Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T09:27:16.491Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

Ye Zhou
Affiliation:
Lawrence Livermore National Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Hydrodynamic Instabilities and Turbulence
Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing
, pp. 514 - 589
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzhi, S.I., Nishihara, K., and Glimm, J. 2003. Rayleigh–Taylor and Richtmyer–Meshkov instabilities for fluids with a finite density ratio. Phys. Lett. A, 317, 470.CrossRefGoogle Scholar
Abd-El-Fattah, A.M., and Henderson, L.F. 1978a. Shock waves at a fast-slow gas interface. J. Fluid Mech., 86, 15.CrossRefGoogle Scholar
Abd-El-Fattah, A.M., and Henderson, L.F. 1978b. Shock waves at a slow-fast gas interface. J. Fluid Mech., 89, 79.CrossRefGoogle Scholar
Abd-El-Fattah, A.M., Henderson, L.F., and Lozzi, A. 1976. Precursor shock waves at a slow – fast gas interface. J. Fluid Mech., 76, 157.CrossRefGoogle Scholar
Abdikamalov, E., Ott, C.D., Radice, D., Roberts, L.F., Haas, R., Reisswig, C., Mösta, P., Klion, H., and Schnetter, E. 2015. Neutrino-driven turbulent convection and standing accretion shock instability in three-dimensional core-collapse supernovae. Astrophys. J., 808, 70.CrossRefGoogle Scholar
Abu-Shawareb, H., Acree, R., Adams, P., et al. 2022. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett., 129, 075001.CrossRefGoogle Scholar
Abu-Shawareb, H., et al. 2024. Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett., 132, 065102.CrossRefGoogle Scholar
Adkins, R., Shelton, E.M., Renoult, M.-C., Carles, P., and Rosenblatt, C. 2017. Interface coupling and growth rate measurements in multilayer Rayleigh–Taylor instabilities. Phys. Rev. Fluids, 2, 062001.CrossRefGoogle Scholar
Aglitskiy, Y., Velikovich, A.L., Karasik, M., Serlin, V., Pawley, C.J., Schmitt, A.J., Obenschain, S.P., Mostovych, A.N., Gardner, J.H., and Metzler, N. 2002. Direct observation of mass oscillations due to ablative Richtmyer–Meshkov instability and feedout in planar plastic targets. Phys. Plasmas, 9, 2264.CrossRefGoogle Scholar
Aglitskiy, Y., Velikovich, A., Karasik, M., et al. 2010. Basic hydrodynamics of Richtmyer-Meshkov type growth and oscillations in the inertial confinement fusion-relevant conditions. Phil. Trans. R. Soc. A, 368, 1739.CrossRefGoogle ScholarPubMed
Akkerman, V.Y., and Law, C.K. 2013. Flame dynamics and consideration of deflagration-to-detonation transition in central gravitational field. Proc. Combust. Inst., 34, 1921.Google Scholar
Akkerman, V.Y., Law, C.K., and Bychkov, V. 2011. Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering. Phys. Rev. E, 83, 026305.CrossRefGoogle ScholarPubMed
Akula, B., and Ranjan, D. 2016. Dynamics of buoyancy-driven flows at moderately high Atwood numbers. J. Fluid Mech., 795, 313.CrossRefGoogle Scholar
Akula, B., Andrews, M.J., and Ranjan, D. 2013. Effect of shear on Rayleigh–Taylor mixing at small Atwood number. Phys. Rev. E, 87, 033013.CrossRefGoogle Scholar
Akula, B., Suchandra, P., Mikhaeil, M., and Ranjan, D. 2017. Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin–Helmholtz and Rayleigh–Taylor instability. J. Fluid Mech., 816, 619.CrossRefGoogle Scholar
Al-Janabi, K., Antolin, P., Baker, D., et al. 2019. Achievements of Hinode in the first eleven years. Publ. Astron. Soc. Jpn., 71, R1.Google Scholar
Al’bikov, Z.A., Velikhov, E.P., Veretennikov, A.I., et al. 1990. Angara-5-1 experimental complex. Soviet Atomic Energy, 68, 34.CrossRefGoogle Scholar
Aleshin, A.N., Lazareva, E.V., Zaitsev, S.G., Rozanov, V.B., Gamalii, E.G., and Lebo, I.G. 1990. Linear, nonlinear, and transient stages in the development of the Richtmyer–Meshkov instability. Sov. Phys. Doklady, 35, 159.Google Scholar
Aleshin, A.N., Lazareva, E.V., Chebotareva, E.I., Sergeev, S.V., and Zaytsev, S.G. 1997. Investigation of Richtmyer–Meshkov instability induced by the incident and reflected shock waves. Page 1 of: Jourdan, G., and Houas, L. (eds), Proceedings of the Sixth International Workshop on the Physics of Compressible Turbulent Mixing. IUSTI Universite de Provence, Marseille, France.Google Scholar
Alexakis, A., and Biferale, L. 2018. Cascades and transitions in turbulent flows. Phys. Rep., 767, 1.Google Scholar
Allred, J.C., Blount, G.H., and Miller III, J.H. 1953. Experimental studies of Taylor instability. Tech. rept. Los Alamos National Lab, Los Alamos, NM.CrossRefGoogle Scholar
Alon, U., Shvarts, D., and Mukamel, D. 1993. Scale-invariant regime in Rayleigh–Taylor bubble-front dynamics. Phys. Rev. E, 48, 1008.CrossRefGoogle ScholarPubMed
Alon, U., Hecht, J., Mukamel, D., and Shvarts, D. 1994. Scale invariant mixing rates of hydrodynamically unstable interfaces. Phys. Rev. Lett., 72, 2867.CrossRefGoogle ScholarPubMed
Alon, U., Hecht, J., Ofer, D., and Shvarts, D. 1995. Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett., 74, 534.CrossRefGoogle ScholarPubMed
Aluie, H. 2011. Compressible turbulence: the cascade and its locality. Phys. Rev. Lett., 106, 174502. Aluie, H. 2013. Scale decomposition in compressible turbulence. Physica D, 247, 54.Google Scholar
Aluie, H. 2017. Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades. New J. Phys., 19, 025008.CrossRefGoogle Scholar
Aluie, H., and Eyink, G.L. 2009. Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter. Phys. Fluids, 21, 115108.CrossRefGoogle Scholar
Alvi, F.S., Krothapalli, A., and Washington, D. 1996. Experimental study of a compressible countercurrent turbulent shear layer. AIAA J., 34, 728.CrossRefGoogle Scholar
Amala, P.A.K. 1995. Large-eddy simulation of the Rayleigh–Taylor instability on a massively parallel computer. Tech. rept. UCRL-LR-119748, Lawrence Livermore National Laboratory, Livermore, CA.CrossRefGoogle Scholar
Amala, P.A.K., and Rodrigue, G.H. 1994. Programming models for three-dimensional hydrodynamics on the CM-5 (Part II). Comput. Phys., 8, 300.CrossRefGoogle Scholar
Amala, P.A.K., Rodrigue, G.H., and Dubois, P.F. 1994. Programming models for three-dimensional hydrodynamics on the CM-5 (Part I). Comput. Phys., 8, 181.CrossRefGoogle Scholar
Amendt, P., Colvin, J.D., Tipton, R.E., et al. 2002. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: design and analysis. Phys. Plasmas, 9, 2221.CrossRefGoogle Scholar
Amendt, P., Cerjan, C., Hamza, A., Hinkel, D.E., Milovich, J.L., and Robey, H.F. 2007. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums. Phys. Plasmas, 14, 056312.CrossRefGoogle Scholar
Amendt, P., Cerjan, C., Hinkel, D.E., Milovich, J.L., Park, H.S., and Robey, H.F. 2008. Rugby-like hohlraum experimental designs for demonstrating X-ray drive enhancement. Phys. Plasmas, 15, 012702.CrossRefGoogle Scholar
Amendt, P., Milovich, J., Perkins, L.J., and Robey, H. 2010. An indirect-drive non-cryogenic double-shell path to 1ω Nd-laser hybrid inertial fusion–fission energy. Nucl. Fusion, 50, 105006.CrossRefGoogle Scholar
Amendt, P., Ho, D., Ping, Y., et al. 2019. Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum. Phys. Plasmas, 26, 082707.CrossRefGoogle Scholar
Amendt, P., Ho, D., Nora, R., Ping, Y., and Smalyuk, V. 2020. High-volume and-adiabat capsule (“HVAC”) ignition: lowered fuel compression requirements using advanced Hohlraums. Phys. Plasmas, 27, 122708.CrossRefGoogle Scholar
Anderson, J. 2007. Fundamentals of Aerodynamics. 4th edn. McGraw-Hill, New York.Google Scholar
Anderson, M.H., Puranik, B.P., Oakley, J.G., Brooks, P.W., and Bonazza, R. 2000. Shock tubeGoogle Scholar
investigation of hydrodynamic issues related to inertial confinement fusion. Shock Waves, 10, 377.CrossRefGoogle Scholar
André, M.L. 1999. The French megajoule laser project (LMJ). Fusion Eng. Design, 44, 43. Andreopoulos, Y., Agui, J.H., and Briassulis, G. 2000. Shock wave-turbulence interactions. Annu. Rev. Fluid Mech., 32, 309.Google Scholar
Andrews, M.J., and Spalding, D.B. 1990. A simple experiment to investigate two-dimensional mixing by Rayleigh–Taylor instability. Phys. Fluids A, 2, 922.CrossRefGoogle Scholar
Andrews, M.J., Youngs, D.L., Livescu, D., and Wei, T. 2014. Computational studies of two-dimensional Rayleigh–Taylor driven mixing for a tilted-rig. J. Fluids Eng., 136, 091212.CrossRefGoogle Scholar
Andronov, V.A., Bakhrakh, S.M., Meshkov, E.E., Mokhov, V.N., Nikiforov, V.V., Pevnitskii, A.V., and Tolshmyakov, A.I. 1976. Turbulent mixing at contact surface accelerated by shock waves. Sov. Phys. JETP, 44, 424.Google Scholar
Andronov, V.A., Bakhrakh, S.M., Meshkov, E.E., Nikiforov, V.V., Pevnitskii, A.V., and Tolshmyakov, A.I. 1982. An experimental investigation and numerical modeling of turbulent mixing in one-dimensional flows. Sov. Phys. Doklady, 27, 393.Google Scholar
Anisimov, S.I., and Zeldovich, Y.B. 1977. Rayleigh–Taylor instability of boundary between detonation products and gas in spherical explosion. Pis’ma Zh. Eksp. Teor. Fiz., 3, 5.Google Scholar
Anisimov, S.I., Zeldovich, Y. B., Inogamov, N.A., and Ivanov, M.F. 1983. The Taylor instability of contact boundary between expanding detonation products and a surrounding gas. Prog. Astronaut. Aeronaut., 87, 218.Google Scholar
Annamalai, S., Parmar, M.K., Ling, Y., and Balachandar, S. 2014. Nonlinear Rayleigh–Taylor instability of a cylindrical interface in explosion flows. J. Fluids Eng., 136, 060910.CrossRefGoogle Scholar
Annamalai, S., Rollin, B., Ouellet, F., Neal, C., Jackson, T.L., and Balachandar, S. 2016. Effects of initial perturbations in the early moments of an explosive dispersal of particles. J. Fluids Eng., 138, 070903.CrossRefGoogle Scholar
Anuchina, N.N., Kucherenko, Y.A., Neuvazhaev, V.E., Ogibina, V.N., Shibarshov, L.I., and Yakovlev, V.G. 1978. Turbulent mixing at an accelerating interface between liquids of different density. Fluid Dyn., 13, 916.CrossRefGoogle Scholar
Anuchina, N.N., Volkov, V.I., Gordeychuk, V.A., Es’kov, N.S., Ilyutina, O.S., and Kozyrev, O.M. 2004. Numerical simulations of Rayleigh–Taylor and Richtmyer–Meshkov instability using MAH-3 code. J. Comput. Appl. Math., 168, 11.CrossRefGoogle Scholar
Apffel, B., Novkoski, F., Eddi, A., and Fort, E. 2020. Floating under a levitating liquid. Nature, 585, 48.CrossRefGoogle Scholar
Aragón, J., Naumis, G.G., Bai, M., Torres, M., and Maini, P.K. 2008. Turbulent luminance in impassioned van Gogh paintings. J. Math. Imaging Vis., 30, 275.CrossRefGoogle Scholar
Arnett, D., Fryxell, B., and Mueller, E. 1989a. Instabilities and nonradial motion in SN 1987A. Astrophys. J. Lett., 341, L63.CrossRefGoogle Scholar
Arnett, W.D., Bahcall, J.N., Kirshner, R.P., and Woosley, S.E. 1989b. Supernova 1987A. Annu. Rev. Astron. Astrophys., 27, 629.CrossRefGoogle Scholar
Asay, J.R., Mix, L.P., and Perry, F.C. 1976. Ejection of material from shocked surfaces. Appl. Phys. Lett., 29, 284.CrossRefGoogle Scholar
Aschenbach, B., Egger, R., and Trümper, J. 1995. Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary. Nature, 373, 587.CrossRefGoogle Scholar
Aslangil, D., Banerjee, A., and Lawrie, A.G.W. 2016. Numerical investigation of initial condition effects on Rayleigh–Taylor instability with acceleration reversals. Phys. Rev. E, 94, 053114.CrossRefGoogle ScholarPubMed
Aslangil, D., Farley, Z., Lawrie, A.G.W., and Banerjee, A. 2020. Rayleigh–Taylor instability with varying periods of zero acceleration. J. Fluids Eng., 142, 121103.CrossRefGoogle Scholar
Aslangil, D., Lawrie, A.G.W., and Banerjee, A. 2022. Effects of variable deceleration periods on Rayleigh–Taylor Instability with acceleration reversals. Phys. Rev. E, 105, 065103.CrossRefGoogle ScholarPubMed
Aslani, M., and Regele, J.D. 2018. Numerical simulation of finite disturbances interacting with laminar premixed flames. Combust. Theory Model., 22, 812.CrossRefGoogle Scholar
Aspden, A., Nikiforakis, N., Dalziel, S., and Bell, J.B. 2008. Analysis of implicit LES methods. Commun. Appl. Math. Comput. Sci., 3, 103.CrossRefGoogle Scholar
Atoyan, L., Hammer, D.A., Kusse, B.R., Byvank, T., Cahill, A.D., Greenly, J.B., Pikuz, S.A., and Shelkovenko, T.A. 2016. Helical plasma striations in liners in the presence of an external axial magnetic field. Phys. Plasmas, 23, 022708.CrossRefGoogle Scholar
Attal, N, and Ramaprabhu, P. 2015. Numerical investigation of a single-mode chemically reacting Richtmyer–Meshkov instability. Shock Waves, 25, 307.CrossRefGoogle Scholar
Attal, N., and Ramaprabhu, P. 2020. The stability of reacting single-mode Rayleigh–Taylor flames. Physica D, 404, 132353.CrossRefGoogle Scholar
Attal, N., Ramaprabhu, P., Hossain, J., Karkhanis, V., Uddin, M., Gord, J.R., and Roy, S. 2015. Development and validation of a chemical reaction solver coupled to the FLASH code for combustion applications. Comput. Fluids, 107, 59.CrossRefGoogle Scholar
Atzeni, S., and Meyer-ter-Vehn, J. 2004. The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter. Clarendon Press, Oxford, UK.CrossRefGoogle Scholar
Aulanier, G., and Démoulin, P. 1998. 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astron. Astrophys., 329, 1125.Google Scholar
Awe, T.J., McBride, R.D., Jennings, C.A., Lamppa, D.C., Martin, M.R., Rovang, D.C., Slutz, S.A., Cuneo, M.E., Owen, A.C., Sinars, D.B., and Tomlinson, K. 2013. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field. Phys. Rev. Lett., 111, 235005.CrossRefGoogle ScholarPubMed
Awe, T.J., Jennings, C.A., McBride, R.D., et al. 2014. Modified helix-like instability structure on imploding Z-pinch liners that are pre-imposed with a uniform axial magnetic field. Phys. Plasmas, 21, 056303.CrossRefGoogle Scholar
Awe, T.J., Peterson, K.J., Yu, E.P., McBride, R.D., Sinars, D.B., Gomez, M.R., Jennings, C.A., Martin, M.R., Rosenthal, S.E., Schroen, D.G., and Sefkow, A.B. 2016. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field. Phys. Rev. Lett., 116, 065001.CrossRefGoogle Scholar
Azarova, O.A., and Gvozdeva, L.G. 2018. Control of triple-shock configurations in high-speed flows over a cylindrically blunted plate in gases for different Mach numbers. Proc. Inst. Mech. Engineers, Part G: J. Aerospace Eng., 24, 1.Google Scholar
Azarova, O.A., Krasnobaev, K.V., Kravchenko, O.V., Lapushkina, T.A., and Erofeev, A.V. 2020. Redistribution of energy in a viscous heat-conductive medium during the interaction of a shock wave with a temperature layered plasma region. J. Phys. Conf. Ser., 1698, 012004.CrossRefGoogle Scholar
