Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T08:32:59.412Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  10 November 2016

Dimitris G. Manolakis
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory
Ronald B. Lockwood
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory
Get access
Type
Chapter
Information
Hyperspectral Imaging Remote Sensing
Physics, Sensors, and Algorithms
, pp. 654 - 677
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. A., Ackerman, K. I., Strabala,W. P., Menzel, R. A., Frey, C. C., Moeller, and L. E., Gumley. Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research, 103(D24): 32141–32157, 1998.Google Scholar
J. B., Adams and A. R., Gillespie. Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach. Cambridge, UK: Cambridge University Press, 2006.Google Scholar
J. B., Adams, M. O., Smith, and A. R., Gillespie. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In C. M., Pieters and P. A. J., Englert, editors, Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge, UK: Cambridge University Press, 1993, pp. 145–166.Google Scholar
J. B., Adams, M. O., Smith, and P. E., Johnson. Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander I site. Journal of Geophysical Research, 91: 8092–112, 1986.Google Scholar
S., Adler-Golden, A., Berk, L. S., Bernstein, S., Richtsmeier, P. K., Acharya, M. W., Matther, G. P., Anderson, C. L., Allred, L. S., Jeong, and J. H., Chetwynd. FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations. In Summaries of the Seventh Annual JPL Earth Science Workshop, volume 1, January 1998. Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technology, pp. 98–104.
G. B., Airy. On the intensity of light in the neighbourhood of a caustic. Transactions of the Cambridge Philosophical Society, 6: 379–403, 1838.Google Scholar
J., Aitchison and J. A. C., Brown. The Lognormal Distribution Function. Cambridge University Press, 1957.Google Scholar
E., Alpaydin. Introduction to Machine Learning. Cambridge, MA: The MIT Press, 2010.Google Scholar
M. J., Alvarado, V. H., Payne, E. J., Mlawer, G., Uymin, M. W., Shephard, K. E., Cady-Pereira, J. S., Delamere, and J. L., Moncet. Performance of the line-by-line radiative transfer model (lblrtm) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with iasi case studies. Atmos. Chem. Phys, 13: 6687–6711, 2013.Google Scholar
N., Anderson, J. S., Czapla-Myers, N., Leisso, S. F., Biggar, C., Burkhart, R., Kingston, and K. J., Thome. Design and calibration of field deployable ground-viewing radiometers. Applied Optics, 52(2): 231–240, 2013.Google Scholar
T. W., Anderson. An Introduction to Multivariate Statistical Analysis, 3rd edition. New York, NY: John Wiley & Sons, 2003.Google Scholar
C. M., Bachmann, T. L., Ainsworth, R. A., Fusina, M. J., Montes, J. H., Bowles, D. R., Korwan, and D. B., Gillis. Bathymetric retrieval from hyperspectral imagery using manifold coordinate representations. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 884–897, 2009.Google Scholar
C. M., Bachmann, T. L., Ainsworth, and R. A., Fusina. Exploiting manifold geometry in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 43(3): 441–454, 2005. ISSN 0196-2892. doi: 10.1109/TGRS.2004.842292.Google Scholar
A. M., Baldridge, S. J., Hook, C. I., Grove, and G., Rivera. The ASTER spectral library: Version 2.0. Remote Sensing of the Environment, 113: 711–715, 2009a.Google Scholar
A. M., Baldridge, S. J., Hook, C. I., Grove, and G., Rivera. The ASTER spectral library version 2.0. Remote Sensing of Environment, 113, 2009b.
H. P., Baltes. On the validity of Kirchhoff's law of heat radiation for a body in a nonequilibrium environment. In E., Wolf, editor, Progress in Optics XII, North-Holland, 1976, pp. 3–25.Google Scholar
C. B., Barber, D. P., Dobkin, and H., Huhdanpaa. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4): 469–483, 1996.Google Scholar
P. Y., Barnes, E. A., Early, and A. C., Parr. NIST measurement services: Spectral reflectance. Technical Report, NIST Special Publications 250–48, National Institute of Standards and Technology, 1998.
J. A., Barsi, J. R., Schott, S. J., Hook, N. G., Raqueno, B. L., Markham, and R. G., Radocinski. Landsat-8 Thermal Infrared Sensor TIRS vicarious radiometric calibration. Remote Sensing, 6: 11607–11626, 2014.Google Scholar
I. J., Barton and J. C., Scott. Remote measurement of surface pressure using absorption in the oxygen A-band. Applied Optics, 25(19): 3502–3507, 1986.Google Scholar
A., Beil, R., Daum, G., Matz, and R., Harig. Remote sensing of atmospheric pollution by passive FTIR spectrometry. Spectroscopic Atmospheric Environmental Monitoring Techniques, 32: 32–45, 1998.Google Scholar
R., Bell. Introductory Fourier Transform Spectroscopy. Elsevier, 2012.Google Scholar
A., Berk, L. S., Bernstein, G. P., Anderson, P. K., Acharya, D. C., Robertson, J. H., Chetwynd, and S. M., Adler-Golden. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sensing of Environment, 65(3): 367–375, 1998.Google Scholar
A., Berk, P. K., Acharya, L. S., Bernstein, G. P., Anderson, P., Lewis, J. H., Chetwynd, and M. L., Hoke. Band model method for modeling atmospheric propagation at arbitrarily fine spectral resolution. Patent, 2008.
L. S., Bernstein, X., Jin, B., Gregor, and S. M., Adler-Golden. Quick atmospheric correction code: algorithm description and recent upgrades. Optical Engineering, 51(11): 111719–1–111719–11, 2012.Google Scholar
P. R., Bevington and D. K., Robinson. Data Reduction and Error Analysis, 3rd edition. McGraw-Hill Higher Education, 2003.Google Scholar
L., Biehl and D., Landgrebe. Multispeca tool for multispectral–hyperspectral image data analysis. Computers & Geosciences, 28(10): 1153–1159, 2002.Google Scholar
C., Biernacki, G., Celeux, G., Govaert, and F., Langrognet. Model-based cluster and discriminant analysis with the mixmod software. Computational Statistics & Data Analysis, 51(2): 587–600, 2006.Google Scholar
S. F., Biggar. Calibration of a visible and near-infrared portable transfer radiometer. Metrologia, 35: 701–706, 1998.Google Scholar
S. F., Biggar, D. I., Gellman, and P. N., Slater. Improved evaluation of optical depth components from langley plot data. Remote Sensing of Environment, 32: 91–101, 1990.Google Scholar
J. M., Bioucas-Dias and J. M. P., Nascimento. Hyperspectral subspace identification. IEEE Transactions on Geoscience and Remote Sensing, 46(8): 2435–2445, 2008. ISSN 0196-2892. doi: 10.1109/TGRS.2008.918089.Google Scholar
J. M., Bioucas-Dias, A., Plaza, N., Dobigeon, M., Parente, Qian Du, P., Gader, and J., Chanussot. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2): 354–379, April 2012. ISSN 1939-1404. doi: 10.1109/JSTARS.2012.2194696.Google Scholar
BIPM et al. Evaluation of measurement data—guide to the expression of uncertainty in measurement. JCGM 100: 2008 GUM 1995 with minor corrections, 2008.
C. M., Bishop. Pattern Recognition and Machine Learning. Springer, 2006.Google Scholar
J. W., Boardman, F. A., Kruse, and R. O., Green. Mapping target signatures via partial unmixing of aviris data. In Proc. JPL Airborne Geoscience Workshop, 1993, pp. 23–26.
N., Bohr. On the constitution of atoms and molecules. Philosophical Magazine, 26(6): 1–25, July 1913.Google Scholar
C. F., Bohren and E. E., Clothiaux. Fundamentals of Atmospheric Radiation. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2006.Google Scholar
C. F., Bohren and D. R., Huffman. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, 1983.Google Scholar
C., Borel. Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data. International Journal of Remote Sensing, 29(17): 5029–5045, 2008.Google Scholar
M., Born and E., Wolf. Principles of Optics, 7th edition. Cambridge University Press, 1999.Google Scholar
G., Box and N., Draper. Empirical Model-Building and Response Surfaces. New York, NY: Wiley, 1987.Google Scholar
G. E. P., Box, J. S., Hunter, and W. G., Hunter. Statistics for Experimenters, 2nd edition. Wiley-Interscience, 2005.Google Scholar
R. W., Boyd. Radiometry and the Detection of Optical Radiation. John Wiley & Sons, 1983.Google Scholar
S., Boyd and L., Vandenberghe. Convex Optimization. Cambridge University Press, 2004.Google Scholar
R. N., Bracewell. The Fourier Transform and Its Applications, 3rd edition. McGraw-Hill Higher Education, 2000.Google Scholar
J. W., Brault. Fourier transform spectroscopy. In Proceedings of the Fifteenth Advanced Course of the Swiss Society of Astronomy and Astrophysics, volume 1. Swiss Society of Astronomy and Astrophysics, 1985, pp. 1–61.
C. L., Braun and S. N., Smirnov. Why is water blue? Journal of Chemical Education, 70(8): 612–614, 1993.Google Scholar
C. J. C., Brett, R. S., DiPietro, D. G., Manolakis, and V. K., Ingle. Efficient implementations of hyperspectral chemical-detection algorithms. Proc. SPIE 8897, Electro-Optical Remote Sensing, Photonic Technologies, and Applications VII; and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing, 88970T, 22 October 2013.CrossRef
D. R., Brillinger. Time Series: Data Analysis and Theory, volume 36. Siam, 2001.Google Scholar
S. W., Brown, G. P., Eppeldauer, and K. R., Lykke. Facility for spectral irradiance and radiance responsivity calibrations using uniform sources. Applied Optics, 45(32): 8218–8237, 2006.Google Scholar
S. W., Brown, B. C., Johnson, M. E., Feinholz, M. A., Yarbrough, S. J., Flora, K. R., Lykke, and D. K., Clark. Stray-light correction algorithm for spectrographs. Metrologia, 40: S81–S84, 2003.Google Scholar
S. W., Brown, B. C., Johnson, and H. W., Yoon. Description of a portable spectroradiometer to validate EOS radiance scales in the shortwave infrared. The Earth Observer, 10(3): 43–48, 1998.Google Scholar
A., Bucholtz. Rayleigh-scattering calculations for the terrestrial atmosphere. Applied Optics, 34(15): 2765–2773, 1995.Google Scholar
T., Burr, H., Fry, B., McVey, E., Sander, J., Cavanaugh, and A., Neath. Performance of variable selection methods in regression using variations of the Bayesian information criterion. Communications in Statistics—Simulation and Computation, 37: 507–520, 2008.Google Scholar
A. B., Carlson and P., Crilly. Communication Systems. New York, NY: McGraw-Hill Companies, Inc., 2009.Google Scholar
K. F., Carr. Integrating sphere theory and applications part I: Integrating sphere theory and design. Surface Coatings International, 80(8): 380–385, 1997.Google Scholar
J., Carrano. Chemical and biological sensor standards study. Technical report. Washington, DC: Defence Advanced Research Projects Agency, 2004.Google Scholar
V., Carrère and J. E., Conel. Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm – sensitivity analysis and application to airborne visible/infrared imaging spectrometer (AVIRIS) data. Remote Sensing of Environment, 44: 179–204, 1993.Google Scholar
A. C., Carter, S. I., Woods, S. M., Carr, T. M., Jung, and R. U., Datla. Absolute cryogenic radiometer and solid-state trap detectors for IR power scales down to 1 pW with 0.1% uncertainty. Metrologia, 46: S146–S150, 2009.Google Scholar
G., Celeux and G., Govaert. A classification EM algorithm for clustering and two stochastic versions. Computational Statistics & Data Analysis, 14(3): 315–332, 1992.Google Scholar
T., Chakraborty and D. C., Ghosh. Computation of the internuclear distances of some heteronuclear diatomic molecules in terms of the revised electronegativity scale of Gordy. The European Physical Journal D, 59: 183–192, 2010.Google Scholar
S., Chandrasekhar. Radiative Transfer. New York, NY: Dover Publications, 1960.Google Scholar
A. S., Charles, B. A., Olshausen, and C. J., Rozell. Learning sparse codes for hyperspectral imagery. IEEE Journal of Selected Topics in Signal Processing, 5(5): 963–978, 2011. ISSN 1932-4553. doi: 10.1109/JSTSP.2011.2149497.Google Scholar
S., Cherry. Singular value decomposition analysis and canonical correlation analysis. Journal of Climate, 9(9): 2003–2009, 1996.Google Scholar
T. G., Chrien and L. G., Cook. Design concept for a Landsat-class imaging spectrometer with well-corrected spectral fidelity. In Optical Science and Technology, SPIE's 48th Annual Meeting. International Society for Optics and Photonics, 2003, pp. 90–97.Google Scholar
