Book contents
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
16 - Vibratory forces on simple surfaces
Published online by Cambridge University Press: 07 May 2010
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
Summary
Armed with our knowledge of the structure of the pressure fields arising from propeller loading and thickness effects (in the absence of blade cavitation) we can seek to determine blade-frequency forces on simple “hulls”. There are pitfalls in so over-simplifying the hull geometry to enable answers to be obtained by “hand-turned” mathematics, giving results which may not be meaningful. Yet the problem which can be “solved” in simple terms has a great seduction, difficult to resist even though the required simplifications are suspected beforehand to be too drastic. One then has to view the results critically and be wary of carrying the implications too far.
From our knowledge that most of the terms in the pressure attenuate rapidly with axial distance fore and aft of the propeller we are tempted to assume that a ship with locally flat, relatively broad stern in way of the propeller may be replaced by a rigid flat plate. The width of the plate is taken equal to that of the local hull and the length extended to infinity fore and aft on the assumption that beyond about two diameters the load density will virtually vanish. As we shall note later, this assumption of fore-aft symmetry of the area is unrealistic as hulls do not extend very much aft of the propeller. We shall also assume at the outset that the submergence of the flat surface above the propeller is large so we might ignore the effect of the water surface.
- Type
- Chapter
- Information
- Hydrodynamics of Ship Propellers , pp. 301 - 314Publisher: Cambridge University PressPrint publication year: 1993