Baer, M.R. 2022. Private communication.Google Scholar
Bahl, P., Doolan, C., de Silva, C., Chughtai, A.A., Bourouiba, L., and MacIntyre, C.R. 2022. Airborne or droplet precautions for health workers treating COVID-19? J. Infect. Dis., 225, 1561.CrossRefGoogle ScholarPubMed
Bai, J., Wang, T., Liu, K., Li, L., Zhong, M., Jiang, Y., Tang, M., Yu, J., Pei, X., and Li, P. 2012a. Large-eddy simulation of the three-dimensional experiment on Richtmyer–Meshkov instability induced turbulence. Int. J. Astron. Astrophys., 2, 28.CrossRefGoogle Scholar
Bai, J., Wang, B., Wang, T., and Liu, K. 2012b. Numerical simulation of the Richtmyer–Meshkov instability in initially nonuniform flows and mixing with reshock. Phys. Rev. E, 86, 066319.CrossRefGoogle ScholarPubMed
Bai, J., Zou, L., Wang, T., Liu, K., Huang, W., Liu, J., Li, P., Tan, D., and Liu, C. 2010a. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders. Phys. Rev. E, 82, 056318.CrossRefGoogle ScholarPubMed
Bai, J., Liu, J.-H., Wang, T., Zou, L., Li, P., and Tan, D. 2010b. Investigation of the Richtmyer– Meshkov instability with double perturbation interface in nonuniform flows. Phys. Rev. E, 81, 056302.CrossRefGoogle ScholarPubMed
Bailey, M. 2018. Starry Night: Van Gogh at the Asylum. White Lion Publishing, London, UK.Google Scholar
Baker, G.R., Meiron, D.I., and Orszag, S.A. 1980. Vortex simulations of the Rayleigh–Taylor instability. Phys. Fluids, 23, 1485.CrossRefGoogle Scholar
Baker, K.L., Thomas, C.A., Casey, D.T., et al. 2018. High-performance indirect-drive cryogenic implosions at high adiabat on the National Ignition Facility. Phys. Rev. Lett., 121, 135001.CrossRefGoogle ScholarPubMed
Baker, L., and Freeman, J.R. 1981. Heuristic model of the nonlinear Rayleigh–Taylor instability. J. Appl. Phys., 52, 655.CrossRefGoogle Scholar
Balachandar, S., Zaleski, S., Soldati, A., Ahmadi, G., and Bourouiba, L. 2020. Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines. Int. J. Multiph. Flow, 132, 103439.CrossRefGoogle Scholar
Balakrishnan, K., Genin, F., Nance, D.V., and Menon, S. 2010. Numerical study of blast characteristics from detonation of homogeneous explosives. Shock Waves, 20, 147.CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Tomkins, C.D., and Prestridge, K.P. 2008. Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of Richtmyer–Meshkov instability growth in a gas curtain with and without reshock. Phys. Fluids, 20, 124103.CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Ristorcelli, J.R., Balasubramanian, S., Prestridge, K.P., and Tomkins, C.D. 2012. Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: velocity and density statistics. J. Fluid Mech., 696, 67.CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G.C., Prestridge, K.P., and Balakumar, B.J. 2012. Experimental study of initial condition dependence on Richtmyer–Meshkov instability in the presence of reshock. Phys. Fluids, 24, 034103.CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G.C., and Prestridge, K.P. 2013. Experimental study of initial condition dependence on turbulent mixing in shock-accelerated Richtmyer–Meshkov fluid layers. J. Turbul., 14, 170.CrossRefGoogle Scholar
Baldwin, K.A., Scase, M.M., and Hill, R.J.A. 2015. The inhibition of the Rayleigh–Taylor instability by rotation. Sci. Rep., 5, 11706.CrossRefGoogle ScholarPubMed
Balescu, R. 1975. Equilibrium and Nonequilibrium Statistical Mechanics. John Wiley & Sons, New York.Google Scholar
Balick, B., and Frank, A. 2002. Shapes and shaping of planetary nebulae. Annu. Rev. Astron. Astrophys., 40, 439.CrossRefGoogle Scholar
Balick, B., Huarte-Espinosa, M., Frank, A., Gomez, T., Alcolea, J., Corradi, R.L.M., and Vinković, D. 2013. Outflows from evolved stars: the rapidly changing fingers of CRL 618. Astrophys. J., 772, 20.CrossRefGoogle Scholar
Baltzer, J.R., and Livescu, D. 2019. Low-speed turbulent shear-driven mixing layers with large thermal and compositional density variations. In: Livescu, D., Battaglia, F., and Givi, P. (eds), Modeling and Simulation of Turbulent Mixing and Reaction: For Power, Energy, and Flight. Springer, Singapore.Google Scholar
Bambauer, M., Hasslberger, J., and Klein, M. 2020. Direct numerical simulation of the Richtmyer– Meshkov instability in reactive and nonreactive flows. Combustion Sci. Tech., 192, 2010.CrossRefGoogle Scholar
Bambauer, M., Chakraborty, N., Klein, M., and Hasslberger, J. 2021. Vortex dynamics and fractal structures in reactive and nonreactive Richtmyer–Meshkov instability. Phys. Fluids, 33, 044114.CrossRefGoogle Scholar
Bambauer, M., Hasslberger, J., Ozel-Erol, G., Chakraborty, N., and Klein, M. 2023. Surface topologies and self interactions in reactive and nonreactive Richtmyer–Meshkov instability. Sci. Rep., 13, 837.CrossRefGoogle ScholarPubMed
Banerjee, A. 2020. Rayleigh–Taylor instability: a status review of experimental designs and measurement diagnostics. J. Fluids Eng., 142, 120801.CrossRefGoogle Scholar
Banerjee, A., and Andrews, M.J. 2006. Statistically steady measurements of Rayleigh–Taylor mixing in a gas channel. Phys. Fluids, 18, 035107.CrossRefGoogle Scholar
Banerjee, A., and Andrews, M.J. 2009. 3D simulations to investigate initial condition effects on the growth of Rayleigh–Taylor mixing. Int. J. Heat Mass Trans., 52, 3906.CrossRefGoogle Scholar
Banerjee, A., and Mutnuri, L.A.R. 2012. Passive and reactive scalar measurements in a transient high-Schmidt-number Rayleigh–Taylor mixing layer. Exp. Fluids, 53, 717.CrossRefGoogle Scholar
Banerjee, A., Kraft, W.N., and Andrews, M.J. 2010a. Detailed measurements of a statistically steady Rayleigh–Taylor mixing layer from small to high Atwood numbers. J. Fluid Mech., 659, 127.CrossRefGoogle Scholar
Banerjee, A., Gore, R.A., and Andrews, M.J. 2010b. Development and validation of a turbulent-mixmodel for variable-density and compressible flows. Phys. Rev. E, 82, 046309.CrossRefGoogle ScholarPubMed
Banerjee, R., Mandal, L., Khan, M., and Gupta, M.R. 2012. Effect of viscosity and shear flow on the nonlinear two fluid interfacial structures. Phys. Plasmas, 19, 122105.CrossRefGoogle Scholar
Bao, B., Peng, Q., Yang, C., and Zhang, L. 2021. Evolutions of young Type Ia supernova remnants with two initial density profiles in a turbulent medium. Astrophys. J., 909, 173.CrossRefGoogle Scholar
Barenblatt, G.-I. 1983. Self-similar turbulence propagation from an instantaneous point source. In: Barenblatt, G.I., Looss, G., and Joseph, D.D. (eds), Non-Linear Dynamics and Turbulence. Pitman, Boston, MA.Google Scholar
Barenblatt, G.I. 2001. George Keith Batchelor (1920–2000) and David George Crighton (1942–2000): Applied Mathematicians. Not. Am. Math. Soc., 48, 800.Google Scholar
Barnes, C.W., Batha, S.H., Dunne, A.M., et al. 2002. Observation of mix in a compressible plasma in a convergent cylindrical geometry. Phys. Plasmas, 9, 4431.CrossRefGoogle Scholar
Barnes, J.F., Blewett, P.J., McQueen, R.G., Meyer, K.A., and Venable, D. 1974. Taylor instability in solids. J. Appl. Phys., 45, 727.CrossRefGoogle Scholar
Barrow, J.D. 1983. Dimensionality. Philos. Trans. R. Soc. A, 310, 337.Google Scholar
Barton, N.R., and Rhee, M. 2013. A multiscale strength model for tantalum over an extended range of strain rates. J. Appl. Phys., 114, 123507.CrossRefGoogle Scholar
Barton, N.R., Bernier, J.V., Becker, R., Arsenlis, A., Cavallo, R., Marian, J., Rhee, M., Park, H.S., Remington, B.A., and Olson, R.T. 2011. A multiscale strength model for extreme loading conditions. J. Appl. Phys., 109, 073501.CrossRefGoogle Scholar
Basko, M.M. 1990. Spark and volume ignition of DT and D2 microspheres. Nucl. Fusion, 30, 2443.CrossRefGoogle Scholar
Basko, M.M., Kemp, A.J., and Meyer-ter Vehn, J. 2000. Ignition conditions for magnetized target fusion in cylindrical geometry. Nucl. Fusion, 40, 59.CrossRefGoogle Scholar
Batchelor, G.K. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press. Cambridge, UK.Google Scholar
Batchelor, G.K. 1969. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids, 12, II–233.CrossRefGoogle Scholar
Batchelor, G.K. 1994. The Life and Legacy of G.I. Taylor. Cambridge University Press. Cambridge, UKGoogle Scholar
Batchelor, G.K., and Proudman, I. 1956. The large-scale structure of homogenous turbulence. Phil. Trans. R. Soc. Lond. A, 248, 369.Google Scholar
Batchelor, G.K., Canuto, V.M., and Chasnov, J.R. 1992. Homogeneous buoyancy-generated turbulence. J. Fluid Mech., 235, 349.CrossRefGoogle Scholar
Battimelli, G. 1986. On the history of the statistical theories of turbulence. Rev. Mex. Fis., 32, (Suppl. 1) S3.Google Scholar
Baus, M., and Hansen, J.-P. 1980. Statistical mechanics of simple Coulomb systems. Phys. Rep., 59, 1.CrossRefGoogle Scholar
Begelman, M.C., Blandford, R.D., and Rees, M.J. 1984. Theory of extragalactic radio sources. Rev. Mod. Phys., 56, 255.CrossRefGoogle Scholar
Belen’kii, S.Z., and Fradkin, E.S. 1965. Theory of turbulent mixing. Tr. Fiz. Inst. Akad. Nauk SSSR, 29, 207.Google Scholar
Bell, D.J., and Chapman, D.J. 2017. Phase Doppler anemometry as an ejecta diagnostic. AIP Conf. Proc., 1793, 060011.Google Scholar
Bell, D.J., Routley, N.R., Millett, J.C.F., Whiteman, G., Collinson, M.A., and Keightley, P.T. 2017. Investigation of ejecta production from Tin at an elevated temperature and the eutectic alloy Lead– Bismuth. J. Dyn. Behav. Mater., 3, 208.CrossRefGoogle Scholar
Bell, G.I. 1951. Taylor instability on cylinders and spheres in the small amplitude approximation. Los Alamos Scientific Lab. Report No. LA-1321. Los Alamos, NM.Google Scholar
Bell, J.H., and Mehta, R.D. 1990. Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J., 28, 2034.CrossRefGoogle Scholar
Bellan, P.M., You, S., and Hsu, S.C. 2005. Simulating astrophysical jets in laboratory experiments. In: Kyrala, G. (eds), High Energy Density Laboratory Astrophysics. Springer, Dordrecht, Netherlands.Google Scholar
Bellman, R., and Pennington, R.H. 1954. Effects of surface tension and viscosity on Taylor instability. Quart. Appl. Math., 12, 151.CrossRefGoogle Scholar
Ben-Dor, G., Igra, O., and Elperin, T. 2000. Handbook of Shock Waves, I–III. Academic Press, New York.Google Scholar
Bender, C.M., and Orszag, S. 1978. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York.Google Scholar
Bender, J.D., Schilling, O., Raman, K.S., Managan, R.A., Olson, B.J., Copeland, S.R., Ellison, C.L., Erskine, D.J., Huntington, C.M., Morgan, B.E., Nagel, S.R., Prisbrey, S.T., Pudliner, B.S., Sterne, P.A., Wehrenberg, C.E., and Zhou, Y. 2021. Simulation and flow physics of a shocked and reshocked high-energy-density mixing layer. J. Fluid Mech., 915, A84.CrossRefGoogle Scholar
Bennett, G.R., Wallace, J.M., Murphy, T.J., et al. 2000. Moderate-convergence inertial confinement fusion implosions in tetrahedral hohlraums at Omega. Phys. Plasmas, 7, 2594.CrossRefGoogle Scholar
Bennett, W.H. 1934. Magnetically self-focusing streams. Phys. Rep., 45, 890.CrossRefGoogle Scholar
Bera, R.K., Song, Y., and Srinivasan, B. 2022. The effect of viscosity and resistivity on Rayleigh– Taylor instability induced mixing in magnetized high-energy-density plasmas. J. Plasma Phys., 88, 905880209.CrossRefGoogle Scholar
Berger, T., Testa, P., Hillier, A., Boerner, P., Low, B.C., Shibata, K., Schrijver, C., Tarbell, T., and Title, A. 2011. Magneto-thermal convection in solar prominences. Nature, 472, 197.CrossRefGoogle ScholarPubMed
Berger, T., Hillier, A., and Liu, W. 2017. Quiescent prominence dynamics observed with the Hinode Solar Optical Telescope. II. Prominence bubble boundary layer characteristics and the onset of a coupled Kelvin–Helmholtz Rayleigh–Taylor instability. Astrophys. J., 850, 60.CrossRefGoogle Scholar
Berger, T.E., Shine, R.A., Slater, G.L., Tarbell, T.D., Okamoto, T.J., Ichimoto, K., Katsukawa, Y., Suematsu, Y., Tsuneta, S., Lites, B.W., and Shimizu, T. 2008. Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. Lett., 676, L89.CrossRefGoogle Scholar
Berger, T.E., Slater, G., Hurlburt, N., Shine, R., Tarbell, T., Lites, B.W., Okamoto, T.J., Ichimoto, K., Katsukawa, Y., Magara, T., and Suematsu, Y. 2010. Quiescent prominence dynamics observed with the Hinode Solar Optical Telescope. I. Turbulent upflow plumes. Astrophys. J., 716, 1288. Berry, M.V., and Geim, A.K. 1997. Of flying frogs and levitrons. Eur. J. Phys., 18, 307.Google Scholar
Besnard, D., Harlow, F., and R., Rauenzahn. 1992. Turbulence transport equations for variable density turbulence and their relationship to two-field models. Tech. rept. LA-12303-MS. Los Alamos National Laboratory, Los Alamos, NM.CrossRefGoogle Scholar
Besnard, D.C., Haas, J.F., and Rauenzahn, R.M. 1989. Statistical modeling of shock-interface interaction. Physica D, 37, 227.CrossRefGoogle Scholar
Besnard, D.C., Harlow, F.H., Rauenzahn, R.M., and Zemach, C. 1996. Spectral transport model for turbulence. Theor. Comput. Fluid Dyn., 8, 1.CrossRefGoogle Scholar
Bethe, H.A. 1990. Supernova mechanisms. Rev. Mod. Phys., 62, 801.CrossRefGoogle Scholar
Betti, R., and Hurricane, O.A. 2016. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435. Betti, R., and Sanz, J. 2006. Bubble acceleration in the ablative Rayleigh–Taylor instability. Phys. Rev. Lett., 97, 205002.Google Scholar
Betti, R., McCrory, R.L., and Verdon, C.P. 1993. Stability analysis of unsteady ablation fronts. Phys. Rev. Lett., 71, 3131.CrossRefGoogle ScholarPubMed
Betti, R., Goncharov, V.N., McCrory, R.L., and Verdon, C.P. 1995. Self-consistent cutoff wave number of the ablative Rayleigh–Taylor instability. Phys. Plasmas, 2, 3844.CrossRefGoogle Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W., and Solodov, A.A. 2007. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett., 98, 155001.CrossRefGoogle ScholarPubMed
Biamino, L., Mariani, C., Jourdan, G., Houas, L., Vandenboomgaerde, M., and Souffland, D. 2014. Planar shock focusing through perfect gas lens: first experimental demonstration. J. Fluids Eng., 136, 091204.CrossRefGoogle Scholar
Bian, X., Aluie, H., Zhao, D., Zhang, H., and Livescu, D. 2020. Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity. Physica D, 403, 132250.CrossRefGoogle Scholar
Biferale, L., Mantovani, F., Sbragaglia, M., Scagliarini, A., Toschi, F., and Tripiccione, R. 2010. High resolution numerical study of Rayleigh–Taylor turbulence using a thermal lattice Boltzmann scheme. Phys. Fluids, 22, 115112.CrossRefGoogle Scholar