M. P., Chrisp. Convex diffraction grating imaging spectrometer. Patent Number US 5880834, 1999.
M. P., Chrisp. Imaging spectrometer wide field catadioptric design. Patent Number US 7414719 B2, 2008.
P. M., Chu, F. R., Guenther, G. C., Rhoderick, and W. J., Lafferty. The NIST quantitative infrared database. Journal of Research of the National Institute of Standards and Technology, 104(1), 1999.Google Scholar
J., Cipar, G., Anderson, and T., Cooley. Active volcano monitoring using a space-based short-wave infrared imager. In 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE, 2011, pp. 1–4.Google Scholar
R. N., Clark, G. A., Swayze, A., Gallagher, T. V. V., King, and W. M., Calvin. The US Geological Survey, digital spectral library: Version 1: 0.2 to 3.0 _m. Technical report, US Geological Survey, 1993.CrossRef
R. N., Clark et al. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of Remote Sensing, 3: 3–58, 1999.Google Scholar
R. N., Clark, T. V. V., King, M., Klejwa, G. A., Swayze, and N., Vergo. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95: 12653–12680, 1990.Google Scholar
R. N., Clark and T. L., Roush. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89(B7): 6329–6340, 1984.Google Scholar
R. N., Clark, G. A., Swayze, K. E., Livo, R. F., Kokaly, S. J., Sutley, J. B., Dalton, R. R., McDougal, and C. A., Gent. Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems. Journal of Geophysical Research: Planets (1991–2012), 108(E12), 2003.Google Scholar
R. N., Clark, G. A., Swayze, R., Wise, K. E., Livo, T. M., Hoefen, R. F., Kokaly, and S. J., Sutley. USGS digital spectral library splib06a. Reston, VA: US Geological Survey, 2007.Google Scholar
S. A., Clough, M. W., Shephard, E. J., Mlawer, J. S., Delamere, M. J., Iacono, K., Cady-Pereira, S., Boukabara, and P. D., Brown. Atmospheric radiative transfer modeling: a summary of the aer codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2): 233–244, 2005.Google Scholar
S. A., Clough, F. X., Kneizys, L. S., Rothman, and W. O., Gallery. Atmospheric spectral transmittance and radiance: Fascod1 b. In 1981 Technical Symposium East. International Society for Optics and Photonics, 1981, pp. 152–167.Google Scholar
J. M., Cobb, L. E., Comstock, P. G., Dewa, M. M., Dunn, and S. D., Flint. Advances in diamond turned surfaces enable unique cost effective optical system solutions. Volume 6269 of Proceedings of SPIE, 2006, pp. 62691L–1–62691L–9.CrossRef
R. G., Congalton and K., Green. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press, 2008.Google Scholar
P., Connes. Early history of Fourier transform spectroscopy. Infrared Physics, 24(2/3): 69–93, 1984.Google Scholar
E., Conte, M., Lops, and G., Ricci. Asymptotically optimum radar detection in compound-Gaussian clutter. IEEE Trans. on Aerospace and Electronic Systems, 31(2): 617–625, 1995.Google Scholar
L. G., Cook. Three mirror anastigmatic optical system. Patent Number US 4265510, 1981.
L. G., Cook. Reflective optical triplet having a real entrance pupil. Patent Number US 4733955, 1988.
L. G., Cook. The last three-mirror anastigmat (tma)? Volume CR41 of Proceedings of SPIE, 1992, pp. 310–324.CrossRef
L. G., Cook. Compact all-reflective imaging spectrometer. Patent Number US 5260767, 1993.
L. G., Cook. High-resolution all-reflective imaging spectrometer. Patent Number US 6886953 B3, 2005.
L. G., Cook. High-resolution all-reflective imaging spectrometer. Patent Number US 7080912 B2, 2006.
L. G., Cook. Two-channel imaging spectrometer utilizing shared objective, collimating, and imaging optics. Patent Number US 7382498 B1, 2008.
L. G., Cook and J. F., Silny. Imaging spectrometer trade studies: A detailed comparison of the Offner–Chrisp and reflective triplet optical design forms. Volume 7813 of Proceedings of SPIE, 2010, pp. 78130F–1–78130F–14.CrossRef
C. C., Cooksey, D. W., Allen, B. K., Tsai, and H. W., Yoon. Establishment and application of the 0/45 reflectance factor scale over the shortwave infrared. Applied Optics, 54(10): 3064–3071, 2015.Google Scholar
F. A., Cotton, G., Wilkinson, C. A., Murillo, M., Bochmann, and R., Grimes. Advanced Inorganic Chemistry, volume 5. New York, NY: Wiley, 1999.Google Scholar
C., Cox and W., Munk. Measurement of the roughness of the sea surface from photographs of the sun's glitter. JOSA, 44(11): 838–850, 1954.Google Scholar
H., Cox. Resolving power and sensitivity to mismatch of optimum array processors. The Journal of the Acoustical Society of America, 54(3): 771–785, 1973.Google Scholar
H., Cox and R., Pitre. Robust DMR and multi-rate adaptive beamforming. Volume 1, Nov 1997, pp. 920–924. doi: 10.1109/ACSSC.1997.680577.CrossRef
M. D., Craig. Minimum-volume transforms for remotely sensed data. IEEE Transactions on Geoscience and Remote Sensing, 32(3): 542–552, May 1994. ISSN 0196-2892. doi: 10.1109/36.297973.Google Scholar
J. K., Crowley, D. E., Williams, J. M., Hammarstrom, N., Piatak, I-Ming Chou, and J. C., Mars. Spectral reflectance properties (0.4–2.5 _m) of secondary fe-oxide, fe-hydroxide, and fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes. Geochemistry: Exploration, Environment, Analysis, 3(3): 219–228, 2003.Google Scholar
A. R., Curtis. Contribution to a discussion of “a statistical model for water vapor absorption”. Quart. J. Roy. Meteorol. Soc., 78: 638–640, 1952.Google Scholar
J. S., Czapla-Myers, K. J., Thome, and S. F., Biggar. Design, calibration, and characterization of a field radiometer using light-emitting diodes as detectors. Applied Optics, 47(36): 6753–6762, 2008.Google Scholar
J. S., Czapla-Myers, K. J., Thome, and N. P., Leisso. Radiometric calibration of earth-observing sensors using an automated test site at Railroad Valley, Nevada. Canadian Journal of Remote Sensing, 36(5): 474–487, 2010.Google Scholar
G. A., d'Almeida, P., Koepke, and E. P., Shettle. Atmospheric Aerosols Global Climatology and Radiative Characteristics. Studies in Geophysical Optics and Remote Sensing. A. DEEPAK Publishing, 1991.
O., Darrigol. A History of Optics from Greek Antiquity to the Nineteeth Century. Oxford University Press, 2012.Google Scholar
M. A., Davies, B. S., Dutterer, T. J., Suleski, J. F., Silny, and E. D., Kim. Diamond machining of diffraction gratings for imaging spectrometers. Precision Engineering, 36: 334–338, 2012.Google Scholar
A., Dempster, N., Laird, and D., Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1): 1–38, 1977.Google Scholar
C. F., Dietrich. Uncertainty, Calibration and Probability. Adam Hilger, 2nd edition, 1991.
J., DiFranco and B., Rubin. Radar Detection. The Institution of Engineering and Technology, 2004.Google Scholar
R., DiPietro, D., Manolakis, R., Lockwood, T., Cooley, and J., Jacobson. Hyperspectral matched filter with false-alarm mitigation. Optical Engineering, 51(1): 016202, January 2012.Google Scholar
P. A. M., Dirac. The Principles of Quantum Mechanics, 4th edition. Oxford University Press, 1958.Google Scholar
N., Draper and H., Smith. Applied Regression Analysis, 3rd edition. New York, NY: Wiley, 1998.Google Scholar
R., Duda, P., Hart, and D., Stork. Pattern Classification, 2nd edition. New York, NY: John Wiley & Sons, Inc., New York, 2001.Google Scholar
J. A., Dykema and J. G., Anderson. A methodology for obtaining on-orbit SI-traceable spectral radiance measurements in the thermal infrared. Metrologia, 43: 287–293, 2006.Google Scholar
J., Dyson. Unit magnification optical system without Seidel aberrations. Journal of the Optical Society of America, 49(7): 713–716, 1959.Google Scholar
J. D., Echard. Estimation of radar detection and false alarm probabilities. IEEE Trans. on AES, 27(2): 255–260, March 1991.Google Scholar
A. R., Ehsani, J. A., Reagan, andW. H., Erxleben. Design and performance analysis of an automate 10-channel solar radiometer instrument. Journal of Atmospheric and Oceanic Technology, 15: 697–707, 1998.Google Scholar
A., Einstein. Zur quantentheorie der strahlung. Physikalische Zeitschrift, 18: 131–128, 1917.Google Scholar
M. T., Eismann. Hyperspectral Remote Sensing. Bellingham, WA: SPIE, 2012.Google Scholar
M. T., Eismann, J., Meola, A. D., Stocker, S. G., Beaven, and A. P., Schaum. Airborne hyperspectral detection of small changes. Appl. Opt., 47(28): F27–F45, 2008.Google Scholar
M. T., Eismann, J., Meola, and A. D., Stocker. Automated hyperspectral target detection and change detection from an airborne platform: Progress and challenges. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, pp. 4354–4357, July 2010.
