Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T12:14:23.422Z Has data issue: false hasContentIssue false

15 - Pressure fields generated by blade loadings in hull wakes

Published online by Cambridge University Press:  07 May 2010

John P. Breslin
Affiliation:
Stevens Institute of Technology, New Jersey
Poul Andersen
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

The pressure fluctuations generated by propellers in the wake of hulls are markedly different from those produced in uniform inflow. The flow in the propeller plane abaft a hull varies spatially as well as temporally. Here we deal only with the effects attending spatial variations peripherally and radially as provided by wake surveys which give the averaged-over-time velocity components as a function of r and γ for a fixed axial location. Temporal variations in the components are aperiodic and cannot be addressed until sufficient measurements have been made to determine their frequency spectra. Ultimately, numerical solutions of the Navier-Stokes equations may provide both spatial and temporal aspects of hull wakes.

Here the spatial variations in the axial and tangential components are reflected in the pressure jump Δp which is taken to vary harmonically with blade position angle γ0. Then we discover a coupling between the harmonics of Δp(γo) and the harmonics of the propagation function yielding a plethora of terms all at integer multiples of blade frequency. Graphical results are given for pressure and velocity fields showing the effect of spatial non-uniformity of the inflow.

We have seen in the previous chapter that the pressure field arising from a lifting-surface model of a propeller in a uniform flow is that due to pressure and velocity dipoles distributed over the blade. Both dipole strengths were constant in time since we considered uniform and stationary inflow.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×