Biferale, L., Boffetta, G., Mailybaev, A.A., and Scagliarini, A. 2018. Rayleigh–Taylor turbulence with singular nonuniform initial conditions. Phys. Rev. Fluids, 3, 092601.CrossRefGoogle Scholar
Bilger, R.W. 1975. A note on Favre averaging in variable density flows. Combust. Sci. Technol., 11, 215.CrossRefGoogle Scholar
Billet, G., Giovangigli, V., and De Gassowski, G. 2008. Impact of volume viscosity on a shock– hydrogen-bubble interaction. Combust. Theory Model., 12, 221.CrossRefGoogle Scholar
Billington, I.J. 1956. An experimental study of the one-dimensional refraction of a rarefaction wave at a contact surface. J. Aero. Sci., 23, 997.CrossRefGoogle Scholar
Bin, Y., Xiao, M., Shi, Y., Zhang, Y., and Chen, S. 2021. A new idea to predict reshocked Richtmyer– Meshkov mixing: constrained large-eddy simulation. J. Fluid Mech., 918, R1.CrossRefGoogle Scholar
Binnie, A.M. 1953. The stability of the surface of a cavitation bubble. Math. Proc. Cambridge Philos. Soc., 49, 151.CrossRefGoogle Scholar
Bird, R.B., Stewart, W.E., and Lightfoot, E.N. 2006. Transport Phenomena. John Wiley & Sons, New York.Google Scholar
Birkhoff, G. 1954. Taylor instability and laminar mixing. Tech. rept. LA-1862. Los Alamos National Laboratory, Los Alamos, NM.CrossRefGoogle Scholar
Birkhoff, G. 1962. Helmholtz and Taylor instability. Pages 55–76 of: Proceedings of Symposia in Applied Mathematics. Vol. 13. American Mathematical Society, Providence, RI.Google Scholar
Bishop, A.S. 1958. Project Sherwood: The US Program in Control. Fusion. Addison-Wesley, Reading, MA.Google Scholar
Blinova, A.A., Romanova, M.M., and Lovelace, R.V.E. 2016. Boundary between stable and unstable regimes of accretion. Ordered and chaotic unstable regimes. Mon. Not. R. Astron. Soc., 459, 2354.CrossRefGoogle Scholar
Bliznetsov, M.V., Vlasov, Y.V., Dudin, V.I., Meshkov, E.E., Nikulin, A.A., Til’kunov, V.A., Tol-shmyakov, A.I., and Kholkin, S.A. 1997. How the film may control the gas-gas turbulent mixing development in shock tube experiments. Page 90 of: Proceedings the Sixth International Workshop on Compressible Turbulent Mixing. Marseille, France.Google Scholar
Blondin, S., Bravo, E., Timmes, F.X., Dessart, L., and Hillier, D.J. 2022. Stable nickel production in Type Ia supernovae: a smoking gun for the progenitor mass? Astron. Astrophys., 660, A96.CrossRefGoogle Scholar
Bodenschatz, E., and Eckert, M. 2011. Prandtl and the Göttingen school. In: Davidson, P.A., Kaneda, Y., Moffet, K., and Sreenivasan, K.R. (eds), A Voyage through Turbulence. Cambridge University Press, Cambridge, UK.Google Scholar
Bodner, S.E. 1974. Rayleigh–Taylor instability and laser-pellet fusion. Phys. Rev. Lett., 33, 761. Boehly, T.R., Brown, D.L., Craxton, R.S., et al. 1997. Initial performance results of the OMEGA laser system. Opt. Commun. 133, 495.Google Scholar
Boffetta, G., and Ecke, R.E. 2012. Two-dimensional turbulence. Annu. Rev. Fluid Mech., 44, 427.CrossRefGoogle Scholar
Boffetta, G., and Mazzino, A. 2017. Incompressible Rayleigh–Taylor turbulence. Annu. Rev. Fluid Mech., 49, 119.CrossRefGoogle Scholar
Boffetta, G., and Musacchio, S. 2010. Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E, 82, 016307.CrossRefGoogle ScholarPubMed
Boffetta, G, and Musacchio, S. 2022. Incompressible Rayleigh–Taylor mixing in circular and spherical geometries. Phys. Rev. E, 105, 025104.CrossRefGoogle ScholarPubMed
Boffetta, G., Mazzino, A., Musacchio, S., and Vozella, L. 2009. Kolmogorov scaling and intermittency in Rayleigh–Taylor turbulence. Phys. Rev. E, 79, 065301.CrossRefGoogle ScholarPubMed
Boffetta, G., Mazzino, A., Musacchio, S., and Vozella, L. 2010. Statistics of mixing in three-dimensional Rayleigh–Taylor turbulence at low Atwood number and Prandtl number one. Phys. Fluids, 22, 035109.CrossRefGoogle Scholar
Boffetta, G., Mazzino, A., and Musacchio, S. 2011. Effects of polymer additives on Rayleigh–Taylor turbulence. Phys. Rev. E, 83, 056318.CrossRefGoogle ScholarPubMed
Boffetta, G., De Lillo, F., Mazzino, A., and Musacchio, S. 2012. Bolgiano scale in confined Rayleigh–Taylor turbulence. J. Fluid Mech., 690, 426.CrossRefGoogle Scholar
Boffetta, G., Mazzino, A., and Musacchio, S. 2016. Rotating Rayleigh–Taylor turbulence. Phys. Rev. Fluids, 1, 054405.CrossRefGoogle Scholar
Boffetta, G., Magnani, M., and Musacchio, S. 2019. Suppression of Rayleigh–Taylor turbulence by time-periodic acceleration. Phys. Rev. E, 99, 033110.CrossRefGoogle ScholarPubMed
Boffetta, G., Borgnino, M., and Musacchio, S. 2020. Scaling of Rayleigh–Taylor mixing in porous media. Phys. Rev. Fluids, 5, 062501.CrossRefGoogle Scholar
BolgianoJr, R. 1959. Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res., 64, 2226.CrossRefGoogle Scholar
Bonazza, R. 2022. Research activities at the Wisconsin shock tube laboratory. Pages 57–82 of: Takayama, K., and Igra, O. (eds), Frontiers of Shock Wave Research. Springer International Publishing, Cham, Switzerland.Google Scholar
Bonazza, R., and Sturtevant, B. 1996. X-ray measurements of growth rates at a gas interface accelerated by shock waves. Phys. Fluids, 8, 2496.CrossRefGoogle Scholar
Bond, D., Wheatley, V., Samtaney, R., and Pullin, D.I. 2017. Richtmyer–Meshkov instability of a thermal interface in a two-fluid plasma. J. Fluid Mech., 833, 332.CrossRefGoogle Scholar
Borgnino, M., Boffetta, G., and Musacchio, S. 2021. Dimensional transition in Darcy-Rayleigh– Taylor mixing. Phys. Rev. Fluids, 6, 074501.CrossRefGoogle Scholar
Boris, J.P. 1989. Comment: the potential and limitations of direct and large-eddy simulations. Page 344 of: Lumley, J.L. (ed), Whither Turbulence? Turbulence at the Crossroads. Springer, Berlin, Germany.Google Scholar
Boris, J.P., Grinstein, F.F., Oran, E.S., and Kolbe, R.L. 1992. New insights into large eddy simulation. Fluid Dyn. Res., 10, 199.CrossRefGoogle Scholar
Bourgade, J.L., Marmoret, R., Darbon, S., et al. 2008. Diagnostics hardening for harsh environment in Laser Mégajoule. Rev. Sci. Instrum., 79, 10F301.CrossRefGoogle ScholarPubMed
Bourouiba, L. 2020. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. JAMA: J. Am. Med. Assoc., 323, 1837.Google ScholarPubMed
Bourouiba, L., Dehandschoewercker, E., and Bush, J.W. 2014. Violent expiratory events: on coughing and sneezing. J. Fluid Mech., 745, 537.CrossRefGoogle Scholar
Boussinesq, J. 1903. Théorie Analytique de la Chaleur. Vol. 2. Gauthier-Villars, Paris, France.Google Scholar
Bouzgarrou, G., Bury, Y., Jamme, S., Joly, L., and Haas, J.-F. 2014. Laser doppler velocimetry measurements in turbulent gaseous mixing induced by the Richtmyer–Meshkov instability: statistical convergence issues and turbulence quantification. J. Fluids Eng., 136, 091209.CrossRefGoogle Scholar
Bradley, P.A. 2014. The effect of mix on capsule yields as a function of shell thickness and gas fill. Phys. Plasmas, 21, 062703.CrossRefGoogle Scholar
Bradshaw, P. 1994. Turbulence: the chief outstanding difficulty of our subject. Exp. Fluids, 16, 203. Braginskii, S.I. 1965. Transport processes in a plasma. Rev. Plasma Phys., 1, 205.Google Scholar
Branch, D., and Wheeler, J.C. 2017. Supernova Explosions. Springer, Berlin.CrossRefGoogle Scholar
Branover, H., Eidelman, A., Golbraikh, E., and Moiseyev, S. 1999. Turbulence and Structures: Chaos, Fluctuations, and Helical Self-Organization in Nature and the Laboratory. Academic Press, San Diego, CA.Google Scholar
Braun, N.O., and Gore, R.A. 2020. A passive model for the evolution of subgrid-scale instabilities in turbulent flow regimes. Physica D, 404, 132373.CrossRefGoogle Scholar
Braun, N. O., and Gore, R. A. 2021. A multispecies turbulence model for the mixing and de-mixing of miscible fluids. J. Turbul., 22, 784.CrossRefGoogle Scholar
Brenner, M.P., and Stone, H.A. 2000. Modern classical physics through the work of G. I. Taylor. Phys. Today, 53, 30.CrossRefGoogle Scholar
Briard, A., Gréa, B.-J., and Nguyen, F. 2022. Growth rate of the turbulent magnetic Rayleigh–Taylor instability. Phys. Rev. E, 106, 065201.CrossRefGoogle ScholarPubMed
Briard, A, Gréa, B.-J., and Nguyen, F. 2024. Turbulent mixing in the vertical magnetic Rayleigh– Taylor instability. J. Fluid Mech., 979, A8.CrossRefGoogle Scholar
Brode, H.L. 1959. Blast wave from a spherical charge. Phys. Fluids, 2, 217.CrossRefGoogle Scholar
Brouillette, M. 2002. The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech., 34, 445. Brouillette, M., and Sturtevant, B. 1989. Growth induced by multiple shock waves normally incident on plane gaseous interfaces. Physica D, 37, 248.Google Scholar
Brouillette, M., and Sturtevant, B. 1994. Experiments on the Richtmyer–Meshkov instability: single-scale perturbations on a continuous interface. J. Fluid Mech., 263, 271.CrossRefGoogle Scholar
Brown, G.L., and Roshko, A. 1974. On density effects and large structure in turbulent mixing layers. J. Fluid Mech., 64, 775.CrossRefGoogle Scholar
Brown, J.L., Alexander, C.S., Asay, J.R., Vogler, T.J., and Ding, J.L. 2013. Extracting strength from high pressure ramp-release experiments. J. Appl. Phys., 114, 223518.CrossRefGoogle Scholar
Brown, J.L., Alexander, C.S., Asay, J.R., Vogler, T.J., Dolan, D.H., and Belof, J.L. 2014a. Flow strength of tantalum under ramp compression to 250 GPa. J. Appl. Phys., 115, 043530.CrossRefGoogle Scholar
Brown, M.A., Batha, C.A., and Williams, R.J.R. 2014b. Statistics for assessing mixing in a finite element hydrocode. J. Fluids Eng., 136, 091103.CrossRefGoogle Scholar
Brüggen, M., Scannapieco, E., and Heinz, S. 2009. Evolution of X-ray cavities. Mon. Not. R. Astron. Soc., 395, 2210.CrossRefGoogle Scholar
Bryson, A.E., and Gross, R.W.F. 1961. Diffraction of strong shocks by cones, cylinders, and spheres. J. Fluid Mech., 10, 1.CrossRefGoogle Scholar
Bucciantini, N., Amato, E., Bandiera, R., Blondin, J.M., and Del Zanna, L. 2004. Magnetic Rayleigh– Taylor instability for pulsar wind nebulae in expanding supernova remnants. Astron. Astrophys., 423, 253.CrossRefGoogle Scholar
Budil, K.S., Remington, B.A., Peyser, T.A., Mikaelian, K.O., Miller, P.L., Woolsey, N.C., Wood-Vasey, W.M., and Rubenchik, A.M. 1996. Experimental comparison of classical versus ablative Rayleigh–Taylor instability. Phys. Rev. Lett., 76, 4536.CrossRefGoogle ScholarPubMed
Budil, K.S., Lasinski, B., Edwards, M.J., Wan, A.S., Remington, B.A., Weber, S.V., Glendinning, S.G., Suter, L., and Stry, P.E. 2001. The ablation-front Rayleigh–Taylor dispersion curve in indirect drive. Phys. Plasmas, 8, 2344.CrossRefGoogle Scholar
Burdonov, K., Yao, W., Sladkov, A., et al. 2022. Laboratory modelling of equatorial ‘tongue’ accretion channels in young stellar objects caused by the Rayleigh–Taylor instability. Astron. Astrophys., 657, A112.CrossRefGoogle Scholar
Burlot, A., Gréa, B.-J., Godeferd, F.S., Cambon, C., and Soulard, O. 2015a. Large Reynolds number self-similar states of unstably stratified homogeneous turbulence. Phys. Fluids, 27, 065114.CrossRefGoogle Scholar
Burlot, A., Gréa, B.-J., Godeferd, F.S., Cambon, C., and Griffond, J. 2015b. Spectral modelling of high Reynolds number unstably stratified homogeneous turbulence. J. Fluid Mech., 765, 17.CrossRefGoogle Scholar
Burrows, A. 2000. Supernova explosions in the universe. Nature, 403, 727.CrossRefGoogle ScholarPubMed
Burrows, K.D., Smeeton, V.S., and Youngs, D.L. 1984. Experimental investigation of turbulent mixing by Rayleigh–Taylor instability, II. AWRE Report, 22/84. Atomic Weapons Establishment, Aldermaston, UK.Google Scholar
Burton, G.C. 2008. The nonlinear large-eddy simulation method applied to Sc≈1 and Sc>>1 passive-scalar mixing. Phys. Fluids, 20, 035103.CrossRefGoogle Scholar
Burton, G.C. 2011. Study of ultrahigh Atwood-number Rayleigh–Taylor mixing dynamics using the nonlinear large-eddy simulation method. Phys. Fluids, 23, 045106.CrossRefGoogle Scholar
Buttler, W.T., Oró, D.M., Preston, D.L., et al. 2012. Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech., 703, 60.CrossRefGoogle Scholar
Buttler, W.T., Williams, R.J., and Najjar, F.M. (eds). 2017. The special issue on ejecta. J. Dyn. Behav. Mater., 3.CrossRefGoogle Scholar
Cabot, W. 2006. Comparison of two-and three-dimensional simulations of miscible Rayleigh–Taylor instability. Phys. Fluids, 18, 045101.CrossRefGoogle Scholar
Cabot, W.H., and Cook, A.W. 2006. Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nat. Phys., 2, 562.CrossRefGoogle Scholar
Cabot, W.H., and Zhou, Y. 2013. Statistical measurements of scaling and anisotropy of turbulent flows induced by Rayleigh–Taylor instability. Phys. Fluids, 25, 015107.CrossRefGoogle Scholar
Cabot, W.H., Schilling, O., and Zhou, Y. 2004. Influence of subgrid scales on resolvable turbulence and mixing in Rayleigh–Taylor flow. Phys. Fluids, 16, 495.CrossRefGoogle Scholar
Callender, C. 2005. Answers in search of a question: ‘proofs’ of the tri-dimensionality of space. Stud. Hist. Philos. Mod. Phys., 36, 113.CrossRefGoogle Scholar
Campbell, E.M., Sangster, T.C., Goncharov, V.N., et al. 2020a. Direct-drive laser fusion: status, plans and future. Phil. Trans. Roy. Soc. A, 379, 20200011.CrossRefGoogle ScholarPubMed
Campbell, P.C., Jones, T.M., Woolstrum, J.M., et al. 2020b. Stabilization of liner implosions via a dynamic screw pinch. Phys. Rev. Lett., 125, 035001.CrossRefGoogle Scholar
Canaud, B., Laffite, S., and Temporal, M. 2011. Shock ignition of direct-drive double-shell targets. Nucl. Fusion, 51, 062001.CrossRefGoogle Scholar
Candelas, P., Horowitz, G.T., Strominger, A., and Witten, E. 1985. Vacuum configurations for superstrings. Nucl. Phys. B, 258, 46.CrossRefGoogle Scholar
Canfield, J., Denissen, N., Francois, M., Gore, R., Rauenzahn, R., Reisner, J., and Shkoller, S. 2020. A comparison of interface growth models applied to Rayleigh–Taylor and Richtmyer–Meshkov instabilities. J. Fluids Eng., 142, 121108.CrossRefGoogle Scholar
Cannone, M., and Friedlander, S. 2003. Navier: blow-up and collapse. Not. Am. Math. Soc., 50, 7.Google Scholar
Cao, C.Y., Sun, Y.B., Wang, C., Jia, X.Y., Zeng, R.H., and Yang, T.H. 2024. Coupled models for propagation of explosive shock waves in cylindrical and spherical geometries. Phys. Plasmas, 31, 022706.CrossRefGoogle Scholar
Cao, D., and Michaels, D. 2022. Vorticity transport in different regions of a strut-based scramjet. AIAA J., 60, 4532.CrossRefGoogle Scholar