C., Elachi and J. J. van, Zyl. Introduction To The Physics and Techniques of Remote Sensing. Wiley, 2006.Google Scholar
C. D., Elvidge. Visible and near infrared reflectance characteristics of dry plant materials. 11: 1,775–1,795, 1990.CrossRef
E., Ensafi and A. D., Stocker. An adaptive CFAR algorithm for real-time hyperspectral target detection. Proc. SPIE 6966, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, 696605 (11 April 2008).CrossRef
G. P., Eppeldauer and D. C., Lynch. Opto-mechanical and electronic design of a tunnel-trap si radiometer. Journal of Research of the National Institute of Standards and Technology, 105(6): 813–828, 2000.Google Scholar
M., Evans and T., Swartz. Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford University Press, 2000.Google Scholar
C., Fabry and A., Perot. Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d'air. Ann. Chim. Phys, 12: 459–501, 1897.Google Scholar
K. T., Fang, S., Kotz, and K. W., Ng. Symmetric Multivariate and Related Distributions. NewYork, NJ: Chapman and Hall, 1990.Google Scholar
M. E., Feinholz, S. J., Flora, S. W., Brown, Y., Zong, K. R., Lykke, M. A., Yarbrough, B. C., Johnson, and D. K., Clark. Stray light correction algorithm for multichannel hyperspectral spectrographs. Applied Optics, 51(16): 3631–3641, 2012.Google Scholar
M. E., Feinholz, S. J., Flora, M. A., Yarbrough, K. R., Lykke, S. W., Brown, B. C., Johnson, and D. K., Clark. Stray light correction of the marine optical system. Journal of Atmospheric and Oceanic Technology, 26: 57–73, 2009.Google Scholar
G. W., Felde, G. P., Anderson, and T. W., Cooley. Atmospheric correction of spectral imagery from sensor systems with changing viewing geometry over a scene. In Optical Remote Sensing of the Environment, p. OMA3. Optical Society of America, 2010.CrossRef
R. A., Fisher. The use of multiple measurement in taxonomic problems. Annals of Eugenics, 7: 179–188, 1936.Google Scholar
C., Forbes, M., Evans, N., Hastings, and B., Peacock. Statistical Distributions. Wiley, 2011.Google Scholar
F. E., Fowle. The spectroscopic determination of aqueous vapor. The Astrophysical Journal, 35: 149–153, 1912.Google Scholar
B. R., Foy. Comparisons between hyperspectral passive and multispectral active sensor measurements. In Proceedings of SPIE, Orlando, FL: SPIE 2002, pp. 98–109. doi: 10.1117/12.472253.Google Scholar
C., Fraley and A. E., Raftery. Model-based methods of classification: using the mclust software in chemometrics. Journal of Statistical Software, 18(6): 1–13, 2007.Google Scholar
J., Friedman, T., Hastie, and R., Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1): 1, 2010.Google Scholar
K., Fukunaga. Introduction to Statistical Pattern Recognition, 2nd edition. Computer Science and Scientific Computing. New York, NY: Academic Press, 1990.Google Scholar
S. J., Gaffey, L. A., McFadden, D. L., Nash, and C. M., Pieters. Ultraviolet, visible, and near-infrared reflectance spectroscopy: Laboratory spectra of geologic materials. Remote Geochemical Analysis: Elemental and Mineralogical Composition, pp. 43–77, 1993.
Bo-Cai, Gao and A. F. H., Goetz. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research, 95(D4): 3549–3564, 1990.Google Scholar
Bo-Cai, Gao, A. F. H., Goetz, and W. J., Wiscombe. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 _m water vapor band. Geophysical Research Letters, 20(4): 301–304, 1993.Google Scholar
Bo-Cai, Gao, M. J., Montes, Z., Ahmad, and C. O., Davis. Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Applied Optics, 39(6): 887–896, 2000.Google Scholar
Bo-Cai, Gao, M. J., Montes, C. O., Davis, and A. F. H., Goetz. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment, 113: S17–S24, 2009.Google Scholar
J. D., Gaskill. Linear Systems, Fourier Transforms, and Optics. John Wiley & Sons, 1978.Google Scholar
A. H. J. de Lassus Saint, Genies. Apparatus for photography with or without color, December 13, 1938. US Patent 2,139,855.
T. R., Gentile, J. M., Houston, J. E., Hardis, C. L., Cromer, and A. C., Parr. National Institute of Standards and Technology high-accuracy cryogenic radiometer. Applied Optics, 35(7): 1056–1068, 1996.Google Scholar
T. A., Germer, J. C., Zwinkels, and B. K., Tsai, editors. Spectrophotometry: Accurate Measurement of Optical Properties of Materials, volume 46 of Experimental Methods in the Physical Sciences. Elsevier Academic Press, 2014.Google Scholar
P., Gill, W., Murray, and M., Wright. Practical Optimization. London, UK: Academic Press, 1981.Google Scholar
A., Gillespie, S., Rokugawa, T., Matsunaga, J. S., Cothern, S., Hook, and A. B., Kahle. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113–1126, 1998.Google Scholar
A. R., Gillespie. Spectral mixture analysis of multispectral thermal infrared images. Remote Sensing of Environment, 42(2): 137–145, 1992.Google Scholar
A., Girard and P., Jacquinot. Principles of instrumental methods in spectroscopy. In A. C. S. Van, Heel, editor, Advanced Optical Techniques,Wiley Series in Pure and Applied Optics, chapter 3. North-Holland Publishing Company, 1967, pp. 73–121.Google Scholar
R., Gnanadesikan. Methods for Statistical Data Analysis of Multivariate Observations, 2nd edition. New York, NJ: Wiley, 1997.Google Scholar
W. L., Godson. The evaluation of infrared-radiative fluxes due to atmospheric water vapor. Quart. J. Roy. Meteorol. Soc., 79: 367–379, 1953.Google Scholar
A. F. H., Goetz. Three decades of hyperspectral remote sensing of the earth: A personal view. Remote Sensing of Environment, 113: S5–S16, 2009.Google Scholar
S. E., Golowich and D. G., Manolakis. Cramer-rao bounds for long-wave infrared gaseous plume quantification. Optical Engineering, 53(2): 021109, 2013.Google Scholar
G. H., Golub and C. F. Van, Loan. Matrix Computations, 3rd edition. The Johns Hopkins University Press, Baltimore and London, 1996.Google Scholar
G. H., Golub and C. F. Van, Loan. Matrix Computations, 4th edition. The Johns Hopkins University Press, Baltimore and London, 2012.Google Scholar
H., Gong, L. M., Hanssen, and G. P., Eppeldauer. Spatial and angular responsivity measurements of photoconductive HgCdTe LWIR radiometers. Metrologia, 41: 161–166, 2004.Google Scholar
R. C., Gonzalez and R. E., Woods. Digital Image Processing. NB Upper Saddle River, NJ: Pearson Prentice Hall, 2008.Google Scholar
H., González-Nuñez, X., Prieto-Blanco, and R. de la, Fuente. Pupil aberrations in Offner spectrometers. Journal of the Optical Society of America, 29(4): 442–449, 2012.Google Scholar
J. W., Goodman. Introduction to Fourier Optics, 3rd edition. RobertsɦCompany Publishers, 2005.Google Scholar
R. M., Goody and Y. L., Yung. Atmospheric Radiation Theoretical Basis, 2nd edition. Oxford University Press, 1989.Google Scholar
R. M., Goody and Y. L., Yung. Atmospheric Radiation: Theoretical Basis. Oxford University Press, USA, 1995.Google Scholar
H. R., Gordon, D. K., Clark, J. W., Brown, O. B., Brown, R. H., Evans, and W. W., Broenkow. Phytoplankton pigment concentrations in the middle Atlantic bight: comparison of ship determinations and CZCS estimates. Applied Optics, 22(1): 20–36, 1983.Google Scholar
A. A., Green, M., Berman, P., Switzer, and M. D., Craig. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. on Geoscience and Remote Sensing, 26 (1): 65–74, January 1988.Google Scholar
M. A., Green and M. J., Keevers. Optical properties of intrinsic silicon at 300 k. Progress in Photovoltaics: Research and Applications, 3: 189–192, 1995.Google Scholar
R. O., Green et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ., 65: 227–248, 1998.Google Scholar
R. O., Green, B. E., Pavri, and T. G., Chrien. On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and In Situ measurements at Salar de Arizaro, Argentina. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1194–1203, 2003.Google Scholar
P. R., Griffiths and J. A. de, Haseth. Fourier Transform Infrared Spectroscopy. John Wiley & Sons, 1986.Google Scholar
F., Grum and R. J., Becherer. Radiometry, volume 1 of Optical RadiationMeasurements. Academic Press, 1979.Google Scholar
J. H., Gruninger, A. J., Ratkowski, and M. L., Hoke. The sequential maximum angle convex cone (smacc) endmember model. In Defense and Security. International Society for Optics and Photonics, 2004, pp. 1–14.Google Scholar
L., Guanter, R., Richter, and J., Moreno. Spectral calibration of hyperspectral imagery using atmospheric absorption features. Applied Optics, 45(10): 2360–2370, 2006.Google Scholar
R. P., Gupta. Remote Sensing Geology, 2nd edition. Springer, 2003.Google Scholar
A., Haapalinna, P. Kärhä, and E., Ikonen. Spectral reflectance of silicon photodiodes. Applied Optics, 37(4): 729–732, 1998.Google Scholar
J. A., Hackwell, D. W., Warren, R. P., Bongiovi, S. J., Hansel, T. L., Hayhurst, D. J., Mabry,M. G., Sivjee, and J. W., Skinner. Lwir/mwir imaging hyperspectral sensor for airborne and ground-based remote sensing. In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 1996, pp. 102–107.CrossRef
G. M., Hale and M. R., Querry. Optical constants of water in the 200-nm to 200-_m wavelength region. Applied Optics, 12(3): 555–563, 1973.Google Scholar
J. L., Hall, F. M. D'Amico, S. J., Kolodzey, Jun Qian,M. L., Polak, K., Westerberg, and C. S., Chang. Characterization of aerosol-containing chemical simulant clouds using a sensitive, thermal infrared imaging spectrometer. Volume 8018 Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII, pages 801816–801816–10, 2011. doi: 10.1117/12.884238. URL http://dx.doi.org/10.1117/12.884238.CrossRef
P. C., Hansen. Rank-Deficient and Discrete Ill-Posed Problems, Numerical Aspects of Linear Inversion. SIAM Monographs on Mathematical Modeling and Computation. Philadelphia: SIAM, Society for Industrial and Applied Mathematics, 1998.Google Scholar
B., Hapke. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, 2012.Google Scholar
T., Haran. Short-wave infrared diffuse reflectance of textile materials. 2008.
