidity and mortality of status epilepticus in children. Pediatrics. 1989;83(3):323.CrossRefGoogle ScholarPubMed
Waruiru, C, Appleton, R. Febrile seizures: an update. Arch Dis Child. 2004;89(8):751–6.Google Scholar
Nelson, K, Ellenberg, JH. Prognosis in children with febrile seizures. Pediatrics. 1978;61:720–7.CrossRefGoogle ScholarPubMed
Valentı, A, Alarco, G. Mesial temporal lobe epilepsy with hippocampal sclerosis. In: Panayiotopoulos, CP, ed. Atlas of Epilepsies. London: Springer; 2010:1171–5.Google Scholar
Harvey, AS, Grattan-Smith, JD, Desmond, PM, Chow, CW, Berkovic, SF. Febrile seizures and hippocampal sclerosis: frequent and related findings in intractable temporal lobe epilepsy of childhood. Pediatr Neurol. 1995;12(3):201–6.CrossRefGoogle ScholarPubMed
Janszky, J, Janszky, I, Ebner, A. Age at onset in mesial temporal lobe epilepsy with a history of febrile seizures. Neurology. 2004;63(7):1296–8.CrossRefGoogle ScholarPubMed
Arbelaez A, , Castillo, M, Mukherji, SK. Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol. 1999;20(6):9991007.Google ScholarPubMed
Yoong, M, Martinos, MMM, Chin, RRF, Clark, CA, Scott RC. Hippocampal volume loss following childhood convulsive status epilepticus is not limited to prolonged febrile seizures. Epilepsia. 2013;54(12):2108–15.CrossRefGoogle Scholar
Scott, RC, King, MD, Gadian, DG, Neville, BGR, Connelly, A. Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study. Brain. 2003;126(pt 11):2551–7.Google Scholar
Lewis, DV, Shinnar, S, Hesdorffer, DC, et al. Hippocampal sclerosis after febrile status epilepticus: the FEBSTAT study. Ann Neurol. 2014;75(2):178–85.Google Scholar
Provenzale, JM, Barboriak, DP, VanLandingham, K, MacFall, J, Delong, D, Lewis, DV. Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. AJR Am J Roentgenol. 2008;190(4):976–83.Google Scholar
Pujar, SS, Neville, BGR, Scott, RC, Chin, RFM. Death within 8 years after childhood convulsive status epilepticus: a population-based study. Brain. 2011;134(pt 10):2819–27.CrossRefGoogle ScholarPubMed
Camfield, PR, Camfield, CS, Gordon, K, Dooley, J. What types of epilepsy are preceded by febrile seizures? A population-based study of children. Dev Med Child Neurol. 1994;36:887–92.Google Scholar
Scott, RC, King, MD, Gadian, DG, Neville, BGR, Connelly, A. Prolonged febrile seizures are associated with hippocampal vasogenic edema and developmental changes. Epilepsia. 2006;47(9):1493–8.Google Scholar
Scott, RC, Gadian, DG, King, MD, et al. Magnetic resonance imaging findings within 5 days of status epilepticus in childhood. Brain. 2002;125(pt 9):1951–9.CrossRefGoogle ScholarPubMed
Gross, DW, Concha, L, Beaulieu, C. Extratemporal white matter abnormalities in mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging. Epilepsia. 2006;47(8):1360–3.CrossRefGoogle ScholarPubMed
Kimiwada, T, Juhász, C, Makki, M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia. 2006;47(1):167–75.Google Scholar
Yoong, M, Seunarine, K, Martinos, M, Chin, RF, Clark, CA, Scott, RC. Prolonged febrile seizures cause reversible reductions in white matter integrity. NeuroImage Clin. 2013;24(3):515–21.Google Scholar
Martinos, M, Yoong, M, Patil, S, et al. Recognition memory is impaired in children following prolonged febrile seizures. Brain. 2012;135(10):3153–64.Google Scholar
Dube, CM, Ravizza, T, Hamamura, M, et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci. 2010;30(22):7484–94.Google Scholar
Choy, M, Wells, JA, Thomas, DL, Gadian, DG, Scott, RC, Lythgoe, MF. Cerebral blood flow changes during pilocarpine-induced status epilepticus activity in the rat hippocampus. Exp Neurol. 2010;225(1):196201.Google Scholar
Dedeurwaerdere, S, Fang, K, Chow, M, et al. Manganese-enhanced MRI reflects seizure outcome in a model for mesial temporal lobe epilepsy. NeuroImage. 2013;68:30–8.Google Scholar
Duffy, BA, Choy, M, Riegler, J, et al. Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent. NeuroImage. 2012;60(2):1149–55.Google Scholar
Dubé, C, Richichi, C, Bender, RA, Chung, G, Litt, B, Baram, TZ. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain. 2006;129(pt 4):911–22.CrossRefGoogle ScholarPubMed
Dubé, C, Yu, H, Nalcioglu, O, Baram, TZ. Serial MRI after experimental febrile seizures: altered T2 signal without neuronal death. Ann Neurol. 2004;56(5):709–14.Google Scholar
Yoong, M. Quantifying the deficit—imaging neurobehavioural impairment in childhood epilepsy. Quant Imaging Med Surg. 2015;5(2):225–37.Google Scholar
Barry, JM, Choy, M, Dube, C, et al. T2 relaxation time post febrile status epilepticus predicts cognitive outcome. Exp Neurol. 2015;269:242–52.CrossRefGoogle ScholarPubMed
Choy, M, Dubé, CM, Patterson, K, et al. A novel, noninvasive, predictive epilepsy biomarker with clinical potential. J Neurosci. 2014;34(26):8672–84.Google Scholar
Gousias, IS, Edwards, AD, Rutherford, MA, et al. Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants. NeuroImage. 2012;62(3):1499–509.CrossRefGoogle ScholarPubMed
Guo, Y, Wu, G, Commander, LA, et al. Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features. Med Image Comput Comput Assist Interv. 2014;17(2):308–15.Google Scholar
Evans, AC. The NIH MRI study of normal brain development. NeuroImage. 2006;30(1):184202.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×