Cao, Y.G., Guo, H.Z., Zhang, Z.F., Sun, Z.H., and Chow, W.K. 2011. Effects of viscosity on the growth of Rayleigh–Taylor instability. J. Physics A, 44, 275501.CrossRefGoogle Scholar
Carlès, P., and Popinet, S. 2001. Viscous nonlinear theory of Richtmyer–Meshkov instability. Phys. Fluids, 13, 1833.CrossRefGoogle Scholar
Carlès, P., and Popinet, S. 2002. The effect of viscosity, surface tension and non-linearity on Richtmyer–Meshkov instability. Eur. J. Mech. B/Fluids, 21, 511.CrossRefGoogle Scholar
Carlès, P., Huang, Z., Carbone, G., and Rosenblatt, C. 2006. Rayleigh–Taylor instability for immiscible fluids of arbitrary viscosities: a magnetic levitation investigation and theoretical model. Phys. Rev. Lett., 96, 104501.CrossRefGoogle ScholarPubMed
Carlyle, J., Williams, D.R., van Driel-Gesztelyi, L., Innes, D., Hillier, A., and Matthews, S. 2014. Investigating the dynamics and density evolution of returning plasma blobs from the 2011 June 7 eruption. Astrophys. J., 782, 87.CrossRefGoogle Scholar
Carnevale, G.F., Purini, R., Orlandi, P., and Cavazza, P. 1995. Barotropic quasi-geostrophic f-plane flow over anisotropic topography. J. Fluid Mech., 285, 329.CrossRefGoogle Scholar
Carnevale, G.F., Orlandi, P., Zhou, Y., and Kloosterziel, R.C. 2002. Rotational suppression of Rayleigh–Taylor instability. J. Fluid Mech., 457, 181.CrossRefGoogle Scholar
Carter, J., Pathikonda, G., Jiang, N., Felver, J.J., Roy, S., and Ranjan, D. 2019. Time-resolved measurements of turbulent mixing in shock-driven variable-density flows. Sci. Rep., 9, 20315.CrossRefGoogle ScholarPubMed
Case, K.M. 1960. Taylor instability of an inverted atmosphere. Phys. Fluids, 3, 366.CrossRefGoogle Scholar
Casey, D.T., Smalyuk, V.A., Tipton, R.E., Pino, J.E., Grim, G.P., Remington, B.A., Rowley, D.P., Weber, S.V., Barrios, M., Benedetti, L.R., and Bleuel, D.L. 2014. Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility. Phys. Plasmas, 21, 092705.CrossRefGoogle Scholar
Cashdollar, K.L. 1996. Coal dust explosibility. J. Loss Prev. Process Ind., 9, 65.CrossRefGoogle Scholar
Casner, A., Caillaud, T., Darbon, S., et al. 2015. LMJ/PETAL laser facility: overview and opportunities for laboratory astrophysics. High Energy Density Phys., 17, 2.CrossRefGoogle Scholar
Casner, A., Rigon, G., Albertazzi, B., et al. 2018. Turbulent hydrodynamics experiments in high energy density plasmas: scientific case and preliminary results of the TurboHEDP project. High Power Laser Sci. Eng., 6, e44.CrossRefGoogle Scholar
Casner, A., Mailliet, C., Rigon, G., et al. 2019. From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes. Nucl. Fusion, 59, 032002.CrossRefGoogle Scholar
Castelvecchi, D. 2017. On the trail of turbulence. Nature, 548, 382.CrossRefGoogle Scholar
Catherall, A.T., Eaves, L., King, P.J., and Booth, S.R. 2003. Floating gold in cryogenic oxygen. Nature, 422, 579.CrossRefGoogle ScholarPubMed
Catherasoo, C.J., and Sturtevant, B. 1983. Shock dynamics in non-uniform media. J. Fluid Mech., 127, 539.CrossRefGoogle Scholar
Cavailler, C. 2005. Inertial fusion with the LMJ. Plasma Phys. Control. Fusion, 47, B389.CrossRefGoogle Scholar
Celani, A., Cencini, M., Mazzino, A., and Vergassola, M. 2002. Active versus passive scalar turbulence. Phys. Rev. Lett., 89, 234502.CrossRefGoogle ScholarPubMed
Celani, A., Cencini, M., Mazzino, A., and Vergassola, M. 2004. Active and passive fields face to face. New J. Phys., 6, 72.CrossRefGoogle Scholar
Chae, J.C. 2010. Dynamics of vertical threads and descending knots in a hedgerow prominence. Astrophys. J., 714, 618.CrossRefGoogle Scholar
Champagne, F.H., Harris, V.G., and Corrsin, S. 1970. Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech., 41, 81.CrossRefGoogle Scholar
Chandrasekhar, S. 1955. The character of the equilibrium of an incompressible fluid sphere of variable density and viscosity subject to radial acceleration. Q. J. Mech. Appl. Math., 8, 1.CrossRefGoogle Scholar
Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability. Oxford University Press, London.Google Scholar
Chang, P.Y., Fiksel, G., Hohenberger, M., Knauer, J.P., Betti, R., Marshall, F.J., Meyerhofer, D.D., Séguin, F.H., and Petrasso, R.D. 2011. Fusion yield enhancement in magnetized laser-driven implosions. Phys. Rev. Lett., 107, 035006.CrossRefGoogle ScholarPubMed
Chapman, D.R. 1979. Computational aerodynamics development and outlook. AIAA J., 17, 1293.CrossRefGoogle Scholar
Chapman, P.R., and Jacobs, J.W. 2006. Experiments on the three-dimensional incompressible Richtmyer–Meshkov instability. Phys. Fluids, 18, 074101.CrossRefGoogle Scholar
Chapman, S., and Cowling, T.G. 1990. The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. 3rd edn. Cambridge University Press, Cambridge, UK.Google Scholar
Charakhch’an, A.A. 2000. Richtmyer–Meshkov instability of an interface between two media due to passage of two successive shocks. J. Appl. Mech. Tech. Phys., 41, 23.CrossRefGoogle Scholar
Charakhch’yan, A.A. 2001. Reshocking at the non-linear stage of Richtmyer–Meshkov instability. Plasma Phys. Control. Fusion, 43, 1169.CrossRefGoogle Scholar
Charney, J.G. 1971. Geostrophic turbulence. J. Atmos. Sci., 28, 1087.2.0.CO;2>CrossRefGoogle Scholar
Chasnov, J.R. 1997. On the decay of inhomogeneous turbulence. J. Fluid Mech., 342, 335.CrossRefGoogle Scholar
Chen, C., Xing, Y., Wang, H., Zhai, Z., and Luo, X. 2023. Experimental study on Richtmyer– Meshkov instability at a light–heavy interface over a wide range of Atwood numbers. J. Fluid Mech., 975, A29.CrossRefGoogle Scholar
Chen, F., Xu, A., and Zhang, G. 2016. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor instability. Front. Phys., 11, 1.CrossRefGoogle Scholar
Chen, F., Xu, A., and Zhang, G. 2018. Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability. Phys. Fluids, 30, 102105.CrossRefGoogle Scholar
Chen, Q., Li, L., Zhang, Y., and Tian, B. 2019. Effects of the Atwood number on the Richtmyer– Meshkov instability in elastic-plastic media. Phys. Rev. E, 99, 053102.CrossRefGoogle ScholarPubMed
Chen, S., and Doolen, G.D. 1998. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 30, 329.CrossRefGoogle Scholar
Chen, Y., Glimm, J., Sharp, D.H., and Zhang, Q. 1996. A two-phase flow model of the Rayleigh– Taylor mixing zone. Phys. Fluids, 8, 816.CrossRefGoogle Scholar
Cheng, B., Glimm, J., and Sharp, D.H. 2000. Density dependence of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts. Phys. Lett. A, 268, 366.CrossRefGoogle Scholar
Cheng, B., Glimm, J., and Sharp, D.H. 2002a. Dynamical evolution of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts. Phys. Rev. E, 66, 036312.CrossRefGoogle ScholarPubMed
Cheng, B., Glimm, J., and Sharp, D.H. 2002b. A three-dimensional renormalization group bubble merger model for Rayleigh–Taylor mixing. Chaos, 12, 267.CrossRefGoogle ScholarPubMed
Cherfils, C., and Lafitte, O. 2000. Analytic solutions of the Rayleigh equation for linear density profiles. Phys. Rev. E, 62, 2967.CrossRefGoogle ScholarPubMed
Cherfils, C., and Mikaelian, K.O. 1996. Simple model for the turbulent mixing width at an ablating surface. Phys. Fluids, 8, 522.CrossRefGoogle Scholar
Cherne, F.J., Dimonte, G., and Germann, T.C. 2012. Richtmyer–Meshkov instability examinedwith large-scale molecular dynamics simulations. AIP Conf. Proc., 1426, 1307.Google Scholar
Cherne, F.J., Hammerberg, J.E., Andrews, M.J., Karkhanis, V., and Ramaprabhu, P. 2015. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum. J. Appl. Phys., 118, 185901.CrossRefGoogle Scholar
Chertkov, M. 2003. Phenomenology of Rayleigh–Taylor turbulence. Phys. Rev. Lett., 91, 115001.CrossRefGoogle ScholarPubMed
Chertkov, M., Kolokolov, I., and Lebedev, V. 2005. Effects of surface tension on immiscible Rayleigh–Taylor turbulence. Phys. Rev. E, 71, 055301.CrossRefGoogle ScholarPubMed
Chiesa, M., Mathiesen, V., Melheim, J.A., and Halvorsen, B. 2005. Numerical simulation of particulate flow by the Eulerian–Lagrangian and the Eulerian–Eulerian approach with application to a fluidized bed. Comput. Chem. Eng., 29, 291.CrossRefGoogle Scholar
Chizhkov, M.N., Karlykhanov, N.G., Lykov, V.A., Shushlebin, A.N., Sokolov, L.V., and Timakova, M.S. 2005. Computational optimization of indirect-driven targets for ignition on the Iskra-6 laser facility. Laser Part. Beams, 23, 261.CrossRefGoogle Scholar
Chou, P.Y. 1945. On velocity correlations and the solutions of the equations of turbulent fluctuation. Quart. Appl. Math., 3, 38.CrossRefGoogle Scholar
Chou, P.Y. 1940. On an extension of Reynolds’ method of finding apparent stress and the nature of turbulence. Chin. J. Phys, 4, 1.Google Scholar
Chow, F.K., and Moin, P. 2003. A further study of numerical errors in large-eddy simulations. J. Comput. Phys., 184, 366.CrossRefGoogle Scholar
Chu, B.-T., and Kovásznay, L.S.G. 1958. Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech., 3, 494.CrossRefGoogle Scholar
Chu, D.K., Akl, E.A., Duda, S., et al. 2020. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet, 395, 1973.CrossRefGoogle ScholarPubMed
Chung, D., and Pullin, D.I. 2010. Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence. J. Fluid Mech., 643, 279.CrossRefGoogle Scholar
Ciardi, A., Ampleford, D.J., Lebedev, S.V., and Stehle, C. 2008. Curved Herbig-Haro jets: simulations and experiments. Astrophys. J., 678, 968.CrossRefGoogle Scholar
Clark, D.H., and Stephenson, F.R. 1977. The Historical Supernovae. Pergamon, Oxford, UK.Google Scholar
Clark, D.S., and Tabak, M. 2005a. Acceleration-and deceleration-phase nonlinear Rayleigh–Taylor growth at spherical interfaces. Phys. Rev. E, 72, 056308.CrossRefGoogle ScholarPubMed
Clark, D.S., and Tabak, M. 2005b. Nonlinear Rayleigh–Taylor growth in converging geometry. Phys. Rev. E, 71, 055302.CrossRefGoogle ScholarPubMed
Clark, D.S., and Tabak, M. 2006. Linear and nonlinear Rayleigh–Taylor growth at strongly convergent spherical interfaces. Phys. Fluids, 18, 064106.CrossRefGoogle Scholar
Clark, D.S., Haan, S.W., Cook, A.W., Edwards, M.J., Hammel, B.A., Koning, J.M., and Marinak, M.M. 2011. Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs. Phys. Plasmas, 18, 082701.CrossRefGoogle Scholar
Clark, D.S., Hinkel, D.E., Eder, D.C., et al. 2013. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility. Phys. Plasmas, 20, 056318.CrossRefGoogle Scholar
Clark, D.S., Milovich, J.L., Hinkel, D.E., et al. 2014. A survey of pulse shape options for a revised plastic ablator ignition design. Phys. Plasmas, 21, 112705.CrossRefGoogle Scholar
Clark, D.S., Marinak, M.M., Weber, C.R., et al. 2015. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. Phys. Plasmas, 22, 022703.CrossRefGoogle Scholar
Clark, D.S., Weber, C.R., Milovich, J.L., et al. 2016. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility. Phys. Plasmas, 23, 056302.CrossRefGoogle Scholar
Clark, D.S., Kritcher, A.L., Milovich, J.L., et al. 2017. Capsule modeling of high foot implosion experiments on the National Ignition Facility. Plasma Phys. Control. Fusion, 59, 055006.CrossRefGoogle Scholar
Clark, T.T. 2003. A numerical study of the statistics of a two-dimensional Rayleigh–Taylor mixing layer. Phys. Fluids, 15, 2413.CrossRefGoogle Scholar
Clark, T.T., and Zemach, C. 1998. Symmetries and the approach to statistical equilibrium in isotropic turbulence. Phys. Fluids, 10, 2846.CrossRefGoogle Scholar
Clark, T.T., and Zhou, Y. 2003. Self-similarity of two flows induced by instabilities. Phys. Rev. E, 68, 066305.CrossRefGoogle ScholarPubMed
Clark, T.T., and Zhou, Y. 2006. Growth rate exponents of Richtmyer–Meshkov mixing layers. J. Appl. Mech., 73, 461.CrossRefGoogle Scholar
Clérouin, J.G., Cherfi, M.H., and Zérah, G. 1998. The viscosity of dense plasmas mixtures. Europhys. Lett., 42, 37.CrossRefGoogle Scholar
Clift, R., Grace, J.R., and Weber, M.E. 1978. Bubbles, Drops, and Particles. Academic Press, New York.Google Scholar
Cloutman, L.D. 1991. A numerical model of particulate transport. Lawrence Livermore National Lab. Report, Livermore, CA.Google Scholar
Coble, R.L. 1963. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys., 34, 1679.CrossRefGoogle Scholar
Cobos-Campos, F., and Wouchuk, J.G. 2014. Analytical asymptotic velocities in linear Richtmyer– Meshkov-like flows. Phys. Rev. E, 90, 053007.CrossRefGoogle ScholarPubMed
Cobos-Campos, F., and Wouchuk, J.G. 2016. Analytical scalings of the linear Richtmyer–Meshkov instability when a shock is reflected. Phys. Rev. E, 93, 053111.CrossRefGoogle Scholar
Cobos-Campos, F, and Wouchuk, JG. 2017. Analytical scalings of the linear Richtmyer–Meshkov instability when a rarefaction is reflected. Phys. Rev. E, 96, 013102.CrossRefGoogle Scholar
Cohen, R.H., Dannevik, W.P., Dimits, A.M., Eliason, D.E., Mirin, A.A., Zhou, Y., Porter, D.H., and Woodward, P.R. 2002. Three-dimensional simulation of a Richtmyer–Meshkov instability with a two-scale initial perturbation. Phys. Fluids, 14, 3692.CrossRefGoogle Scholar
Colagrossi, A., Marrone, S., Colagrossi, P., and Le Touzé, D. 2021. Da Vinci’s observation of turbulence: a French-Italian study aiming at numerically reproducing the physics behind one of his drawings, 500 years later. Phys. Fluids, 33, 115122.CrossRefGoogle Scholar
Cole, RH. 1948. Underwater Explosions. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Cole, R.L., and Tankin, R.S. 1973. Experimental study of Taylor instability. Phys. Fluids, 16, 1810. Colgate, S.A., and White, R.H. 1966. The hydrodynamic behavior of supernovae explosions. Astrophys. J., 143, 626.Google Scholar
Collins, B.D., and Jacobs, J.W. 2002. PLIF flow visualization and measurements of the Richtmyer– Meshkov instability of an air/SF6 interface. J. Fluid Mech., 464, 113.CrossRefGoogle Scholar
Collins, G.S., Melosh, H.J., and Marcus, R.A. 2005. Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci., 40, 817.CrossRefGoogle Scholar
Colvin, J.D., Legrand, M., Remington, B.A., Schurtz, G., and Weber, S.V. 2003. A model for instability growth in accelerated solid metals. J. Appl. Phys., 93, 5287.CrossRefGoogle Scholar
Comte-Bellot, G., and Corrsin, S. 1966. The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech., 25, 657.CrossRefGoogle Scholar
Comte-Bellot, G., and Corrsin, S. 1971. Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech., 48, 273.CrossRefGoogle Scholar
Cong, Z., Guo, X., Si, T., and Luo, X. 2022. Experimental and theoretical studies on heavy fluid layers with reshock. Phys. Fluids, 34, 104108.CrossRefGoogle Scholar