R., Harig, G., Matz, and P., Rusch. Scanning infrared remote sensing system for identification, visualization, and quantification of airborne pollutants. In Proc. SPIE, volume 4574, pp. 83–94, 2002.Google Scholar
J. C., Harsanyi. Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Sequences. PhD thesis, University of Maryland, 1993.Google Scholar
T., Hastie, R., Tibshirani, and J., Friedman. The Elements of Statistical Learning. New York: Springer, 2009.Google Scholar
L. G., Henyey and J. L., Greenstein. Diffuse radiation in the galaxy. Astrophysical Journal, 93: 70–83, 1941.Google Scholar
B. M., Herman, A., Ben-David, and K. J., Thome. Numerical technique for solving the radiative transfer equation for a spherical shell atmosphere. Applied Optics, 33(9): 1760–1770, 1994.Google Scholar
G., Herzberg. Atomic Spectra and Atomic Structure. Dover Publications, 1944.Google Scholar
G., Herzberg. Molecular Spectra and Molecular Structure, Volume 1–Spectra of Diatomic Molecules. Van Nostrand Reinhold Company, Inc., 1950.Google Scholar
R. R., Hocking. Methods and Applications of Linear Models. New York, NJ: Wiley, 1996.Google Scholar
A., Hoerl and R., Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12: 55–67, 1970.Google Scholar
J. A., Hoeting, D., Madigan, A. E., Raftery, and C. T., Volinsky. Bayesian model averaging: a tutorial. Statistical Science, pp. 382–401, 1999.
B. N., Holben, T. F., Eck, I., Slutsker, D., Tanré, J. P., Buis, A., Setzer, E., Vermote, J. A., Reagan, Y. J., Kaufman, T., Nakajima, F., Lavenu, I., Jankowiak, and A., Smirnov. AERONET–a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66: 1–16, 1998.Google Scholar
H. H., Hopkins. Wave Theory of Aberrations. Oxford University Press, 1950.Google Scholar
H. H., Hopkins. The nature of the paraxial approximation I. Systems of uniform refractive index. Journal of Modern Optics, 38(3): 427–445, 1991.Google Scholar
H. M., Horwitz, J. T., Lewis, and A. P., Pentland. Estimating proportions of objects from multispectral scanner data. Technical Report NASA-CR-141862, 1975.
H., Hotelling. Relations between two sets of variates. Biometrica, 28: 321–377, 1936.Google Scholar
J. M., Houston and J. P., Rice. NIST reference cryogenic radiometer designed for versatile performance. Metrologia, 43: S31–S35, 2006.Google Scholar
W. A., Hovis, J. S., Knoll, and G. R., Smith. Aircraft measurements for calibration of an orbiting spacecraft sensor. Applied Optics, 24(3): 407–410, 1985.Google Scholar
G. R., Hunt. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3): 501–513, 1977.Google Scholar
G. R., Hunt and J. W., Salisbury. Visible and near infrared spectra of minerals and rocks. ii. Carbonates. Modern Geology, 2: 23–30, 1971.Google Scholar
G. R., Hunt, J. W., Salisbury, and C. J., Lenhoff. Visible and near-infrared spectra of minerals and rocks. v. Halides, phosphates, arsenates, vanadates, and borates. Modern Geology, 3.3: 121–132, 1972.Google Scholar
A., Hyvärinen and E., Oja. Independent component analysis: algorithms and applications. Neural Networks, 13(4): 411–430, 2000.Google Scholar
T., Ingold, B., Schmid, C., Mätzler, P., Demoulin, and N., Kämpfer. Modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82, and 0.94 _m absorption bands. Journal of Geophysical Research, 105(D19): 24327–24343, 2000.Google Scholar
Akira, Iwasaki, Nagamitsu, Ohgi, Jun, Tanii, Takahiro, Kawashima, and Hitomi, Inada. Hyperspectral imager suite (hisui)-Japanese hyper-multi spectral radiometer. In Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, pp. 1025–1028. IEEE, 2011.Google Scholar
J. E., Jackson. A User's Guide To Principal Components. Wiley Series in Probability and Mathematical Statistics. New York, NY: John Wiley & Sons, 1991.Google Scholar
R. D., Jackson, M. S., Moran, P. N., Slater, and S. F., Biggar. Field calibration of reference reflectance panels. Remote Sensing of Environment, 22: 145–158, 1987.Google Scholar
R., Jaenicke. Tropospheric aerosols. In P. V., Hobbs, editor, Aerosol-Cloud-Climate Interactions, volume 54 of International Geophysics Series, Chapter 1. Academic Press, Inc., 1993, pp. 1–31.Google Scholar
B. M., Jakosky, G. W., Finiol, and B. G., Henderson. Directional variations in thermal emission from geologic surfaces. Geophysical Research Letters, 17(7): 985–988, 1990.Google Scholar
G., James, D., Witten, T., Hastie, and R., Tibshirani. An Introduction to Statistical Learning. Springer, 2013.Google Scholar
J., James. Spectrograph Design Fundamentals. Cambridge University Press, 2007.Google Scholar
F. A., Jenkins and H. E., White. Fundamentals of Optics. McGraw-Hill, Inc., 1976.Google Scholar
J. R., Jensen. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd edition. Prentice-Hall Inc., 2005.Google Scholar
L. O., Jimenez and D. A., Landgrebe. Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 28(1): 39–54, 1998.Google Scholar
J. F., Johnson. Hybrid infrared focal plane signal and noise model. IEEE Transactions on Electron Devices, 46(1): 96–108, 1999.Google Scholar
N. L., Johnson, S., Kotz, and N., Balakrishnan. Continuous Univariate Distributions, volume 2. New York, NY: Wiley, 1995.Google Scholar
R. A., Johnson and D. W., Wichern. Applied Multivariate Statistical Analysis, 6th edition. New Jersey: Prentice Hall, 2007.Google Scholar
S. F., Johnston. A History of Light and Colour Measurement: Science in the Shadows, 1st edition. CRC Press, 2001.Google Scholar
I., Jolliffe. Principal Component Analysis. Spinger, 2002.Google Scholar
C., Junge. The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. Journal of Meteorology, 12: 13–25, 1955.Google Scholar
S. O., Kasap. Optoelectronics and Photonics: Principles and Practices, 2nd edition. Pearson, 2013.Google Scholar
R. E., Kass and A. E., Raftery. Bayes factors. Journal of the American Statistical Association, 90(430): 773–795, 1995.Google Scholar
F., Kasten and A. T., Young. Revised optical air mass tables and approximation formula. Applied Optics, 28(22): 4735–4738, 1989.Google Scholar
Y. J., Kaufman, D., Tanré, L. A., Remer, E. F., Vermote, A., Chu, and B. N., Holben. Operational remote sensing of tropospheric aerosol over land from eos moderate resolution imaging spectroradiometer. Journal of Geophysical Research, 102(D14): 17051–17067, 1997a.Google Scholar
Y. J., Kaufman and C., Sendra. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8): 1357–1381, 1988.Google Scholar
Y. J., Kaufman, A. E., Wald, L. A., Remer, Bo-Cai, Gao, Rong-Rong Li, and L., Flynn. The MODIS 2.1-_m channel – correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1286–1298, 1997b.Google Scholar
S. M., Kay. Fundamentals of Statistical Signal Processing: Estimation Theory, volume I. Prentice Hall, New Jersey, 1993.Google Scholar
S. M., Kay. Fundamentals of Statistical Signal Processing: Detection Theory, volume II. Prentice Hall, New Jersey, 1998.Google Scholar
R. A., Keller and T. S., Lomheim. Imaging fourier transform spectrometer (IFTS): Parameteric sensitivity analysis. Volume 5806 of Proceedings of SPIE, pp. 267–287. SPIE, 2005.Google Scholar
E. J., Kelly. An adaptive detection algorithm. IEEE Trans. on Aerospace and Electronic Systems, 22 (1): 115–127, March 1986.Google Scholar
N., Keshava. A survey of spectral unmixing algorithms. Lincoln Laboratory Journal, 14(1): 55–78, 2003.Google Scholar
N., Keshava. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries, IEEE Transactions on Geoscience and Remote Sensing, 42(7): 1552–1565, 2004.Google Scholar
N., Keshava and J. F., Mustard. Spectral unmixing. Signal Processing Magazine, IEEE, 19(1): 44–57, January 2002. ISSN 1053-5888. doi: 10.1109/79.974727.
H. C., King. The History of the Telescope. Charles Griffin and Company Ltd., 1955.Google Scholar
Trude V. V., King andW. Ian, Ridley. Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications. Journal of Geophysical Research: Solid Earth (1978–2012), 92(B11): 11457–11469, 1987.Google Scholar
R., Kingslake. A History of the Photographic Lens. Elsevier Science, 1989.Google Scholar
I. P., Kirsteins and D. W., Tufts. On the probability density of signal-to-noise ratio in an improved adaptive detector. In Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP 85., volume 10, pages 572–575, 1985.Google Scholar
I. P., Kirsteins and D. W., Tufts. Adaptive detection using low rank approximation to a data matrix. IEEE Transactions on Aerospace and Electronic Systems, 30(1): 55–67, 1994.Google Scholar
C. A., Klein, R. P., Miller, and D. L., Stierwalt. Surface and bulk absorption characteristics of chemically vapor-deposited zinc selenide in the infrared. Applied Optics, 33(19): 4304–4313, 1994.Google Scholar
G. R. D. S., Klingelhöfer, R. Van, Morris, B., Bernhardt, C., Schröder, D. S., Rodionov, P. A. De, Souza, A., Yen, R., Gellert, E. N., Evlanov, B., Zubkov, et al. Jarosite and hematite at meridiani planum from opportunity's Mössbauer spectrometer. Science, 306(5702): 1740–1745, 2004.Google Scholar
F. X., Kneizys, L. W., Abreu, G. P., Anderson, J. H., Chetwynd, E. P., Shettle, A., Berk, L. S., Bernstein, D. C., Robertson, P., Acharya, L. S., Rothman, J. E. A., Selby, W. O., Gallery, and S. A., Clough. The MODTRAN 2/3 report and LOWTRAN 7 model. Technical report, Ontar Corporation, 1996.
P., Koepke. Vicarious satellite calibration in the solar spectral range by means of calculated radiances and its application to Meteosat. Applied Optics, 21(15): 2845–2854, 1982.Google Scholar
R. F., Kokaly. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment, 75(2): 153–161, 2001.Google Scholar
R. F., Kokaly, D. G., Despain, R. N., Clark, and K. Eric, Livo. Mapping vegetation in Yellowstone national park using spectral feature analysis of aviris data. Remote Sensing of Environment, 84(3): 437–456, 2003.Google Scholar
R. F., Kokaly, B. W., Rockwell, S. L., Haire, and T. VV., King. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of Environment, 106(3): 305–325, 2007.Google Scholar
G., Kopp and J. L., Lean. A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, 38, 2011.CrossRef
A. R., Korb, J. W., Salisbury, and D. M., D'Aria. Thermal-infrared remote sensing and Kirchhoff's law 2. Field measurements. Journal of Geophysical Research, 104(B7): 15, 339–15,350, July 1999.Google Scholar
D., Korsch. Anastigmatic three-mirror telescope. Applied Optics, 16(8): 2074–2077, 1977.Google Scholar
H. J., Kostkowski and F. E., Nicodemus. Chapter 5: an introduction to the measurement equantion. In F. E., Nicodemus, editor, Self-Study Manual on Optical Radiation Measurements: Part I – Concepts, Chapters 4 and 5, volume TN910-2 of NBS Technical Note 910. 1978.