Cook, A.W. 2009. Enthalpy diffusion in multicomponent flows. Phys. Fluids, 21, 055109.CrossRefGoogle Scholar
Cook, A.W., and Cabot, W.H. 2004. A high-wavenumber viscosity for high-resolution numerical methods. J. Comput. Phys., 195, 594.CrossRefGoogle Scholar
Cook, A.W., and Dimotakis, P.E. 2001. Transition stages of Rayleigh–Taylor instability between miscible fluids. J. Fluid Mech., 443, 69.CrossRefGoogle Scholar
Cook, A.W., and Zhou, Y. 2002. Energy transfer in Rayleigh–Taylor instability. Phys. Rev. E, 66, 026312.CrossRefGoogle ScholarPubMed
Cook, A.W., Cabot, W.H., and Miller, P.L. 2004. The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech., 511, 333.CrossRefGoogle Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., et al. 2008. National Ignition Facility target design and fabrication. Laser Part. Beams, 26, 479.CrossRefGoogle Scholar
Corey, A.T. 1994. Mechanics of Immiscible Fluids in Porous Media. Water Resources Publication, Highlands Ranch, CO.Google Scholar
Coronel, S.A., Veilleux, J.-C., and Shepherd, J.E. 2021. Ignition of stoichiometric hydrogen-oxygen by water hammer. Proc. Combust. Inst., 38, 3537.CrossRefGoogle Scholar
Corrsin, S. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22, 469.CrossRefGoogle Scholar
Cottle, A.E., and Polanka, M.D. 2016. Numerical and experimental results from a common-source high-g ultra-compact combustor. In: Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 4A: Combustion, Fuels and Emissions. Seoul, South Korea.Google Scholar
Courant, R., and Friedrichs, K.O. 1948. Supersonic Flow and Shock Waves. Interscience Publishers (Academic Press), New York.Google Scholar
Courtiaud, S., Lecysyn, N., Damamme, G., Poinsot, T., and Selle, L. 2018. Analysis of mixing in high-explosive fireballs using small-scale pressurised spheres. Shock Waves, 29, 339.CrossRefGoogle Scholar
Craik, A.D.D. 2005. George Gabriel Stokes on water wave theory. Annu. Rev. Fluid Mech., 37, 23.CrossRefGoogle Scholar
Craik, A.D.D. 2012. Lord Kelvin on fluid mechanics. Eur. Phys. J. H, 37, 75.CrossRefGoogle Scholar
Craven, B.A., Paterson, E.G., and Settles, G.S. 2010. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J. R. Soc. Interface, 7, 933.CrossRefGoogle ScholarPubMed
Craxton, R.S., Anderson, K.S., Boehly, T.R., et al. 2015. Direct-drive inertial confinement fusion: a review. Phys. Plasmas, 22, 110501.CrossRefGoogle Scholar
Crittenden, P.E., and Balachandar, S. 2018. The stability of the contact interface of cylindrical and spherical shock tubes. Phys. Fluids, 30, 064101.CrossRefGoogle Scholar
Cuneo, M.E., Herrmann, M.C., Sinars, D.B., et al. 2012. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories. IEEE Trans. Plasma Sci., 40, 3222.CrossRefGoogle Scholar
Curzon, F.L., Folkierski, A., Latham, R., and Nation, J.A. 1960. Experiments on the growth rate of surface instabilities in a linear pinched discharge. Proc. R. Soc. A, 257, 386.Google Scholar
Dai, J.L., Sun, Y.B., Wang, C., Zeng, R.H., and Zou, L.Y. 2023. Linear analytical model for magneto-Rayleigh–Taylor and sausage instabilities in a cylindrical liner. Phys. Plasmas, 30, 022704.CrossRefGoogle Scholar
Daly, B.J. 1969. Numerical study of the effect of surface tension on interface instability. Phys. Fluids, 12, 1340.CrossRefGoogle Scholar
Daly, B.J., and Harlow, F.H. 1970. Transport equations in turbulence. Phys. Fluids, 13, 2634.CrossRefGoogle Scholar
Dalziel, S.B., and Mouet, V. 2021. Rayleigh–Taylor instability between unequally stratified layers. Physica D, 423, 132907.CrossRefGoogle Scholar
Dalziel, S.B., Linden, P.F., and Youngs, D.L. 1999. Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech., 399, 1.CrossRefGoogle Scholar
Dalziel, S.B., Patterson, M.D., Caulfield, C.P., and Coomaraswamy, I.A. 2008. Mixing efficiency in high-aspect-ratio Rayleigh–Taylor experiments. Phys. Fluids, 20, 065106.CrossRefGoogle Scholar
Danckwerts, P.V. 1952. The definition and measurement of some characteristics of mixtures. Appl. Sci. Res. A, 3, 279.CrossRefGoogle Scholar
Danson, C.N., and Gizzi, L.A. 2023. Inertial confinement fusion ignition achieved at the National Ignition Facility – an editorial. High Power Laser Sci. Eng., 11, e40.CrossRefGoogle Scholar
Darrieus, G. 1938. Propagation d’un front de flame La Technique Moderne (Paris) and in 1945 at Congres de Mecanique Appliquee. Unpublished work.Google Scholar
Darrigol, O. 2002. Between hydrodynamics and elasticity theory: the first five births of the Navier– Stokes equation. Arch. Hist. Exact Sci, 56, 95.CrossRefGoogle Scholar
Dastidar, A.G., Amyotte, P.R., and Pegg, M.J. 1997. Factors influencing the suppression of coal dust explosions. Fuel, 76, 663.CrossRefGoogle Scholar
Dávalos-Orozco, L.A., and Aguilar-Rosas, J.E. 1989a. Rayleigh–Taylor instability of a continuously stratified fluid under a general rotation field. Phys. Fluids A, 1, 1192.CrossRefGoogle Scholar
Dávalos-Orozco, L.A., and Aguilar-Rosas, J.E. 1989b. Rayleigh–Taylor instability of a continuously stratified magnetofluid under a general rotation field. Phys. Fluids A, 1, 1600.CrossRefGoogle Scholar
Davey, M.K., and WhiteheadJr, J.A. 1981. Rotating Rayleigh–Taylor instability as a model of sinking events in the ocean. Geophys. Astrophys. Fluid Dyn., 17, 237.CrossRefGoogle Scholar
Davidson, P.A. 2015. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Davies, R.M., and Taylor, G.I. 1950. The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. London. Ser. A., 200, 375.Google Scholar
Davies Wykes, M.S., and Dalziel, S.B. 2014. Efficient mixing in stratified flows: experimental study of a Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech., 756, 1027.CrossRefGoogle Scholar
De Gennes, P.-G., Brochard-Wyart, F., and Quéré, D. 2013. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York.Google Scholar
de la Calleja, E.M., Zetina, S., and Zenit, R. 2014. Rayleigh–Taylor instability creates provocative images in painting. Phys. Fluids, 26, 091102.CrossRefGoogle Scholar
de Toma, G., Casini, R., Burkepile, J.T., and Low, B.C. 2008. Rise of a dark bubble through a quiescent prominence. Astrophys. J. Lett., 687, L123.CrossRefGoogle Scholar
Deardorff, J.W. 1980. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteorol., 18, 495.CrossRefGoogle Scholar
Debacq, M., Fanguet, V., Hulin, J.-P., Salin, D., and Perrin, B. 2001. Self-similar concentration profiles in buoyant mixing of miscible fluids in a vertical tube. Phys. Fluids, 13, 3097.CrossRefGoogle Scholar
Debacq, M., Hulin, J.-P., Salin, D., Perrin, B., and Hinch, E.J. 2003. Buoyant mixing of miscible fluids of varying viscosities in vertical tubes. Phys. Fluids, 15, 3846.CrossRefGoogle Scholar
DeBoer, J.D., Noël, J., and St-Maurice, J.P. 2010. The effects of mesoscale regions of precipitation on the ionospheric dynamics, electrodynamics and electron density in the presence of strong ambient electric field. Ann. Geophys., 28, 1345.CrossRefGoogle Scholar
DeNeef, P. 1975. Two waves on a beam-plasma system. Phys. Fluids, 18, 1209.CrossRefGoogle Scholar
Deng, J., Xie, W., Feng, S., Wang, M., Li, H., Song, S., Xia, M., Ce, J., He, A., Tian, Q., and Gu, Y. 2016. From concept to reality – a review to the primary test stand and its preliminary application in high energy density physics. Matter Radiat. Extremes, 1, 48.CrossRefGoogle Scholar
Denissen, N.A., Rollin, B., Reisner, J.M., and Andrews, M.J. 2014. The tilted rocket rig: a Rayleigh– Taylor test case for RANS models. J. Fluids Eng., 136, 091301.CrossRefGoogle Scholar
Desjardins, T.R., Di Stefano, C.A., Day, T., et al. 2019. A platform for thin-layer Richtmyer– Meshkov at OMEGA and the NIF. High Energy Density Phys., 33, 100705.CrossRefGoogle Scholar
Dewald, E.L., Pino, J.E., Tipton, R.E., Salmonson, J.D., Ralph, J., Hartouni, E., Khan, S.F., Hatarik, R., Young, C.V., Thorn, D., and Smalyuk, V.A. 2019. Pushered single shell implosions for mix and radiation trapping studies using high-Z layers on National Ignition Facility. Phys. Plasmas, 26, 072705.CrossRefGoogle Scholar
Dewald, E.L., MacLaren, S.A., Martinez, D.A., et al. 2022. First graded metal pushered single shell capsule implosions on the National Ignition Facility. Phys. Plasmas, 29, 052707.CrossRefGoogle Scholar
Di Stefano, C.A., Malamud, G., Henry de Frahan, M.T., et al. 2014. Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow. Phys. Plasmas, 21, 056306.CrossRefGoogle Scholar
Di Stefano, C.A., Malamud, G., Kuranz, C.C., Klein, S.R., and Drake, R.P. 2015a. Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density. High Energy Density Phys., 17, 263.CrossRefGoogle Scholar
Di Stefano, C.A., Malamud, G., Kuranz, C.C., Klein, S.R., Stoeckl, C., and Drake, R.P. 2015b. Richtmyer–Meshkov evolution under steady shock conditions in the high-energy-density regime. Appl. Phys. Lett., 106, 114103.CrossRefGoogle Scholar
Di Stefano, C.A., Rasmus, A.M., Doss, F.W., Flippo, K.A., Hager, J.D., Kline, J.L., and Bradley, P.A. 2017. Multimode instability evolution driven by strong, high-energy-density shocks in a rarefaction-reflected geometry. Phys. Plasmas, 24, 052101.CrossRefGoogle Scholar
Di Stefano, C.A., Doss, F.W., Merritt, E.C., et al. 2020. Experimental measurement of two copropagating shocks interacting with an unstable interface. Phys. Rev. E, 102, 043212.CrossRefGoogle ScholarPubMed
Dickinson, R.E., Ridley, E.C., and Roble, R.G. 1981. A three-dimensional general circulation model of the thermosphere. J. Geophys. Res. Space Phys., 86, 1499.CrossRefGoogle Scholar
Diegelmann, F., Tritschler, V., Hickel, S., and Adams, N. 2016a. On the pressure dependence of ignition and mixing in two-dimensional reactive shock-bubble interaction. Combust. Flame, 163, 414.CrossRefGoogle Scholar
Diegelmann, Felix, Hickel, Stefan, and Adams, Nikolaus A. 2016b. Shock Mach number influence on reaction wave types and mixing in reactive shock–bubble interaction. Combust. Flame, 174, 85.CrossRefGoogle Scholar
Diegelmann, F., Hickel, S., and Adams, N.A. 2017. Three-dimensional reacting shock–bubble interaction. Combust. Flame, 181, 300.CrossRefGoogle Scholar
Dimonte, G. 1982. Experimental test of modulation theory and stochasticity of nonlinear oscillations. Phys. Fluids, 25, 604.CrossRefGoogle Scholar
Dimonte, G. 2000. Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation. Phys. Plasmas, 7, 2255.CrossRefGoogle Scholar
Dimonte, G. 2004. Dependence of turbulent Rayleigh–Taylor instability on initial perturbations. Phys. Rev. E, 69, 056305.CrossRefGoogle ScholarPubMed
Dimonte, G., and Ramaprabhu, P. 2010. Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids, 22, 014104.CrossRefGoogle Scholar
Dimonte, G., and Remington, B. 1993. Richtmyer–Meshkov experiments on the Nova laser at high compression. Phys. Rev. Lett., 70, 1806.CrossRefGoogle ScholarPubMed
Dimonte, G., and Schneider, M. 1996. Turbulent Rayleigh–Taylor instability experiments with variable acceleration. Phys. Rev. E, 54, 3740.CrossRefGoogle ScholarPubMed
Dimonte, G., and Schneider, M. 1997. Turbulent Richtmyer–Meshkov instability experiments with strong radiatively driven shocks. Phys. Plasmas, 4, 4347.CrossRefGoogle Scholar
Dimonte, G., and Schneider, M. 2000. Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids, 12, 304.CrossRefGoogle Scholar
Dimonte, G., and Tipton, R. 2006. K-L turbulence model for the self-similar growth of the Rayleigh– Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids, 18, 085101.CrossRefGoogle Scholar
Dimonte, G., Morrison, J., Hulsey, S., et al. 1996a. A linear electric motor to study turbulent hydrodynamics. Rev. Sci. Instrum., 67, 302.CrossRefGoogle Scholar
Dimonte, G., Frerking, C.E., Schneider, M., and Remington, B. 1996b. Richtmyer–Meshkov instability with strong radiatively driven shocks. Phys. Plasmas, 3, 614.CrossRefGoogle Scholar
Dimonte, G., Youngs, D.L., Dimits, A., et al. 2004. A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids, 16, 1668.CrossRefGoogle Scholar
Dimonte, G., Ramaprabhu, P., Youngs, D.L., Andrews, M.J., and Rosner, R. 2005. Recent advances in the turbulent Rayleigh–Taylor instability. Phys. Plasmas, 12, 056301.CrossRefGoogle Scholar
Dimonte, G., Ramaprabhu, P., and Andrews, M. 2007. Rayleigh–Taylor instability with complex acceleration history. Phys. Rev. E, 76, 046313.CrossRefGoogle ScholarPubMed
Dimonte, G., Terrones, G., Cherne, F.J., Germann, T.C., Dupont, V., Kadau, K., Buttler, W.T., Oro, D.M., Morris, C., and Preston, D.L. 2011. Use of the Richtmyer–Meshkov instability to infer yield stress at high-energy densities. Phys. Rev. Lett., 107, 264502.CrossRefGoogle ScholarPubMed
Dimonte, G., Terrones, G., Cherne, F.J., and Ramaprabhu, P. 2013. Ejecta source model based on the nonlinear Richtmyer–Meshkov instability. J. Appl. Phys., 113, 024905.CrossRefGoogle Scholar
Dimotakis, P.E. 2000. The mixing transition in turbulent flows. J. Fluid Mech., 409, 69.CrossRefGoogle Scholar
Dimotakis, P.E. 2005. Turbulent mixing. Annu. Rev. Fluid Mech., 37, 329.CrossRefGoogle Scholar
Dimotakis, P.E., and Samtaney, R. 2006. Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids, 18, 031705.CrossRefGoogle Scholar
Ding, J., Si, T., Yang, J., Lu, X., Zhai, Z., and Luo, X. 2017. Measurement of a Richtmyer–Meshkov instability at an air-SF 6 interface in a semiannular shock tube. Phys. Rev. Lett., 119, 014501.CrossRefGoogle Scholar
Ding, J., Deng, X., and Luo, X. 2021. Convergent Richtmyer–Meshkov instability on a light gas layer with perturbed inner and outer surfaces. Phys. Fluids, 33, 102112.CrossRefGoogle Scholar
Dittrich, T.R., Hurricane, O.A., Callahan, D.A., et al. 2014. Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility. Phys. Rev. Lett., 112, 055002.CrossRefGoogle ScholarPubMed
Do, A., Angulo, A.M., Nagel, S.R., Hall, G.N., Bradley, D.K., Hsing, W., Pickworth, L., Izumi, N., Robey, H., and Zhou, Y. 2022. High spatial resolution and contrast radiography of hydrodynamic instabilities at the National Ignition Facility. Phys. Plasmas, 29, 080703.CrossRefGoogle Scholar
Dobran, F., Neri, A., and Macedonio, G. 1993. Numerical simulation of collapsing volcanic columns. J. Geophys. Res. Solid Earth, 98, 4231.CrossRefGoogle Scholar
Dodd, M.S., and Ferrante, A. 2014. A fast pressure-correction method for incompressible two-fluid flows. J. Comput. Phys., 273, 416.CrossRefGoogle Scholar
Dolai, B., and Prajapati, R.P. 2018. The rotating Rayleigh–Taylor instability in a strongly coupled dusty plasma. Phys. Plasmas, 25, 083708.CrossRefGoogle Scholar
Doludenko, A.N., and Fortova, S.V. 2015. Numerical simulation of Rayleigh–Taylor instability in inviscid and viscous media. Comput. Math. Math. Phys., 55, 874.CrossRefGoogle Scholar
Domaradzki, J.A. 2021. Toward autonomous large eddy simulations of turbulence based on interscale energy transfer among resolved scales. Phys. Rev. Fluids, 6, 104606.CrossRefGoogle Scholar
Dong, M., Fan, Z.F., and Yu, C.X. 2019. Multiple eigenmodes of the Rayleigh–Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation. Phys. Rev. E, 99, 013109.CrossRefGoogle ScholarPubMed
Donzis, D.A., and Sreenivasan, K.R. 2010. The bottleneck effect and the Kolmogorov constant in isotropic turbulence. J. Fluid Mech., 657, 171.CrossRefGoogle Scholar
Dorofeev, S.B. 2011. Flame acceleration and explosion safety applications. Proc. Combust. Inst., 33, 2161.CrossRefGoogle Scholar
Doss, F.W., Fincke, J.R., Loomis, E.N., Welser-Sherrill, L., and Flippo, K.A. 2013. The high-energy-density counterpropagating shear experiment and turbulent self-heating. Phys. Plasmas, 20, 122704.CrossRefGoogle Scholar
Doss, F.W., Kline, J.L., Flippo, K.A., et al. 2015. The Shock/Shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility. Phys. Plasmas, 22, 056303.CrossRefGoogle Scholar
Douglas, M.R., Deeney, C., and Roderick, N.F. 1997. Density and velocity statistics in variable density turbulent mixing. Phys. Rev. Lett., 78, 4577.CrossRefGoogle Scholar
Douglas, M.R., De Groot, J.S., and Spielman, R.B. 2001. The magneto-Rayleigh–Taylor instability in dynamic Z pinches. Laser Part. Beams, 19, 527.CrossRefGoogle Scholar
Drake, R.P. 1999. Laboratory experiments to simulate the hydrodynamics of supernova remnants and supernovae. J. Geophys. Res. Space Phys., 104, 14505.CrossRefGoogle Scholar
Drake, R.P. 2018. High Energy Density Physics. 2nd edn. Springer, Berlin.CrossRefGoogle Scholar
Drake, R.P., Harding, E.C., and Kuranz, C.C. 2008. Approaches to turbulence in high-energy-density experiments. Phys. Scr., T132, 014022.CrossRefGoogle Scholar
Drazin, P.G., and Reid, W.H. 1981. Hydrodynamic Stability. Cambridge University Press, Cambridge, UK.Google Scholar
Drikakis, D. 2003. Advances in turbulent flow computations using high-resolution methods. Prog. Aerosp. Sci., 39, 405.CrossRefGoogle Scholar
Drikakis, D., Grinstein, F., and Youngs, D. 2005. On the computation of instabilities and symmetry-breaking in fluid mechanics. Prog. Aerosp. Sci., 41, 609.CrossRefGoogle Scholar
Duan, R., Jiang, F., and Yin, J. 2015. Rayleigh–Taylor instability for compressible rotating flows. Acta Math. Scientia, 35, 1359.CrossRefGoogle Scholar
Duff, R.E., Harlow, F.H., and Hirt, C.W. 1962. Effects of diffusion on interface instability between gases. Phys. Fluids, 5, 417.CrossRefGoogle Scholar
Duffell, P.C. 2016. A One-dimensional model for Rayleigh–Taylor instability in supernova remnants. Astrophys. J., 821, 76.CrossRefGoogle Scholar
Dufreche, J.F., and Clerouin, J. 2000. Viscosity coefficient of dense fluid hydrogen. J. de Physique-Colloques, 10, 303.Google Scholar
Dukler, Y., Ji, H., Falcon, C., and Bertozzi, A.L. 2020. Theory for undercompressive shocks in tears of wine. Phys. Rev. Fluids, 5, 034002.CrossRefGoogle Scholar
Dumitrescu, D. T. 1943. Strömung an einer Luftblase im senkrechten Rohr. ZAMM – J. Appl. Math. and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 23, 139.Google Scholar
Dungey, J.W. 1956. Convective diffusion in the equatorial F region. J. Atmos. Terr. Phys., 9, 304.CrossRefGoogle Scholar
Durand, O., and Soulard, L. 2012. Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method. J. Appl. Phys., 111, 044901.CrossRefGoogle Scholar
Durand, O., and Soulard, L. 2013. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions. J. Appl. Phys., 114, 194902.CrossRefGoogle Scholar
Durand, O., and Soulard, L. 2015. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations. J. Appl. Phys., 117, 165903.CrossRefGoogle Scholar
Durand, O., Jaouen, S., Soulard, L., Heuze, O., and Colombet, L. 2017. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension. J. Appl. Phys., 122, 135107.CrossRefGoogle Scholar
Durand, O., Soulard, L., Colombet, L., and Prat, R. 2020. Influence of the phase transitions of shock-loaded tin on microjetting and ejecta production using molecular dynamics simulations. J. Appl. Phys., 127, 175901.CrossRefGoogle Scholar
Düring, G., Josserand, C., Krstulovic, G., and Rica, S. 2019. Strong turbulence for vibrating plates: emergence of a Kolmogorov spectrum. Phys. Rev. Fluids, 4, 064804.CrossRefGoogle Scholar
Dávalos-Orozco, L.A. 1996. Rayleigh–Taylor stability of a two-fluid system under a general rotation field. Dyn. Atmos. Oceans, 23, 247.CrossRefGoogle Scholar
Dyachkov, S., Parshikov, A., and Zhakhovsky, V. 2017. Ejecta from shocked metals: comparative simulations using molecular dynamics and smoothed particle hydrodynamics. AIP Conf. Proc., 1793, 100024.Google Scholar
Eckart, C. 1948. An analysis of the stirring and mixing processes in compressible fluids. J. Mar. Res., 7, 265.Google Scholar
Eckhoff, R.K. 2005. Current status and expected future trends in dust explosion research. J. Loss Prevent. Proc. Ind., 18, 225.CrossRefGoogle Scholar
Edwards, J., Lorenz, K.T., Remington, B.A., Pollaine, S., Colvin, J., Braun, D., Lasinski, B.F., Reisman, D., McNaney, J.M., Greenough, J.A., and Wallace, R. 2004. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state. Phys. Rev. Lett., 92, 075002.CrossRefGoogle ScholarPubMed
Edwards, J., Marinak, M., Dittrich, T., Haan, S., Sanchez, J., Klingmann, J., and Moody, J. 2005. The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition. Phys. Plasmas, 12, 056318.CrossRefGoogle Scholar
Edwards, M.J., Patel, P.K., Lindl, J.D., et al. 2013. Progress towards ignition on the National Ignition Facility. Phys. Plasmas, 20, 070501.CrossRefGoogle Scholar
Edwards, R. 2011. The Heart of Ma Yuan: The Search for a Southern Song Aesthetic. Hong Kong University Press, Hong Kong.Google Scholar
Eggers, J. 1997. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys., 69, 865.CrossRefGoogle Scholar
El Rafei, M., and Thornber, B. 2020. Numerical study and buoyancy–drag modeling of bubble and spike distances in three-dimensional spherical implosions. Phys. Fluids, 32, 124107.CrossRefGoogle Scholar
El Rafei, M., Flaig, M., Youngs, D.L., and Thornber, B. 2019. Three-dimensional simulations of turbulent mixing in spherical implosions. Phys. Fluids, 31, 114101.CrossRefGoogle Scholar
El Rafei, M., and Thornber, B. 2024. Turbulence statistics and transport in compressible mixing driven by spherical implosions with narrowband and broadband initial perturbations. Physi. Rev. Fluids, 9, 034501.CrossRefGoogle Scholar
Elbaz, Y., and Shvarts, D. 2018. Modal model mean field self-similar solutions to the asymptotic evolution of Rayleigh–Taylor and Richtmyer–Meshkov instabilities and its dependence on the initial conditions. Phys. Plasmas, 25, 062126.CrossRefGoogle Scholar
Elliott, L.A. 1965a. Calculation of the growth of interface instabilities by a Lagrangian Mesh Method. Pages 316–320 of: Proceedings of the Fourth International Symposium on Detonation. U.S. Naval Ordnance Lab., White Oak, MD.Google Scholar
Elliott, L.A. 1965b. Perturbations on fluid surfaces. Proc. R. Soc. London. Ser. A, 284, 397.Google Scholar
Ellis, S., and Stöckhert, B. 2004. Elevated stresses and creep rates beneath the brittle–ductile transition caused by seismic faulting in the upper crust. J. Geophys. Res. Solid Earth, 109, B05407.CrossRefGoogle Scholar
Elyanov, A., Golub, V., and Volodin, V. 2018. Conditions for the development of Rayleigh–Taylor instability on the spherical flame front. J. Phys. Conf. Series, 1129, 012011.CrossRefGoogle Scholar
Emmons, H.W., Chang, C.T., and Watson, B.C. 1960. Taylor instability of finite surface waves. J. Fluid Mech., 7, 177.CrossRefGoogle Scholar
Epstein, R. 2004. On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Phys. Plasmas, 11, 5114.CrossRefGoogle Scholar
Erez, L., Sadot, O., Oron, Da., Erez, G., Levin, L.A., Shvarts, D., and Ben-Dor, G. 2000. Study of the membrane effect on turbulent mixing measurements in shock tubes. Shock Waves, 10, 241.Google Scholar
Evans, R.G. 1986. The influence of self-generated magnetic fields on the Rayleigh–Taylor instability. Plasma Phys. Control. Fusion, 28, 1021.CrossRefGoogle Scholar
Eyink, G.L. 2005. Locality of turbulent cascades. Physica D, 207, 91.CrossRefGoogle Scholar
Eyink, G.L., and Aluie, H. 2009. Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids, 21, 115107.CrossRefGoogle Scholar
Falkovich, G. 2011. The Russian school. Pages 209–237 of: Davidson, P.A., Kaneda, Y., Moffatt, K., and Sreenivasan, K.R. (eds), A Voyage through Turbulence. Cambridge University Press, Cambridge, UK.Google Scholar
Falle, S.A., and Komissarov, S.S. 2001. On the inadmissibility of non-evolutionary shocks. J. Plasma Phys., 65, 29.CrossRefGoogle Scholar
Fan, M., Zhai, Z., Si, T., Luo, X., Zou, L., and Tan, D. 2012. Numerical study on the evolution of the shock-accelerated SF 6 interface: influence of the interface shape. Sci. China-Phys. Mech. Astron., 55, 284.CrossRefGoogle Scholar
Fan, Z., and Dong, M. 2020. Multiple eigenmodes of the Rayleigh–Taylor instability observed for a fluid interface with smoothly varying density. III. Excitation and nonlinear evolution. Phys. Rev. E, 101, 063103.CrossRefGoogle ScholarPubMed
Farley, D.R., Peyser, T.A., Logory, L.M., Murray, S.D., and Burke, E.W. 1999. High Mach number mix instability experiments of an unstable density interface using a single-mode, nonlinear initial perturbation. Phys. Plasmas, 6, 4304.CrossRefGoogle Scholar
Favre, A. 1965. Equations des gaz turbulents compressibles. I Formes générales. J. Méc., 4, 361.Google Scholar
Ferguson, K. 2022. The Richtmyer–Meshkov instability in reshock in a dual driver vertical shock tube. Ph.D. thesis, University of Arizona Tucson, AZ.Google Scholar
Ferguson, K., Wang, K.M., and Morgan, B.E. 2023. Mass and momentum transport in the Tilted Rocket Rig experiment. Phys. Rev. Fluids, 8, 094502.CrossRefGoogle Scholar
Fermi, E., and Von Neumann, J. 1955. Taylor instability of incompressible liquids. Tech. rept. 2979. United States Atomic Energy Commission, Technical Information Service, Washington DC.Google Scholar
Ferrari, A. 1998. Modeling extragalactic jets. Annu. Rev. Astron. Astrophys., 36, 539.CrossRefGoogle Scholar
Feynman, R.P. 1963. Feynman Lecture on Physics. Addison-Wesley, Reading, MA.Google Scholar
Fincke, J.R., Lanier, N.E., Batha, S.H., et al. 2004. Postponement of saturation of the Richtmyer– Meshkov instability in a convergent geometry. Phys. Rev. Lett., 93, 115003.CrossRefGoogle Scholar
Fincke, J.R., Lanier, N.E., Batha, S.H., et al. 2005. Effect of convergence on growth of the Richtmyer–Meshkov instability. Laser Part. Beams, 23, 21.CrossRefGoogle Scholar
Fisher, A., Branch, D., Nugent, P., and Baron, E. 1997. Evidence for a high-velocity carbon-rich layer in the Type Ia SN 1990N. Astrophys. J. Lett., 481, L89.CrossRefGoogle Scholar
Fisher, R.V. 1979. Models for pyroclastic surges and pyroclastic flows. J. Volcanol. Geotherm., 6, 305.CrossRefGoogle Scholar
Flaig, M., Clark, D., Weber, C., Youngs, D.L., and Thornber, B. 2018. Single-mode perturbation growth in an idealized spherical implosion. J. Comput. Phys., 371, 801.CrossRefGoogle Scholar
Fleurot, N., Cavailler, C., and Bourgade, J.L. 2005. The Laser Megajoule (LMJ) Project dedicated to inertial confinement fusion: development and construction status. Fusion Eng. Design, 74, 147.CrossRefGoogle Scholar
Flippo, K.A., Doss, F.W., Kline, J.L., et al. 2016. Late-time mixing sensitivity to initial broadband surface roughness in high-energy-density shear layers. Phys. Rev. Lett., 117, 225001.CrossRefGoogle ScholarPubMed
Flippo, K.A., Doss, F.W., Merritt, E.C., et al. 2018. Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers. Phys. Plasmas, 25, 056315.CrossRefGoogle Scholar
Folgarait, L. 1987. So Far from Heaven: David Alfaro Siqueiros’ The March of Humanity and Mexican Revolutionary Politics. Cambridge University Press, Cambridge, UK.Google Scholar
Forster, D., Nelson, D.R., and Stephen, M.J. 1977. Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A, 16, 732.CrossRefGoogle Scholar
Foster, J.M., Wilde, B.H., Rosen, P.A., Williams, R.J.R., Blue, B.E., Coker, R.F., Drake, R.P., Frank, A., Keiter, P.A., Khokhlov, A.M., and Knauer, J.P. 2005. High-energy-density laboratory astrophysics studies of jets and bow shocks. Astrophys. J. Lett., 634, L77.CrossRefGoogle Scholar
Fournier, J.B., and Cazabat, A.M. 1992. Tears of wine. Europhys. Lett., 20, 517.CrossRefGoogle Scholar
Fournier, J.-D., and Frisch, U. 1978. d-Dimensional turbulence. Phys. Rev. A, 17, 747.CrossRefGoogle Scholar
Fraley, G. 1986. Rayleigh–Taylor stability for a normal shock wave–density discontinuity interaction. Phys. Fluids, 29, 376.CrossRefGoogle Scholar
Freed, M.S., McKenzie, D.E., Longcope, D.W., and Wilburn, M. 2016. Analysis of flows inside quiescent prominences as captured by Hinode/Solar Optical Telescope. Astrophys. J., 818, 57.CrossRefGoogle Scholar
Frisch, U. 1995. Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Frisch, U., Sulem, P.-L., and Nelkin, M. 1978. A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech., 87, 719.CrossRefGoogle Scholar
Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S.S., Wirth, A., and Zhu, J.-Z. 2008. Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett., 101, 144501.CrossRefGoogle ScholarPubMed
Frost, D.L. 2018. Heterogeneous/particle-laden blast waves. Shock Waves, 28, 439.CrossRefGoogle Scholar
Frost, D.L., Zarei, Z., and Zhang, F. 2005. Instability of combustion products interface from detonation of heterogeneous explosives. In: 20th International Colloquium on the Dynamics of Explosions and Reactive Systems. Montreal, Canada.Google Scholar
Frost, D.L., Gregoire, Y., Petel, O., Goroshin, S., and Zhang, F. 2012. Particle jet formation during explosive dispersal of solid particles. Phys. Fluids, 24, 1109.CrossRefGoogle Scholar