S., Kotz and S., Nadarajah. Multivariate t-Distributions and Their Applications. Cambridge, UK: Cambridge University Press, 2004.Google Scholar
A., Kramida, Yu. Ralchenko, J., Reader, and NIST ASD Team. NIST Atomic Spectra Database, 2014. URL http://physics.nist.gov/asd.
S., Kraut and L., Scharf. The CFAR adaptive subspace detector is a scale-invariant GLRT. IEEE Trans. Signal Processing, 47: 2538–2541, Sept. 1999.Google Scholar
S., Kraut, L. L., Scharf, and L. T. Mc, Whorter. Adaptive subspace detectors. IEEE Transactions on Signal Processing, 49 (1): 1–16, January 2001.Google Scholar
W., Krzanowski. Principles of Multivariate Analysis, revised edition. Oxford Statistical Science Series. Oxford, UK: Oxford University Press, 2000.Google Scholar
A., Kshirsagar. Multivariate Analysis. New York: Marcel Dekker, Inc., 1972.Google Scholar
D., Labs and H., Neckel. The radiation of the solar photosphere from 2000 a to 100 um. Jim, Z. Astrophysics, 69: 1–73, 1968.Google Scholar
A. A., Lacis and V., Oinas. A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. Journal of Geophysical Research: Atmospheres (1984–2012), 96(D5): 9027–9063, 1991.Google Scholar
D., Landgrebe. Hyperspectral image data analysis. IEEE Singel Processing Magazine, 19(1): 17–28, January 2002.Google Scholar
D. A., Landgrebe. Signal Theory Methods in Multispectral Remote Sensing. New York, NY: Wiley, 2003.Google Scholar
R. M., Lark. A reappraisal of unsupervised classification, i: correspondence between spectral and conceptual classes. International Journal of Remote Sensing, 16(8): 1425–1443, 1995a.Google Scholar
R. M., Lark. A reappraisal of unsupervised classification, ii: optimal adjustment of the map legend and a neighbourhood approach for mapping legend units. International Journal of Remote Sensing, 16(8): 1445–1460, 1995b.Google Scholar
S. R., Lay. Convex Sets and their Applications. New York, NY: Wiley, 1982.Google Scholar
O., Ledoit and M., Wolf. A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88: 365–411, 2004.Google Scholar
J., Lee and M., Verleysen. Nonlinear Dimensionality Reduction. Springer, 2007.Google Scholar
J. B., Lee, A. S., Woodyatt, and M., Berman. Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal components transform. IEEE Trans. on Geoscience and Remote Sensing, 28 (3): 295–304, May 1990.Google Scholar
K., Lenhard, A., Baumgartner, P., Gege, S., Nevas, S., Nowy, and A., Sperling. Impact of improved calibration of a NEO HySpex VNIR-1600 sensor on remote sensing of water depth. IEEE Transactions on Geoscience and Remote Sensing, 53(11): 6085–6098, 2015.Google Scholar
B. C., Levy. Principles of Signal Detection and Parameter Estimation. New York, NY: Springer, 2008.Google Scholar
H. H., Li. Refractive index of alkali halides and its wavelength and temperature derivatives. Journal of Physical and Chemical Reference Data, 5(2): 329–528, 1976.Google Scholar
J., Li, P., Stoica, and Z., Wang. On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing, 51 (7): 1702–1715, July 2003.Google Scholar
T., Lillesand, R. W., Kiefer, and J., Chipman. Remote Sensing and Image Interpretation. Wiley, 2007.Google Scholar
K. N., Liou. An Introduction to Atmospheric Radiation, 2nd edition. Academic Press, 2002.Google Scholar
T. S., Lomheim and E. D., Hernández-Baquero. Translation of spectral radiance levels, band choices, and signal-to-noise requirements to focal plane array specifications and design constraints. Volume 4486 of Proceedings of SPIE SPIE, 2002, pp. 263–307.Google Scholar
R., Lorenz and S., Boyd. Robust minimum variance beamforming. IEEE Trans. Signal Processing, 53(5): 1684–1696, May 2005.Google Scholar
P., Lorrain and D., Corson. Electromagnetism: Principles and Applications, 1st edition. W. H. Freeman and Co. Ltd, 1979.Google Scholar
D., Lu, P., Mausel, E., Brondizio, and E., Moran. Change detection techniques. International Journal of Remote Sensing, 25(12): 2365–2401, 2004.Google Scholar
Guolan, Lu and Baowei, Fei. Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 19(1): 010901–010901, 2014.Google Scholar
P. G., Lucey, T. J., Williams, M. E., Winter, and E. M., Winter. Two years of operations of ahi: an lwir hyperspectral imager. In AeroSense. International Society for Optics and Photonics, 2000, pp. 31–40.Google Scholar
R. L., Lucke, M., Corson, N. R., McGlothlin, S. D., Butcher, D. L., Wood, D. R., Korwan, R. R., Li, W. A., Snyder, C. O., Davis, and D. T., Chen. Hyperspectral imager for the coastal ocean: instrument description and first images. Applied Optics, 50(11): 1501–1516, 2011.Google Scholar
J., Lützen. The Prehistory of the Theory of Distributions. Springer-Verlag New York Inc., 1982.Google Scholar
W. K., Ma, J. M., Bioucas-Dias, P., Gader, T. H., Chan, N., Gillis, A., Plaza, A., Ambikapathi, and C. Y., Chi. A signal processing perspective on hyperspectral unmixing. IEEE Signal Processing Magazine, 31(1): 67–81, 2014.Google Scholar
S. A., Macenka and M. P., Chrisp. Airborne visible/infrared spectrometer (AVIRIS) spectrometer design and performance. Volume 834 of Proceedings of SPIE, 1987, pp. 32–43.CrossRef
H. A., Macleod. Thin-Film Optical Filters, 4th edition. CRC Press, 2010.Google Scholar
W., Malkmus. Random Lorentz band model with exponential-tailed S _1 line-intensity distribution function. JOSA, 57(3): 323–329, 1967.Google Scholar
D., Manolakis. Realistic matched filter performance prediction for hyperspectral target detection. Optical Engineering, 44(11): 116401, November 2005.Google Scholar
D., Manolakis, R., Lockwood, T., Cooley, and J., Jacobson. Hyperspectral detection algorithms: Use covariances or subspaces? In Proc. of SPIE, volume 7457, pages 74570Q–1, 2009.Google Scholar
D., Manolakis, D., Marden, and G., Shaw. Target detection algorithms for hyperspectral imaging application. Lincoln Laboratory Journal, 14(1): 79–116, 2003.Google Scholar
D., Manolakis, E., Truslow, M., Pieper, T., Cooley, and M., Brueggeman. Detection algorithms in hyperspectral imaging systems: An overview of practical algorithms. Signal Processing Magazine, IEEE, 31(1): 24–33, Jan 2014a.Google Scholar
D., Manolakis, D., Zhang, M., Rossacci, R., Lockwood, T., Cooley, and J., Jacobson. Maintaining cfar operation in hyperspectral target detection using extreme value distributions. Volume 6565, page 65651W. SPIE, 2007.CrossRef
D. G., Manolakis and V. K., Ingle. Applied Digital Signal Processing. Cambridge, UK: Cambridge University Press, 2011.Google Scholar
D. G., Manolakis, V. K., Ingle, and S. M., Kogon. Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing. Boston: McGraw-Hill Companies, Inc., 2000.Google Scholar
D. G., Manolakis, S. E., Golowich, and R. S. Di, Pietro. Long-wave infrared hyperspectral remote sensing of chemical clouds: A focus on signal processing approaches. Signal Processing Magazine, IEEE, 31(4): 120–141, July 2014b.Google Scholar
D., Manolakis, M., Rossacci, D., Zhang, J., Cipar, R., Lockwood, T., Cooley, and J., Jacobson. Statistical characterization of hyperspectral background clutter in the reflective spectral region. Appl. Opt., 47(28): F96–F106, 2008.Google Scholar
M., Mansuripur. Classical Optics and its Applications, 2nd edition. Cambridge UK: Cambridge University Press, 2009.Google Scholar
D., Marden and D., Manolakis. Modeling hyperspectral imaging data using elliptically contoured distributions. In S. S., Shen and P. E., Lewis, editors, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, Orlando, FL: SPIE, 2003.Google Scholar
D. B., Marden and D. G., Manolakis. Using elliptically contoured distributions to model hyperspectral imaging data and generate statistically similar synthetic data. Proc. SPIE 5425. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, 12 August 2004, pp. 558–572.CrossRef
W. J., Marinelli, C. M., Gittins, A. H., Gelb, and B. D., Green. Tunable Fabry–Pérot etalon-based long-wavelength infrared imaging spectroradiometer. Applied Optics, 38(12): 2594–2604, 1999.Google Scholar
P., Masson and W., Pieczynski. Sem algorithm and unsupervised statistical segmentation of satellite images. IEEE Transactions on Geoscience and Remote Sensing, 31(3): 618–633, May 1993.Google Scholar
G., McLachlan and D., Peel. Finite Mixture Models. Wiley Series in Probability and Statistics. New York, NJ: John Wiley & Sons, Inc., 2000.Google Scholar
M., Meroni, L., Busetto, R., Colombo, L., Guanter, J., Moreno, and W., Verhoef. Performance of spectral fitting methods for vegetation fluorescence quantification. Remote Sensing of Environment, 114(2): 363–374, 2010.Google Scholar
L., Mertz. Concentric spectrographs. Applied Optics, 16(12): 3122–3124, 1977.Google Scholar
A. A., Michelson and E. W., Morley. On the relative motion of the earth and the luminiferous ether. The American Journal of Science, 34(203): 333–345, 1887.Google Scholar
E. M., Middleton, S. G., Ungar, D. J., Mandl, L., Ong, S. W., Frye, P. E., Campbell, D. R., Landis, J. P., Young, and N. H., Pollack. The earth observing one (eo-1) satellite mission: Over a decade in space. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 6(2): 243–256, 2013.Google Scholar
W. E. Knowles, Middleton. Vision Through the Atmosphere. University of Toronto Press, 1958.Google Scholar
C., Miesch, X., Briottet, Y. H., Kerr, and F., Cabot. Monte Carlo approach for solving the radiative transfer equation over mountainous and heterogeneous areas. Applied Optics, 38(36): 7419–7430, 1999.Google Scholar
C., Miesch, L., Poutier, V., Achard, X., Briottet, X., Lenot, and Y., Boucher. Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 43(7): 1552–1562, 2005.Google Scholar
T. P., Minka. Estimating a Dirichlet distribution, 2000 http://research.microsoft.com/enus/um/people/minka/papers/dirichlet/.
M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, editors. Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press, 1999.Google Scholar
M. G., Moharam and T. K., Gaylord. Diffraction analysis of dielectric surface-relief gratings. Journal of the Optical Society of America, 72(10): 1385–1392, 1982.Google Scholar
M. G., Moharam and T. K., Gaylord. Rigorous coupled-wave analysis of metallic surface-relief gratings. Journal of the Optical Society of America A, 3(11): 1780–1787, 1986.Google Scholar
J. L., Moncet and S. A., Clough. Accelerated monochromatic radiative transfer for scattering atmospheres: Application of a new model to spectral radiance observations. Journal of Geophysical Research, 102(D18): 21853–21866, 1997.Google Scholar
J. L., Moncet, G., Uymin, A. E., Lipton, and H. E., Snell. Infrared radiance modeling by optimal spectral sampling. Journal of the Atmospheric Sciences, 65(12): 3917–3934, 2008.Google Scholar
D., Montgomery, E., Peck, and G., Vining. Introduction to Linear Regression Analysis, 5th edition. New Jersey: Wiley, 2012.Google Scholar
P., Mouroulis, R. O., Green, and T. G., Chrien. Design of push-broom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Applied Optics, 39(13): 2210–2220, 2000.Google Scholar
P., Mouroulis and M. M. Mc, Kerns. Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration. Optical Engineering, 39(3): 808–816, 2000.Google Scholar
P., Mouroulis, R. G., Sellar, D. W., Wilson, J. J., Shea, and R. O., Green. Optical design of a compact imaging spectrometer for planetary mineralogy. Optical Engineering, 46(6): 063001–1–063001–9, 2007.Google Scholar
P., Mouroulis, D. W., Wilson, P. D., Maker, and R. E., Muller. Convex grating types for concentric imaging spectrometers. Applied Optics, 37(31): 7200–7208, 1998.Google Scholar
R., Muirhead. Aspects of Multivariate Statistical Theory. John Wiley & Sons, Inc., 1982.Google Scholar
J., Mustard and J., Sunshine. Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3rd edition, volume 3, chapter 5. New York, NY: John Wiley & Sons, 1998, pp. 251–306.Google Scholar
J. F., Mustard and C. M., Pieters. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. Journal of Geophysical Research: Solid Earth, 94 (B10): 13619–13634, 1989. ISSN 2156-2202.Google Scholar
N. M., Nasrabadi. Regularized spectral matched filter for target recognition in hyperspectral imagery. Signal Processing Letters, IEEE, 15: 317–320, 2008. ISSN 1070-9908. doi: 10.1109/LSP.2008.917805.Google Scholar
A. A., Neath and J. E., Cavanaugh. The Bayesian information criterion: background, derivation, and applications. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2): 199–203, 2012.Google Scholar
F. E., Nicodemus, J. C., Richmond, J. J., Hsia, I. W., Ginsberg, and T., Limperis. Geometrical considerations and nomenclature for reflectance. Technical Report NBS MN-160, National Bureau of Standards, 1977.CrossRef
F. E., Nicodemus and H. J., Kostkowski. Chapter 2: Distribution of optical radiation with respect to position and direction. In F. E., Nicodemus, editor, Self-Study Manual on Optical Radiation Measurements: Part I – Concepts, Chapters 1 to 3, volume TN910-1 of NBS Technical Note 910. 1976.CrossRef
A. A., Nielsen, K., Conradsen, and J. J., Simpson. Multivariate alteration detection (mad) and maf postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sensing of Environment, 64(1): 1–19, 1998.Google Scholar
S., Niu, S. E., Golowich, V. K., Ingle, and D. G., Manolakis. Implications and mitigation of model mismatch and covariance contamination for hyperspectral chemical agent detection. Optical Engineering, 52(2): 026202–026202, 2013a.Google Scholar
S., Niu, S. E., Golowich, V. K., Ingle, and D. G., Manolakis. New approach to remote gas-phase chemical quantification: selected-band algorithm. Optical Engineering, 53(2): 021111, 2013b.Google Scholar
S., Niu, S. E., Golowich, and D. G., Manolakis. Algorithms for remote quantification of chemical plumes: a comparative study. Proceedings of the SPIE, Volume 8390, pages 83902I–83902I– 11, 2012. doi: 10.1117/12.919557. URL http://dx.doi.org/10.1117/12.919557.CrossRef
S., Niu, V. K., Ingle, D. G., Manolakis, and T. W., Cooley. Tests for the elliptical symmetry of hyperspectral imaging data. Proc. SPIE 7812, Imaging Spectrometry XV, 78120D, 13 August, 2010 NOAA, NASA, and USAF. U. S. Standard Atmosphere, 1976. US Government Printing Office, 1976.CrossRef
J., Nocedal and S. J., Wright. Numerical Optimization, 2nd edition. Springer, 2006.Google Scholar
I. G., Nolt, J. V., Radostitz, G., DiLonardo, K. M., Evenson, D. A., Jennings, K. R., Leopold, M. D., Vanek, L. R., Zink, A., Hinz, and K. V., Chance. Accurate rotational constants of CO, HCL, and HF: Spectral standard for the 0.3- to 6-THz (10- to 200-cm_1) region. Journal of Molecular Spectroscopy, 125: 274–287, 1987.Google Scholar
A., Offner. New concepts in projection mask aligners. Optical Engineering, 14(1): 130–132, 1975.Google Scholar
L. J., Otten III, R. G., Sellar, and B., Rafert. Mightysat ii. 1 fourier-transform hyperspectral imager payload performance. In Satellite Remote Sensing II. International Society for Optics and Photonics, 1995, pp. 566–575.Google Scholar
G., Papageorgiou. Chlorophyll fluorescence: an intrinsic probe of photosynthesis. Bioenergetics of photosynthesis, pp. 319–371, 1975.CrossRef
A., Papoulis and S. U., Pillai. Probability, Random Variables and Stochastic Processes with Errata Sheet. New York, NY: McGraw-Hill Education, 2002.Google Scholar
A. C., Parr, R. U., Datla, and J. L., Gardner, editors. Optical Radiometry, volume 41 of Experimental Methods in the Physical Sciences. Elsevier Academic Press, 2005.Google Scholar
J., Pearlman, C., Segal, L. B., Liao, S. L., Carman, M. A., Folkman, W., Browne, L., Ong, and S. G., Ungar. Development and operations of the eo-1 hyperion imaging spectrometer. In International Symposium on Optical Science and Technology. International Society for Optics and Photonics, pp. 243–253, 2000.Google Scholar
S. S., Penner. Quantitative Molecular Spectroscopy and Gas Emissivities. Addison-Wesley Publishing Company, Inc., 1959.Google Scholar
D. L., Peterson and G. S., Hubbard. Scientific issues and potential remote sensing requirements for plant biochemical content. 1992.
M., Pieper, D., Manolakis, E., Truslow, T., Cooley, and S., Lipson. Performance evaluation of clusterbased hyperspectral target detection algorithms. In 19th IEEE International Conference on Image Processing (ICIP), IEEE, 2012, pp. 2669–2672.Google Scholar
M. L., Pieper, D., Manolakis, T., Cooley, M., Brueggeman, A., Weisner, and J., Jacobson. New insights and practical considerations in hyperspectral change detection. Technical report, 2015.CrossRef
M. L., Pieper, D., Manolakis, E., Truslow, T., Cooley, and M., Brueggeman. False alarm mitigation techniques for hyperspectral target detection. In SPIE Defense and Security, 2013.CrossRef
M. K. E., L. Planck. Ueber das gesetz der energieverteilung im normalspectrum. Ann. d. Physik, 4: 553–563, 1901.Google Scholar
M., Pourahmadi. High-Dimensional Covariance Estimation: With High-Dimensional Data. John Wiley & Sons, 2013.Google Scholar
W., Press, S., Teukolsky, W., Vetterling, and B., Flannery. Numerical Recipes: The art of scientific computing, 3rd edition. Cambridge, UK: Cambridge University Press, 2007.Google Scholar
X., Prieto-Blanco, C., Montero-Orille, B., Couce, and R. de la, Fuente. Analytical design of an offner imaging spectrometer. Optics Express, 14(20): 9156–9168, 2006.Google Scholar
E., Purcell. Electricity and Magnetism, 1st edition. McGraw-Hill Book Co., 1965. J., Qian, T., Hastie, J., Friedman, R., Tibshirani, and N., Simon. glmnet for MATLAB. URL www. stanford.edu/∼hastie/glmnet_matlab/. 2013.
J. J., Qu, W., Gao, M., Kafatos, R. E., Murphy, and V. V., Salomonson, editors. Earth Science Satellite Remote Sensing. Springer, 2006.Google Scholar
T. J., Quinn and J. E., Martin. A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between _40 degrees C and +100 degrees C. Philosophical Transactions of the Royal Society of London A, 316(1536): 6–189, 1985.Google Scholar
R. J., Radke, S., Andra, O., Al-Kofahi, and B., Roysam. Image change detection algorithms: a systematic survey. IEEE Transactions on Image Processing, 14(3): 294–307, 2005.Google Scholar
A. E., Raftery. Bayesian model selection in social research. Sociological methodology, 25: 111–164, 1995.Google Scholar
M. S., Ramsey and P. R., Christensen. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research: Solid Earth, 103 (B1): 577–596, 1998. ISSN 2156-2202. doi: 10.1029/97JB02784. URL http://dx.doi.org/10. 1029/97JB02784.Google Scholar
C. R., Rao. Separation theorems for singular values of matrices and their applications in multivariate analysis. Journal of Multivariate Analysis, 9(3): 362–377, 1979.Google Scholar
I. S., Reed, J. D., Mallett, and L. E., Brennan. Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, AES-10(6): 853–863, 1974. ISSN 0018-9251. doi: 10.1109/TAES.1974.307893.Google Scholar
F., Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill Book Company, 1965.Google Scholar
P. N., Reinersman and K. L., Carder. Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect. Applied Optics, 34(21): 4453–4471, 1995.Google Scholar
L. A., Remer, Y. J., Kaufman, D., Tanré, S., Mattoo, D. A., Chu, J. V., Martins, R.-R., Li, C., Ichoku, R. C., Levy, R. G., Kleidman, T. F., Eck, E., Vermote, and B. N., Holben. The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 62: 947–973, 2005.Google Scholar
A., Rencher. Multivariate Statistical Inference and Applications. Wiley Series in Probability and Statistics. New York, NY: John Wiley & Sons, Inc., 1998.Google Scholar
A. C., Rencher. Methods of Multivariate Analysis. New York, NY: Wiley, 1995.Google Scholar
D., Riano, E., Chuvieco, S., Ustin, R., Zomer, P., Dennison, D., Roberts, and J., Salas. Assessment of vegetation regeneration after fire through multitemporal analysis of aviris images in the Santa Monica mountains. Remote Sensing of Environment, 79(1): 60–71, 2002.Google Scholar
J., Richards. Is there a best classifier? In Remote Sensing, pp. 59820A–59820 A. International Society for Optics and Photonics, 2005a.Google Scholar
J. A., Richards. Remote sensing digital image analysis: an introduction. Springer, 2013.Google Scholar
M. A., Richards. Fundamentals of Radar Signal Processing, 1st edition. McGraw-Hill, June 2005b.Google Scholar
C. D., Richmond. Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments. IEEE Transactions on Signal Processing, 48 (5): 1235–1247, May 2000.Google Scholar
C. D., Richmond. Adaptive array processing in non-Gaussian environments. In Statistical Signal and Array Processing, 1996. Proceedings., 8th IEEE Signal Processing Workshop on (Cat. No. 96TB10004). IEEE, 1996, pp. 562–565.Google Scholar
L. J., Rickard, R., Basedow, E., Zalewski, P., Silverglate, and M., Landers. HYDICE: An airborne system for hyperspectral imaging. Volume 1937 of Proceedings of SPIE, 1993, pp. 173–179.CrossRef
H. E., Rivercomb, H., Buijs, H. B., Howell, D. D., LaPorte, W. L., Smith, and L. A., Sromovsky. Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder. Applied Optics, 27(15): 3210–3218, 1988.Google Scholar
D. A., Roberts, M., Gardner, R., Church, S., Ustin, G., Scheer, and R. O., Green. Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65(3): 267–279, 1998. ISSN 0034-4257.Google Scholar
F. C., Robey, D. R., Fuhrmann, E. J., Kelly, and R., Nitzberg. A CFAR adaptive matched filter detector. IEEE Trans. on Aerospace and Electronic Systems, 28 (1): 208–218, January 1992.Google Scholar
S. M., Ross. Introduction to Probability and Statistics for Engineers and Scientists. Academic Press, 2009.Google Scholar
L. S., Rothman, et al. The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy & Radiative Transfer, 130: 4–50, 2013.Google Scholar