Fu, C., Zhao, Z., Xu, X., Wang, P., Liu, N., Wan, Z., and Lu, X. 2022. Nonlinear saturation of bubble evolution in a two-dimensional single-mode stratified compressible Rayleigh–Taylor instability. Phys. Rev. Fluids, 7, 023902.CrossRefGoogle Scholar
Fu, C., Zhao, Z., Wang, P., Liu, N., Wan, Z., and Lu, X. 2023. Bubble re-acceleration behaviours in compressible Rayleigh–Taylor instability with isothermal stratification. J. Fluid Mech., 954, A16.CrossRefGoogle Scholar
Fu, Y., Yu, C., and Li, X. 2020. Energy transport characteristics of converging Richtmyer–Meshkov instability. AIP Adv., 10, 105302.CrossRefGoogle Scholar
Fuller-Rowell, T.J., and Rees, D.A. 1980. A three dimensional time dependent global model of the thermosphere. J. Atmos. Sci., 37, 2545.2.0.CO;2>CrossRefGoogle Scholar
Fuller-Rowell, T.J., Rees, D., Quegan, S., Moffett, R.J., and Bailey, G.J. 1987. Interactions between neutral thermospheric composition and the polar ionosphere using a coupled ionosphere– thermosphere model. J. Geophys. Res., 92, 7744.CrossRefGoogle Scholar
Fung, J., Harrison, A.K., Chitanvis, S., and Margulies, J. 2013. Ejecta source and transport modeling in the FLAG hydrocode. Comput. Fluids, 83, 177.CrossRefGoogle Scholar
Gad-el Hak, M. 1998. Fluid mechanics from the beginning to the third millennium. Int. J. Eng. Edu., 14, 177.Google Scholar
Gage, K.S. 1979. Evidence for a k−5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci., 36, 1950.2.0.CO;2>CrossRefGoogle Scholar
Galachov, I.V., Garanin, S.G., Eroshenko, V.A., Kirillov, G.A., Kochemasov, G.G., Murugov, V.M., Rukavishnikov, N.N., and Sukharev, S.A. 1999. Conception of the Iskra-6 Nd-laser facility. Fusion Eng. Design, 44, 51.CrossRefGoogle Scholar
Galmiche, D., and Gauthier, S. 1996. On the Reynolds number in laser experiments. Jap. J. Appl. Phys., 35, 4516.CrossRefGoogle Scholar
Gamezo, V.N., Khokhlov, A.M., Oran, E.S., Chtchelkanova, A.Y., and Rosenberg, R.O. 2003. Thermonuclear supernovae: simulations of the deflagration stage and their implications. Science, 299, 77.CrossRefGoogle ScholarPubMed
Gancedo, F., Granero-Belinchón, R., and Scrobogna, S. 2020. Surface tension stabilization of the Rayleigh–Taylor instability for a fluid layer in a porous medium. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 37, 1299.Google Scholar
García-Rubio, F., Betti, R., Sanz, J., and Aluie, H. 2021. Magnetic-field generation and its effect on ablative Rayleigh–Taylor instability in diffusive ablation fronts. Phys. Plasmas, 28, 012103.CrossRefGoogle Scholar
Garcia-Segura, Guillermo, and Mac Low, Mordecai-Mark. 1995. Wolf-Rayet bubbles. II. Gasdynamical simulations. Astrophys. J., 455, 160.CrossRefGoogle Scholar
García-Senz, D., Cabezón, R., and Domínguez, I. 2018. Surface and core detonations in rotating white dwarfs. Astrophys. J., 862, 27.CrossRefGoogle Scholar
Gardner, C.L., Glimm, J., McBryan, O., Menikoff, R., Sharp, D.H., and Zhang, Q. 1988. The dynamics of bubble growth for Rayleigh–Taylor unstable interfaces. Phys. Fluids, 31, 447.CrossRefGoogle Scholar
Gat, I., Matheou, G., Chung, D., and Dimotakis, P.E. 2017. Incompressible variable-density turbulence in an external acceleration field. J. Fluid Mech., 827, 506.CrossRefGoogle Scholar
Gauthier, S. 2013. Compressibility effects in Rayleigh–Taylor flows: influence of the stratification. Phys. Scr., T155, 014012.CrossRefGoogle Scholar
Gauthier, S. 2017. Compressible Rayleigh–Taylor turbulent mixing layer between Newtonian miscible fluids. J. Fluid Mech., 830, 211.CrossRefGoogle Scholar
Gauthier, S., and Bonnet, M. 1990. A K-ε model for turbulent mixing in shock-tube flows induced by Rayleigh–Taylor instability. Phys. Fluids A, 2, 1685.CrossRefGoogle Scholar
Ge, J., Zhang, X., Li, H., and Tian, B. 2020. Late-time turbulent mixing induced by multimode Richtmyer–Meshkov instability in cylindrical geometry. Phys. Fluids, 32, 124116.CrossRefGoogle Scholar
Ge, J., Li, H., Zhang, X., and Tian, B. 2022. Evaluating the stretching/compression effect of Richtmyer–Meshkov instability in convergent geometries. J. Fluid Mech., 946, A18.CrossRefGoogle Scholar
Geim, A.K. 2011. Nobel Lecture: random walk to graphene. Rev. Mod. Phys., 83, 851.CrossRefGoogle Scholar
George, E., Glimm, J., Li, X., Li, Y., and Liu, Xi. 2006. Influence of scale-breaking phenomena on turbulent mixing rates. Phys. Rev. E, 73, 016304.CrossRefGoogle ScholarPubMed
Gerashchenko, S., and Livescu, D. 2016. Viscous effects on the Rayleigh–Taylor instability with background temperature gradient. Phys. Plasmas, 23, 072121.CrossRefGoogle Scholar
Germann, T.C., Dimonte, G., Hammerberg, J.E., Kadau, K., Quenneville, J., and Zellner, M.B. 2009. Large-scale molecular dynamics simulations of particulate ejection and Richtmyer–Meshkov instability development in shocked copper. Page 1499 of: DYMAT 2009–9th International Conference on the Mechanical and Physical Behavior of Materials under Dynamic Loading. Brussels, Belgium.Google Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3, 1760.CrossRefGoogle Scholar
Gharib, M., Kremers, D., Koochesfahani, M., and Kemp, M. 2002. Leonardo’s vision of flow visualization. Exp. Fluids, 33, 219.CrossRefGoogle Scholar
Giacalone, J., and Jokipii, J.R. 2007. Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. Lett., 663, L41.CrossRefGoogle Scholar
Gillis, J. 1962. Book Review: hydrodynamic and hydromagnetic stability by S. Chandrasekhar. Phys. Today, 15, 58.Google Scholar
Gilman, M., Smith, E., and Tsynkov, S. 2017. Transionospheric Synthetic Aperture Imaging. Springer, Cham, Switzerland.CrossRefGoogle Scholar
Girichidis, P., Naab, T., Walch, S., and Berlok, T. 2021. The in situ formation of molecular and warm ionized gas triggered by hot galactic outflows. Mon. Not. R. Astron. Soc., 505, 1083.CrossRefGoogle Scholar
Gittings, M., Weaver, R., Clover, M., et al. 2008. The RAGE radiation-hydrodynamic code. Comput. Sci. Discov. 1, 015005.CrossRefGoogle Scholar
Glendinning, S.G., Dixit, S.N., Hammel, B.A., et al. 1997. Measurement of a dispersion curve for linear-regime Rayleigh–Taylor growth rates in laser-driven planar targets. Phys. Rev. Lett., 78, 3318.CrossRefGoogle Scholar
Glendinning, S.G., Colvin, J., Haan, S., et al. 2000. Ablation front Rayleigh–Taylor growth experiments in spherically convergent geometry. Phys. Plasmas, 7, 2033.CrossRefGoogle Scholar
Glendinning, S.G., Bolstad, J., Braun, D.G., Edwards, M.J., Hsing, W.W., Lasinski, B.F., Louis, H., Miles, A., Moreno, J., Peyser, T.A., Remington, B.A., Robey, H.F., Turano, E.J., Verdon, C.P., and Zhou, Y. 2003. Effect of shock proximity on Richtmyer–Meshkov growth. Phys. Plasmas, 10, 1931.CrossRefGoogle Scholar
Glimm, J., and Li, X.L. 1988. Validation of the Sharp–Wheeler bubble merger model from experimental and computational data. Phys. Fluids, 31, 2077.CrossRefGoogle Scholar
Glimm, J., Grove, J.W., Li, X.L., Oh, W., and Sharp, D.H. 2001. A critical analysis of Rayleigh– Taylor growth rates. J. Comput. Phys., 169, 652.CrossRefGoogle Scholar
Glimm, J., Li, X.-L., and Lin, A.-D. 2002. Nonuniform approach to terminal velocity for single mode Rayleigh–Taylor instability. Acta Math. Appl. Sin., 18, 1.CrossRefGoogle Scholar
Glimm, J., Sharp, D.H., Kaman, T., and Lim, H. 2013. New directions for Rayleigh–Taylor mixing. Phil. Trans. R. Soc. A, 371, 20120183.CrossRefGoogle ScholarPubMed
Glimm, J., Cheng, B., Sharp, D.H., and Kaman, T. 2020. A crisis for the verification and validation of turbulence simulations. Physica D, 404, 132346.CrossRefGoogle Scholar
Goedbloed, J.P., and Keppens, R. 2004. Principles of Magnetohydrodynamics. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Goedbloed, J.P., Keppens, R., and Poedts, S. 2010. Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Gombosi, T.I. 1994. Gaskinetic Theory. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Gomez, M.R., Slutz, S.A., Sefkow, A.B., Sinars, D.B., Hahn, K.D., Hansen, S.B., Harding, E.C., Knapp, P.F., Schmit, P.F., Jennings, C.A., and Awe, T.J. 2014. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion. Phys. Rev. Lett., 113, 155003.CrossRefGoogle ScholarPubMed
Gomez, M.R., Slutz, S.A., Jennings, C.A., et al. 2020. Performance scaling in magnetized liner inertial fusion experiments. Phys. Rev. Lett., 125, 155002.CrossRefGoogle ScholarPubMed
Goncharov, V.N. 2002. Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett., 88, 134502.CrossRefGoogle ScholarPubMed
Goncharov, V.N., and Li, D. 2005. Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh–Taylor instability. Phys. Rev. E, 71, 046306.CrossRefGoogle ScholarPubMed
Goncharov, V.N., Betti, R., McCrory, R.L., Sorotokin, P., and Verdon, C.P. 1996a. Self-consistent stability analysis of ablation fronts with large Froude numbers. Phys. Plasmas, 3, 1402.CrossRefGoogle Scholar
Goncharov, V.N., Betti, R., McCrory, R.L., and Verdon, C.P. 1996b. Self-consistent stability analysis of ablation fronts with small Froude numbers. Phys. Plasmas, 3, 4665.CrossRefGoogle Scholar
González, R.F., Cantó, J., and Raga, A.C. 2018. Analytical and numerical models of P Cygni’s nebula. Mon. Not. R. Astron. Soc., 480, 5092.Google Scholar
Gorodnichev, K.E., Zakharov, P.P., Glazyrin, S.I., and Kuratov, S.E. 2024. The interface instability development induced by the bulk density perturbations in accelerated media. Phys. Fluids, 36, 014115.CrossRefGoogle Scholar
Gosman, A.D., and Clerides, D. 1997. Diesel spray modelling: a review. In: Proceedings of ILASS-Europe. The Institute for Liquid Atomization and Spray Systems, Florence, Italy.Google Scholar
Gotoh, T., Watanabe, Y., Shiga, Y., Nakano, T., and Suzuki, E. 2007. Statistical properties of four-dimensional turbulence. Phys. Rev. E, 75, 016310.CrossRefGoogle ScholarPubMed
Gou, J.N., Zeng, R.H., Wang, C., and Sun, Y.B. 2022. Analytical model for viscous and elastic Rayleigh–Taylor instabilities in convergent geometries at static interfaces. AIP Adv., 12, 075217.CrossRefGoogle Scholar
Gowardhan, A.A., Ristorcelli, J.R., and Grinstein, F.F. 2011. The bipolar behavior of the Richtmyer– Meshkov instability. Phys. Fluids, 23, 071701.CrossRefGoogle Scholar
Grabovskii, E.V., Mitrofanov, K.N., Oleinik, G.M., and Porofeev, I.Yu. 2004. X-ray backlighting of the periphery of an imploding multiwire array in the Angara-5-1 facility. Plasma Phys. Rep., 30, 121.CrossRefGoogle Scholar
Graham, M.J., and Zhang, Q. 2000. Numerical simulations of deep nonlinear Richtymer-Meshkov instability. Astrophys. J. Suppl. Ser., 127, 339.CrossRefGoogle Scholar
Grant, G., Brenton, J., and Drysdale, D. 2000. Fire suppression by water sprays. Progr. Energy Combust. Sci., 26, 79.CrossRefGoogle Scholar
Grant, H.L., Stewart, R.W., and Moilliet, A. 1962. Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 241.CrossRefGoogle Scholar
Gréa, B.-J. 2015. The dynamics of the K − E mix model toward its self-similar Rayleigh–Taylor solution. J. Turbul., 16, 184.CrossRefGoogle Scholar
Gréa, B.J., and Briard, A. 2023. Inferring the magnetic field from the Rayleigh–Taylor instability. Astrophys. J., 958, 164.CrossRefGoogle Scholar
Gréa, B.-J., and Soulard, O. 2019. Incompressible homogeneous buoyancy-driven turbulence. Pages 113–124 of: Turbulent Cascades II. Springer. Cham, Switzerland.Google Scholar
Gréa, B.-J., Burlot, A., Griffond, J., and Llor, A. 2016. Challenging mix models on transients to self-similarity of unstably stratified homogeneous turbulence. J. Fluids Eng., 138, 070904.CrossRefGoogle Scholar
Greatbatch, I., Gosling, R.J., and Allen, S. 2015. Quantifying search dog effectiveness in a terrestrial search and rescue environment. Wilderness Environ. Med., 26, 327.CrossRefGoogle Scholar
Green, B. 2015. Why string theory still offers hope we can unify physics. Smithsonian Mag., www.smithsonianmag.com/science–nature/string–theory–about–unravel–180953637/.Google Scholar
Green, M.B., Schwarz, J.H., and Witten, E. 2012. Superstring Theory: Vols. 1 and 2. 25th anniversary edition. Cambridge University Press, Cambridge, UK.Google Scholar
Grégoire, O., Souffland, D., and Gauthier, S. 2005. A second-order turbulence model for gaseous mixtures induced by Richtmyer–Meshkov instability. J. Turbul., 6, N29.CrossRefGoogle Scholar
Gregori, G., Reville, B., and Miniati, F. 2015. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers. Phys. Rep., 601, 1.CrossRefGoogle Scholar
Grieves, B. 2007. 2D direct numerical simulation of ejecta production. In: Proceedings of the 10th International Workshop on the Physics of Compressible Turbulent Mixing. Paris, France.Google Scholar
Griffond, J., Gréa, B.-J., and Soulard, O. 2014. Unstably stratified homogeneous turbulence as a tool for turbulent mixing modeling. J. Fluids Eng., 136, 091201.CrossRefGoogle Scholar
Griffond, J., Gréa, B.-J., and Soulard, O. 2015. Numerical investigation of self-similar unstably stratified homogeneous turbulence. J. Turbul., 16, 167.CrossRefGoogle Scholar
Griffond, J., Haas, J.-F., Souffland, D., Bouzgarrou, G., Bury, Y., and Jamme, S. 2017. Experimental and numerical investigation of the growth of an air/SF6 turbulent mixing zone in a shock tube. J. Fluids Eng., 139, 091205.CrossRefGoogle Scholar
Griffond, J., Soulard, O., and Gréa, B.-J. 2023. A modified dissipation equation for Reynolds stress turbulent mixing models. J. Fluids Eng., 145, 021502.CrossRefGoogle Scholar
Grigoryev, S.Yu, Dyachkov, S.A., Parshikov, A.N., and Zhakhovsky, V.V. 2022. Limited and unlimited spike growth from grooved free surface of shocked solid. J. Appl. Phys., 131, 065104.Google Scholar
Grinstein, F.F., Margolin, L.G., and Rider, W.J. (eds). 2007. Implicit Large Eddy Simulation. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Grinstein, F.F., Gowardhan, A.A., and Wachtor, A.J. 2011. Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments. Phys. Fluids, 23, 034106.CrossRefGoogle Scholar
Grinstein, F.F., Saenz, J.A., Rauenzahn, R.M., Germano, M., and Israel, D.M. 2020. Dynamic bridging modeling for coarse grained simulations of shock driven turbulent mixing. Comput. Fluids, 199, 104430.CrossRefGoogle Scholar
Gritschneder, M., Lin, D.N.C., Murray, S.D., Yin, Q.-Z., and Gong, M.-N. 2011. The supernova triggered formation and enrichment of our solar system. Astrophys. J., 745, 22.CrossRefGoogle Scholar
Groom, M. 2020. Direct numerical simulation of shock-induced turbulent mixing with high-resolution methods. Ph.D. thesis, University of Sydney, Sydney, Australia.Google Scholar