L. S., Rothman. The HITRAN database. Technical report, 2014. URL www.cfa.harvard.edu/ hitran/.
H. A., Rowland. Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purposes. Philosophical Magazine and Journal of Science, 13(84): 469–474, 1882.Google Scholar
F. F., Sabins. Remote Sensing: Principles and Interpretation. Waveland Press, Inc., 2007.Google Scholar
B. E., Saleh and M. C., Teich. Fundamentals of Photonics, 2nd edition. Wiley Series in Pure and Applied Optics. Wiley-Interscience, 2007.Google Scholar
J. W., Salisbury, A., Wald, and D. M., D'Aria. Thermal-infrared remote sensing and Kirchhoff's law 1. Laboratory measurements. Journal of Geophysical Research, 99(B6): 11, 897–11, 911, June 1994.Google Scholar
S. R., Sandmeier. Acquisition of bidirectional reflectance factor data with field goniometers. Remote Sensing of Environment, 73: 257–269, 2000.Google Scholar
C. J., Sansonetti, M. L., Salit, and J., Reader. Wavelengths of spectral lines in mercury pencil lamps. Applied Optics, 35(1): 74–77, 1996.Google Scholar
A. R., Schaefer, E. F., Zalewski, and J., Geist. Silicon detector nonlinearity and related effects. Applied Optics, 22(8): 1232–1236, 1983.Google Scholar
L. L., Scharf and B., Friedlander. Matched subspace detectors. IEEE Trans. on Signal Processing, 42(8): 2146–2157, August 1994.Google Scholar
L., Scharf. Statistical Signal Processing. Reading, MA: Addison-Wesley, 1991.Google Scholar
A., Schaum and A., Stocker. Linear chromodynamics models for hyperspectral target detection. In Aerospace Conference, 2003. Proceedings. 2003 IEEE, volume 4, pp. 4_1879–4_1885.
D., Schläpfer, C. C., Borel, J., Keller, and K. I., Itten. Atmospheric precorrected differential absorption technique to retrieve columnar water vapor. Remote Sensing of Environment, 65: 353–366, 1998.Google Scholar
J., Schott. Remote Sensing: The Image Chain Approach, 2nd edition. New York, NY: Oxford University Press, 2007.Google Scholar
J. R., Schott. Matrix Analysis for Statistics, 2nd edition. New Jersey: Wiley, 2005.Google Scholar
R. A., Schowengerdt. Remote Sensing: Models and Methods for Image Processing. San Diego, CA: Elsevier, 2007.Google Scholar
E., Schrödinger. Quantisierung als eigenwertproblem. (erste mitteilung.). Ann. d. Physik, 79: 361–376, 1926.Google Scholar
A., Schuster. Radiation through a foggy atmosphere. The Astrophysical Journal, 21(1): 1–22, 1905.Google Scholar
D. W., Scott. Multivariate density estimation: theory, practice, and visualization. New York, NY: Wiley, 1992.Google Scholar
G. A. F., Seber. Linear Regression Analysis. New York, NY: John Wiley & Sons, 1977.Google Scholar
G. A. F., Seber and A. J., Lee. Linear Regression Analysis. Hoboken, NJ: John Wiley & Sons, Inc., 2003.Google Scholar
J., Settle and N., Drake. Linear mixing and the estimation of ground cover proportions. International Journal of Remote Sensing, 14(6): 1159–1177, 1993.Google Scholar
S. W., Sharpe, T. J., Johnson, R. L., Sams, P. M., Chu, G. C., Rhoderick, and P. A., Johnson. Gas-phase databases for quantitative infrared spectroscopy. Applied Spectroscopy, 58(12): 1452–1461, 2004.Google Scholar
S. S., Shen and E. M., Bassett III. Information-theory-based band selection and utility evaluation for reflective spectral systems. In AeroSense 2002. International Society for Optics and Photonics, 2002, pp. 18–29.CrossRef
E. P., Shettle and R. W., Fenn. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Technical Report AFGL-TR-79-0214, Air Force Geophysics Laboratory, 1979.
H. W., Siesler. Near-infrared spectroscopy of polymers. In Makromolekulare Chemie. Macromolecular Symposia, volume. Wiley Online Library, 1991, pp. 113–129.Google Scholar
M., Šimecková, D., Jacquemart, L. S., Rothman, R. R., Gamache, and A., Goldman. Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database. Journal of Quantitative Spectroscopy & Radiative Transfer, 98: 130–155, 2006.Google Scholar
J. J., Simpson, T. J., McIntire, and M., Sienko. An improved hybrid clustering algorithm for natural scenes. Geoscience and Remote Sensing, IEEE Transactions on, 38(2): 1016–1032, 2000.Google Scholar
P. N., Slater. Remote Sensing Optics and Optical Systems. Addison-Wesley Publishing Company, 1980.Google Scholar
P. N., Slater, S. F., Biggar, K. J., Thome, D. I., Gellman, and P. R., Spyak. Vicarious radiometric calibrations of EOS sensors. Journal of Atmospheric and Oceanic Technology, 13: 349–359, 1996.Google Scholar
P. N., Slater, S. F., Biggar, R. G., Holm, R. D., Jackson, Y., Mao, M. S., Moran, J. M., Palmer, and B., Yuan. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sensing of Environment, 22: 11–37, 1987.Google Scholar
J. A., Smith, Tzeu Lie Lin, and K. J., Ranson. The Lambertian assumption and Landsat data. Photogrammetric Engineering and Remote Sensing, 46(9): 1183–1189, 1980.Google Scholar
W. C., Snyder, Zhengming, Wan, and Xiaowen, Li. Thermodynamic constraints on reflectance reciprocity and Kirchhoff's law. Applied Optics, 37(16): 3464–3470, 1998.Google Scholar
B., Somers, G. P., Asner, L., Tits, and P., Coppin. Endmember variability in spectral mixture analysis: A review. Remote Sensing of Environment, 115(7): 1603–1616, 2011.Google Scholar
P. R., Spyak, D. S., Smith, J., Thiry, and C., Burkhart. Short-wave infrared transfer radiometer for the calibration of the Moderate-Resolution Imaging Spectrometer and the Advanced Spaceborne Thermal Emission and Reflection Radiometer. Applied Optics, 39(31): 5694–5706, 2000.Google Scholar
G. L., Stensaas and J., Christopherson. USGS remote sensing technologies test site catalog, 2013. URL http://calval.cr.usgs.gov/rst-resources/.
A. D., Stocker and A., Schaum. Application of stochastic mixing models to hyperspectral detection problems. SPIE Proceedings, 3071, April 1997.CrossRef
J. M., Stone. Radiation and Optics: An Introduction to the Classical Theory. McGraw-Hill Book Company, Inc., 1963.Google Scholar
G., Strang. Linear Algebra and Its Applications, 4th edition. Cengage Learning, 2005.Google Scholar
J., Strong. Concepts of Classical Optics. W. H. Freeman and Company, 1958.Google Scholar
L. L., Strow, H., Motteler, D., Tobin, H., Revercomb, S., Hannon, H., Buijs, J., Predina, L., Suwinski, and R., Glumb. Spectral calibration and validation of the Cross-track Infrared Sounder on the Suomi NPP satelite. Journal of Geophysics Research: Atmospheres, 118: 12486–12496, 2013.Google Scholar
J., Strutt. On the light from the sky, its polarization and colour. Philosophical Magazine, 41: 107–120, 274–279, 1871a.Google Scholar
J., Strutt. On the scattering of light by small particles. Philosophical Magazine, 41: 447–454, 1871b.Google Scholar
T., Stuffler, C., Kaufmann, S., Hofer, K. P., Förster, G., Schreier, A., Mueller, A., Eckardt, H., Bach, B., Penne, U., Benz, et al. The enmap hyperspectral imager—an advanced optical payload for future applications in earth observation programmes. Acta Astronautica, 61(1): 115–120, 2007.Google Scholar
Haigang, Sui, Qiming, Zhou, Jianya, Gong, and Guorui, Ma. Processing of multi-temporal data and change detection. In Advances in photogrammetry, remote sensing and spatial information sciences: 2008 ISPRS Congress Book. CRC Press, 2008, pp. 227–247.Google Scholar
W. E., Sumpner. The diffusion of light. Proceedings of the Physical Society of London, 12(10): 10–29, 1892.Google Scholar
D., Tanre, M., Herman, and P. Y., Deschamps. Influence of the background contribution upon space measurements of ground reflectance. Applied Optics, 20(2): 3676–3683, 1981.Google Scholar
D., Tanre, M., Herman, P. Y., Deschamps, and A. de, Leffe. Atmospheric modeling for space mearusements of ground reflectances, including bidirectional properties. Applied Optics, 18(21): 3587–3594, 1979.Google Scholar
B. N., Taylor and Chris E., Kuyatt. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. Technical Report NIST Technical Note 1297, National Institute of Standards and Technology, 1994.CrossRef
J. R., Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd edition. University Science Books, 1996.Google Scholar
P. M., Teillet. Rayleigh optical depth comparisons from various sources. Applied Optics, 29(13): 1897–1900, 1990.Google Scholar
W. E., Tennant, D., Lee, M., Zandian, E., Piquette, and M., Carmody. MBE HgCdTe technology: A very general solution to IR detection, described by “rule 07”, a very convenient heuristic. Journal of Electronic Materials, 37(9): 1406–1410, 2008.Google Scholar
J., Theiler, B. R., Foy, and A. M., Fraser. Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery. In Proc. SPIE, volume 6233, 2006.Google Scholar
J., Theiler and B. R., Foy. Effect of signal contamination in matched-filter detection of the signal on a cluttered background. Geoscience and Remote Sensing Letters, IEEE, 3(1): 98–102, 2006.Google Scholar
J., Theiler. Quantitative comparison of quadratic covariance-based anomalous change detectors. Appl. Opt., 47(28): F12–F26, 2008.Google Scholar
J., Theiler, C., Scovel, B., Wohlberg, and B. R., Foy. Elliptically contoured distributions for anomalous change detection in hyperspectral imagery. Geoscience and Remote Sensing Letters, IEEE, 7(2): 271–275, 2010.Google Scholar
E., Theocharous, J., Ishii, and N. P., Fox. Absolute linearity measurements on HgCdTe detectors in the infrared region. Applied Optics, 43(21): 4182–4188, 2004.Google Scholar
S., Theodoridis and K., Koutroumbas. Pattern Recognition, 4th edition. New York, NY: Academic Press, 2008.Google Scholar
G. E., Thomas and K., Stamnes. Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, 1999.Google Scholar
K., Thome, C., Cattrall, J., D'Amico, and J., Geis. Ground-reference calibration results for Landat-7 ETM+. volume 5882 of Proceedings of SPIE, 2005, pp. 58820B–1–58820B–12.CrossRef
K. J., Thome. Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sensing of Environment, 78: 27–38, 2001.Google Scholar
K. J., Thome. In-flight intersensor radiometric calibration using vicarious approaches. In S. A., Morain and A. M., Budge, editors, Post-Launch Calibration of Satellite Sensors, International Society for Photogrammetry and Remote Sensing (ISPRS) Book Series. A. A. Balkema Publishers, 2004, pp. 95–102.Google Scholar
K. J., Thome, B. M., Herman, and J. A., Reagan. Determination of precipitable water from solar transmission. Journal of Applied Meteorology, 31, 1992.2.0.CO;2>CrossRef
K. J., Thome, S. F., Biggar, and W., Wisniewski. Cross comparison of EO-1 sensors and other earth resources sensors to Landsat-7 ETM+ using Railroad Valley Playa. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1180–1188, 2003.Google Scholar
A., Thompson and How-More, Chen. Beamcon III, a linearity measurement instrument for optical detectors. Journal of Research of the National Institute of Standards and Technology, 99(6): 751–755, 1994.Google Scholar
K. W., Thoning, P. P., Tans, and W. D., Komhyr. Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974–1985. Journal of Geophysical Research, 94(D6): 8549–8565, 1989.Google Scholar
A. P., Thorne. Spectrophysics, 2nd edition. Chapman and Hall, 1988.Google Scholar
G., Thuillier, M., Hersé, T., Foujols,W., Peetermans, D., Gillotay, P. C., Simon, H., Mandel, et al. The solar spectral irradiance from 200 to 2400 nm as measured by the solspec spectrometer from the atlas and eureca missions. Solar Physics, 214(1): 1–22, 2003.Google Scholar
R., Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1996, pp. 267–288.CrossRef
R., Tibshirani. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3): 273–282, 2011.Google Scholar
S., Tompkins, J. F., Mustard, C. M., Pieters, and D. W., Forsyth. Optimization of endmembers for spectral mixture analysis. Remote Sensing of Environment, 59(3): 472–489, 1997.Google Scholar
M. Yu., Tretyakov, E. A., Serov, M. A., Koshelev, V. V., Parshin, and A. F., Krupnov. Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature. Physical Review Letters, 110: 1–4, 2013.Google Scholar
E., Truslow, D., Manolakis, M., Pieper, T., Cooley, M., Brueggeman, and S., Lipson. Performance prediction of Matched Filter and ACE hyperspectral target detectors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013.CrossRef
E., Truslow, S., Golowich, D., Manolakis, and V., Ingle. Performance metrics for the evaluation of hyperspectral chemical identification systems. Optical Engineering, 2016.CrossRef
S., Ustin, editor. Manual of Remote Sensing, Remote Sensing for Natural Resource Management and Environmental Monitoring (Volume 4), volume 4. Wiley, 2004.Google Scholar
F. D. van der, Meer and S. M. de, Jong, editors. Imaging Spectrometry, volume 4 of Remote Sensing and Digital Image Processing. Kluwer Academic Publishers, 2001.Google Scholar
B. L. van der, Waerden, editor. Sources of Quantum Mechanics. Mineola, NY: North-Holland Publishing Company, 1967.Google Scholar
H. L. Van, Trees. Optimum Array Processing. New York, NY: Wiley, 2002.Google Scholar
H. L. Van, Trees, K., Bell, and Z., Tian. Detection, Estimation, and Modulation Theory, Part I, volume I. New Jersey: Wiley, 2013.Google Scholar
G., Vane, A. F. H., Goetz, and J. B., Wellman. Airborne imaging spectrometer: A new tool for remote sensing. IEEE Transactions on Geoscience and Remote Sensing, GE-22(6): 546–549, 1984.Google Scholar
A., Vasilevsky. Applied Matrix Algebra in the Statistical Sciences. Mineola, NY: Dover Publications, Inc., 1983.Google Scholar
M., Vaughan. The Fabry–Pérot Interferometer: History, Theory, Practice and Applications. CRC Press, 1989.Google Scholar
R. G., Vaughan, W. M., Calvin, and J. V., Taranik. Sebass hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sensing of Environment, 85(1): 48–63, 2003.Google Scholar
M., Verleysen, D., François, G., Simon, and V., Wertz. On the effects of dimensionality on data analysis with neural networks. In Artificial Neural Nets Problem solving methods. Springer, 2003, pp. 105–112.Google Scholar
E. F., Vermote, D., Tanré, J. L., Deuzé, M., Herman, and J. J., Morcrette. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3): 675–686, 1997.Google Scholar
V., Viallefont, A. E., Raftery, and S., Richardson. Variable selection and Bayesian model averaging in case-control studies. Statistics in Medicine, 20(21): 3215–3230, 2001.Google Scholar
A. J., Villemaire, S., Fortin, J., Giroux, T., Smithson, and R. J., Oermann. Imaging Fourier transform spectrometer. In SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics. International Society for Optics and Photonics, 1995, pp. 387–397.Google Scholar
J. H., Walker, R. D., Saunders, J. K., Jackson, and D. A. Mc, Sparron. NBS measurement services: Spectral irradiance calibrations. Technical Report NIST Special Publication 250-20, National Institute of Standards and Technology, 1987.CrossRef
Ning, Wang, Hua, Wu, F., Nerry, Chuanrong, Li, and Zhao-Liang, Li. Temperature and emissivity retrievals from hyperspectral thermal infrared data using linear spectral emissivity constraint. Geoscience and Remote Sensing, IEEE Transactions on, 49(4): 1291–1303, April 2011.Google Scholar
D. W., Warren, D. J., Gutierrez, and E. R., Keim. Dyson spectrometers for high-performance infrared applications. Optical Engineering, 47(10): 103601–1–103601–9, October 2008.Google Scholar
D. W., Warren, J. A., Hackwell, and D. J., Gutierrez. Compact prism spectrographs based on aplanatic principles. Optical Engineering, 36(4): 1174–1182, 1997.Google Scholar
D. W., Warren. Compact, high-throughput spectrometer apparatus for hyperspectral remote sensing. Patent Number US 7609381, 2009.
D., Watkins. Fundamentals of Matrix Computations, 2nd edition. New York, NY: Wiley, 2002.Google Scholar
A., Webb and K., Copsey. Statistical Pattern Recognition, 3rd edition. Wiley, 2011.Google Scholar
V. R., Weidner and J. J., Hsia. Reflectance properties of pressed polytetrafluoroethylene powder. Journal of the Optical Society of America, 71(7): 856–861, 1981.Google Scholar
W. T., Welford. Aberration theory of gratings and grating mountings. In E., Wolf, editor, Progress in Optics, volume 4, chapter I V. North-Holland Publishing Company, 1965, pp. 243–280.Google Scholar
W. T., Welford. Aberrations of Optical Systems. Adam Hilger Ltd, 1986.Google Scholar
M., Wendisch and J. L., Brenguier. Airborne Measurements for Environmental Research: Methods and Instruments. John Wiley & Sons, 2013.Google Scholar
W. B., Wetherell and D. A., Womble. All-reflective three element objective. Patent Number US 4240707, 1980.
W. B., White. The carbonate minerals. The Infrared Spectra of Minerals, 4: 227–284, 1974.Google Scholar
G. G., Wilkinson. Results and implications of a study of fifteen years of satellite image classification experiments. IEEE Transactions on Geoscience and Remote Sensing, 43(3): 433–440, 2005.Google Scholar
M. E., Winter. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proc. SPIE 3753, Imaging Spectrometry V, pp. 266–275, 27 October, 1999. doi: 10.1117/12.366289. URL http://dx.doi.org/10.1117/12.366289.CrossRef
G. K., Woodgate. Elementary Atomic Structure, 2nd edition. Oxford University Press, 1983.Google Scholar
T. N., Woods, R. T., Wrigley III, G. J., Rottman, and R. E., Haring. Scattered-light properties of diffraction gratings. Applied Optics, 33(19): 4273–4285, 1994.Google Scholar
Xiaoxiong, Xiong and W., Barnes. An overview of MODIS radiometeric calibration and characterization. Advances in Atmospheric Sciences, 23(1): 69–79, 2006.Google Scholar
B. K., Yap, W. A. M., Blumberg, and R. E., Murphy. Off-axis effects in a mosaic Michelson interferometer. Applied Optics, 21(22): 4176–4182, 1982.Google Scholar
H. W., Yoon, J. J., Butler, T. C., Larason, and G. P., Eppeldauer. Linearity of InGaAs photodiodes. Metrologia, 40:S154–S158, 2003.Google Scholar
H. W., Yoon and C. E., Gibson. NIST measurement services: Spectral irradiance calibrations. Technical Report NIST Special Publication 250-89, National Institute of Standards and Technology, 2011.CrossRef
H. W., Yoon, C. E., Gibson, and P. Y., Barnes. Realization of the National Institude of Standards and Technology detector-based spectral irradiance scale. Applied Optics, 41(28): 5879–5890, 2002.Google Scholar
S. J., Young, B. R., Johnson, and J. A., Hackwell. An in-scene method for atmospheric compensation of thermal hyperspectral data. Journal of Geophysical Research–Atmospheres, 107 (D24): 4774, 2002.Google Scholar
Lu, Zhang, Mingsheng, Liao, Limi, Yang, and Hui, Lin. Remote sensing change detection based on canonical correlation analysis and contextual Bayes decision. Photogrammetric Engineering and Remote Sensing, 73(3): 311, 2007.Google Scholar
B., Zitova and J., Flusser. Image registration methods: a survey. Image and Vision Computing, 21(11): 977–1000, 2003.Google Scholar
Yuqin, Zong, S. W., Brown, G. P., Eppledauer, K. R., Lykke, and Yoshi, Ohno. A new method for spectral irradiance and radiance responsivity calibrations using kilohertz pulsed tunable optical parametric oscillators. Metrologia, 49: S124–S129, 2012.Google Scholar
Yuqin, Zong, S. W., Brown, B. C., Johnson, K. R., Lykke, and Yoshi, Ohno. Simple spectral stray light correction method for array spectoradiometers. Applied Optics, 45(6): 1111–1119, 2006.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×