Groom, M., and Thornber, B. 2019. Direct numerical simulation of the multimode narrowband Richtmyer–Meshkov instability. Comput. Fluids, 194, 104309.CrossRefGoogle Scholar
Groom, M., and Thornber, B. 2020. The influence of initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer–Meshkov instability. Physica D, 407, 132463.CrossRefGoogle Scholar
Groom, M., and Thornber, B. 2021. Reynolds number dependence of turbulence induced by the Richtmyer–Meshkov instability using direct numerical simulations. J. Fluid Mech., 908, A31.CrossRefGoogle Scholar
Gruber, H., and Gruber, V. 1956. Hermann von Helmholtz: nineteenth-century polymorph. The Scientific Monthly, 83, 92.Google Scholar
Guan, B., Zhai, Z., Si, T., Lu, X., and Luo, X. 2017. Manipulation of three-dimensional Richtmyer– Meshkov instability by initial interfacial principal curvatures. Phys. Fluids, 29, 032106.CrossRefGoogle Scholar
Guan, B., Wang, D., Wang, G., Fan, E., and Wen, C.-Y. 2020. Numerical study of the Richtmyer– Meshkov instability of a three-dimensional minimum-surface featured SF6/air interface. Phys. Fluids, 32, 024108.CrossRefGoogle Scholar
Gull, S.F., and Longair, M.S. 1973. A numerical model of the structure and evolution of young supernova remnants. Mon. Not. R. Astron. Soc., 161, 47.CrossRefGoogle Scholar
Gunár, S., Schwartz, P., Dudík, J., Schmieder, B., Heinzel, P., and Jurˇcák, J. 2014. Magnetic field and radiative transfer modelling of a quiescent prominence. Astron. Astrophys., 567, A123.CrossRefGoogle Scholar
Guo, F., Li, S., Li, H., Giacalone, J., Jokipii, J.R., and Li, D. 2012. On the amplification of magnetic field by a supernova blast shock wave in a turbulent medium. Astrophys. J., 747, 98.CrossRefGoogle Scholar
Guo, H.-Y., Yu, X.-J., Wang, L.-F., Ye, W.-H., Wu, J.-F., and Li, Y.-J. 2014. On the second harmonic generation through Bell–Plesset effects in cylindrical geometry. Chin. Phys. Lett., 31, 44702.CrossRefGoogle Scholar
Guo, H.-Y., Wang, L.-F., Ye, W.-H., Wu, J.-F., and Zhang, W.-Y. 2017. Weakly nonlinear Rayleigh–Taylor instability in incompressible fluids with surface tension. Chin. Phys. Lett., 34, 045201.CrossRefGoogle Scholar
Guo, H.-Y., Wang, L.-F., Ye, W.-H., Wu, J.-F., and Zhang, W.-Y. 2018. Weakly nonlinear Rayleigh–Taylor instability in cylindrically convergent geometry. Chin. Phys. Lett., 35, 055201.CrossRefGoogle Scholar
Guo, W., and Zhang, Q. 2020. Universality and scaling laws among fingers at Rayleigh–Taylor and Richtmyer–Meshkov unstable interfaces in different dimensions. Physica D, 403, 132304.CrossRefGoogle Scholar
Guo, W., and Zhang, Q. 2022. Quantitative theory for spikes and bubbles in the Richtmyer–Meshkov instability at arbitrary density ratios in three dimensions. Phys. Fluids, 34, 072115.CrossRefGoogle Scholar
Guo, X., Zhai, Z., Si, T., and Luo, X. 2019. Bubble merger in initial Richtmyer–Meshkov instability on inverse-chevron interface. Phys. Rev. Fluids, 4, 092001.CrossRefGoogle Scholar
Guo, X., Zhai, Z., Ding, J., Si, T., and Luo, X. 2020. Effects of transverse shock waves on early evolution of multi-mode chevron interface. Phys. Fluids, 32, 106101.CrossRefGoogle Scholar
Guo, X., Si, T., Zhai, Z., and Luo, X. 2022a. Large-amplitude effects on interface perturbation growth in Richtmyer–Meshkov flows with reshock. Phys. Fluids, 34, 082118.CrossRefGoogle Scholar
Guo, X., Cong, Z., Si, T., and Luo, X. 2022b. Shock-tube studies of single-and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock. J. Fluid Mech., 941, A65.CrossRefGoogle Scholar
Guo, Y., and Tice, I. 2010. Linear Rayleigh–Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal., 42, 1688.CrossRefGoogle Scholar
Gupta, M.R., Roy, S., Khan, M., Pant, H.C., Sarkar, S., and Srivastava, M.K. 2009. Effect of compressibility on the Rayleigh–Taylor and Richtmyer–Meshkov instability induced nonlinear structure at two fluid interface. Phys. Plasmas, 16, 032303.CrossRefGoogle Scholar
Gupta, M.R., Banerjee, R., Mandal, L.K., Bhar, R., Pant, H.C., Khan, M., and Srivastava, M.K. 2012. Effect of viscosity and surface tension on the growth of Rayleigh–Taylor instability and Richtmyer–Meshkov instability induced two fluid interfacial nonlinear structure. Indian J. Phys., 86, 471.CrossRefGoogle Scholar
Gupta, N.K., and Lawande, S.V. 1986. Rayleigh–Taylor instability in spherical geometry. Phys. Rev. A, 33, 2813.CrossRefGoogle ScholarPubMed
Haan, S.W. 1989. Onset of nonlinear saturation for Rayleigh–Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A, 39, 5812.CrossRefGoogle ScholarPubMed
Haan, S.W. 1991. Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids B, 3, 2349.CrossRefGoogle Scholar
Haan, S.W., Pollaine, S.M., Lindl, J.D., et al. 1995. Design and modeling of ignition targets for the National Ignition Facility. Phys. Plasmas, 2, 2480.CrossRefGoogle Scholar
Haas, J.-F., and Sturtevant, B. 1987. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech., 181, 41.CrossRefGoogle Scholar
Habib, N., and Pierrehumbert, R.T. 2024. Modeling noncondensing compositional convection for applications to super-Earth and sub-Neptune atmospheres, Astrophys. J., 961, 35.CrossRefGoogle Scholar
Hachisu, I., Matsuda, T., Nomoto, K., and Shigeyama, T. 1991. Rayleigh–Taylor instabilities and mixing in the helium star models for Type Ib/Ic supernovae. Astrophys. J., 368, L27.CrossRefGoogle Scholar
Haehn, N., Ranjan, D., Weber, C., Oakley, J.G., Anderson, M.H., and Bonazza, R. 2010. Experimental investigation of a twice-shocked spherical density inhomogeneity. Phys. Scr., T142, 014067.CrossRefGoogle Scholar
Haehn, N, Weber, C, Oakley, J, Anderson, M, Ranjan, D, and Bonazza, R. 2011. Experimental investigation of a twice-shocked spherical gas inhomogeneity with particle image velocimetry. Shock Waves, 21, 225.CrossRefGoogle Scholar
Haehn, N., Ranjan, D., Weber, C., Oakley, J., Rothamer, D., and Bonazza, R. 2012. Reacting shock bubble interaction. Combust. Flame, 159, 1339.CrossRefGoogle Scholar
Haehn, N.S. 2012. Experimental Investigation of the Reactive Shock-bubble Interaction. Ph.D. thesis, The University of Wisconsin-Madison, Madison, WI.Google Scholar
Haines, B.M., Grinstein, F.F., and Schwarzkopf, J.D. 2013. Reynolds-averaged Navier–Stokes initialization and benchmarking in shock-driven turbulent mixing. J. Turbul., 14, 46.CrossRefGoogle Scholar
Haines, B.M., Aldrich, C.H., Campbell, J.M., Rauenzahn, R.M., and Wingate, C.A. 2017. High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions. Phys. Plasmas, 24, 052701.CrossRefGoogle Scholar
Haines, B.M., Olson, R.E., Sweet, W., et al. 2019. Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions. Phys. Plasmas, 26, 012707.CrossRefGoogle Scholar
Haines, B.M., Sauppe, J.P., Keiter, P.A., et al. 2021. Constraining computational modeling of indirect drive double shell capsule implosions using experiments. Phys. Plasmas, 28, 032709.CrossRefGoogle Scholar
Haines, M.G. 2011. The past, present, and future of Z pinches. Plasma Phys. Control. Fusion, 53, 093001.CrossRefGoogle Scholar
Haines, M.G., Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., and Dangor, A.E. 2000. The past, present, and future of Z pinches. Phys. Plasmas, 7, 1672.CrossRefGoogle Scholar
Hammel, B.A., Haan, S.W., Clark, D.S., Edwards, M.J., Langer, S.H., Marinak, M.M., Patel, M.V., Salmonson, J.D., and Scott, H.A. 2010. High-mode Rayleigh–Taylor growth in NIF ignition capsules. High Energy Density Phys., 6, 171.CrossRefGoogle Scholar
Hammel, B.A., Tommasini, R., Clark, D.S., Field, J., Stadermann, M., and Weber, C. 2016. Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions. J. Physics: Conf. Ser., 717, 012021.Google Scholar
Hammer, N.J., Janka, H.-Th., and Müller, E. 2010. Three-dimensional simulations of mixing instabilities in supernova explosions. Astrophys. J., 714, 1371.CrossRefGoogle Scholar
Hamzehloo, A., Bartholomew, P., and Laizet, S. 2021. Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers. Phys. Fluids, 33, 054114.CrossRefGoogle Scholar
Han, L., Yuan, J., Dong, M., and Fan, Z. 2021. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh–Taylor instability with a diffuse interface. Phys. Rev. E, 104, 035108.CrossRefGoogle ScholarPubMed
Hanjalić, K., and Launder, B.E. 1972. A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech., 52, 609.CrossRefGoogle Scholar
Hansom, J.C.V., Rosen, P.A., Goldack, T.J., Oades, K., Fieldhouse, P., Cowperthwaite, N., Youngs, D.L., Mawhinney, N., and Baxter, A.J. 1990. Radiation driven planar foil instability and mix experiments at the AWE HELEN laser. Laser Part. Beams, 8, 51.CrossRefGoogle Scholar
Hanson, A.J., 1994. A construction for computer visualization of certain complex curves. Not. Am. Math. Soc, 41, 1156.Google Scholar
Hao, Y., and Prosperetti, A. 1999. The dynamics of vapor bubbles in acoustic pressure fields. Phys. Fluids, 11, 2008.CrossRefGoogle Scholar
Harding, E.C., Hansen, J.F., Hurricane, O.A., et al. 2009. Observation of a Kelvin–Helmholtz instability in a high-energy-density plasma on the Omega laser. Phys. Rev. Lett., 103, 045005.CrossRefGoogle Scholar
Harig, C., Molnar, P., and Houseman, G.A. 2008. Rayleigh–Taylor instability under a shear stress free top boundary condition and its relevance to removal of mantle lithosphere from beneath the Sierra Nevada. Tectonics, 27, TC6019.CrossRefGoogle Scholar
Harlow, F.H., and Nakayama, P.I. 1967. Turbulence transport equations. Phys. Fluids, 10, 2323.CrossRefGoogle Scholar
Harris, E.G. 1962. Rayleigh–Taylor instabilities of a collapsing cylindrical shell in a magnetic field. Phys. Fluids, 5, 1057.CrossRefGoogle Scholar
Harrison, W.J. 1908. The influence of viscosity on the oscillations of superposed fluids. Proc. London Math. Soc., 2, 396.CrossRefGoogle Scholar
Hartigan, P., Foster, J.M., Wilde, B.H., Coker, R.F., Rosen, P.A., Hansen, J.F., Blue, B.E., Williams, R.J.R., Carver, R., and Frank, A. 2009. Laboratory experiments, numerical simulations, and astronomical observations of deflected supersonic jets: application to HH 110. Astrophys. J., 705, 1073.CrossRefGoogle Scholar
Hartsfield, T.M., Schulze, R.K., La Lone, B.M., et al. 2022. The temperatures of ejecta transporting in vacuum and gases. J. Appl. Phys., 131, 195104.CrossRefGoogle Scholar
Hawley, J.F., and Zabusky, N.J. 1989. Vortex paradigm for shock-accelerated density-stratified interfaces. Phys. Rev. Lett., 63, 1241.CrossRefGoogle ScholarPubMed
Haxhimali, T., Rudd, R.E., Cabot, W.H., and Graziani, F.R. 2015. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures. Phys. Rev. E, 92, 053110.CrossRefGoogle ScholarPubMed
He, A., Liu, J., Liu, C., and Wang, P. 2018. Numerical and theoretical investigation of jet formation in elastic-plastic solids. J. Appl. Phys., 124, 185902.CrossRefGoogle Scholar
He, Y., Hu, X., and Jiang, Z. 2008. Compressibility effects on the Rayleigh–Taylor instability growth rates. Chin. Phys. Lett., 25, 1015.Google Scholar
Hecht, J., Alon, U., and Shvarts, D. 1994. Potential flow models of Rayleigh–Taylor and Richtmyer– Meshkov bubble fronts. Phys. Fluids, 6, 4019.CrossRefGoogle Scholar
Heelis, R.A., Lowell, J.K., and Spiro, R.W. 1982. A model of the high-latitude ionospheric convection pattern. J. Geophys. Res., 87, 6339.CrossRefGoogle Scholar
Heidt, L., Flaig, M., and Thornber, B. 2021. The effect of initial amplitude and convergence ratio on instability development and deposited fluctuating kinetic energy in the single-mode Richtmyer– Meshkov instability in spherical implosions. Comput. Fluids, 218, 104842.CrossRefGoogle Scholar
Heilig, W.H. 1969. Diffraction of a shock wave by a cylinder. Phys. Fluids, 12, Suppl. 1, 154.CrossRefGoogle Scholar
Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotrˇc, P., Anzer, U., Molodij, G., Berlicki, A., DeLuca, E.E., and Golub, L. 2008. Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. Astrophys. J., 686, 1383.Google Scholar
Heisenberg, W. 1948a. On the theory of statistical and isotropic turbulence. Proc. R. Soc. A, 195, 402.Google Scholar
Heisenberg, W. 1948b. Zur statistischen Theorie der Turbulenz. Zeitschrift für Physik, 124, 628.CrossRefGoogle Scholar
Henry de Frahan, M.T., Belof, J.L., Cavallo, R.M., et al. 2015a. Experimental and numerical investigations of beryllium strength models using the Rayleigh–Taylor instability. J. Appl. Phys., 117, 225901.CrossRefGoogle Scholar
Henry de Frahan, M.T., Varadan, S., and Johnsen, E. 2015b. A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces. J. Comput. Phys., 280, 489.CrossRefGoogle Scholar
Henry de Frahan, M.T., Movahed, P., and Johnsen, E. 2015c. Numerical simulations of a shock interacting with successive interfaces using the Discontinuous Galerkin method: the multilayered Richtmyer–Meshkov and Rayleigh–Taylor instabilities. Shock Waves, 25, 329.CrossRefGoogle Scholar
Herring, J.R. 1980. Statistical theory of quasi-geostrophic turbulence. J. Atmos. Sci., 37, 969.2.0.CO;2>CrossRefGoogle Scholar
Herrmann, M.C., Tabak, M., and Lindl, J.D. 2001. Ignition scaling laws and their application to capsule design. Phys. Plasmas, 8, 2296.CrossRefGoogle Scholar
Hester, J.J. 2008. The Crab Nebula: an astrophysical chimera. Annu. Rev. Astron. Astrophys., 46, 127. Hewett, J.S., and Madnia, C.K. 1998. Flame–vortex interaction in a reacting vortex ring. Phys. Fluids, 10, 189.Google Scholar
Hicks, E.P. 2015. Rayleigh–Taylor unstable flames – fast or faster? Astrophys. J., 803, 72.CrossRefGoogle Scholar
Hide, R. 1955a. The character of the equilibrium of an incompressible heavy viscous fluid of variable density: an approximate theory. Math. Proc. Cambridge Philos. Soc., 51, 179.CrossRefGoogle Scholar
Hide, R. 1955b. Waves a heavy, viscous, incompressible, electrically conducting fluid of variable density, in the presence of a magnetic field. Proc. R. Soc. Lond. A, 233, 376.Google Scholar
Hide, R. 1956a. The character of the equilibrium of a heavy, viscous, incompressible, rotating fluid of variable density: I. General theory. Q. J. Mech. Appl. Math., 9, 22.Google Scholar
Hide, R. 1956b. The character of the equilibrium of a heavy, viscous, incompressible, rotating fluid of variable density: II. Two special cases. Q. J. Mech. Appl. Math., 9, 35.Google Scholar
Hill, D.J., Pantano, C., and Pullin, D.I. 2006. Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech., 557, 29.CrossRefGoogle Scholar
Hillebrandt, W., and Hoflich, P. 1989. The supernova 1987a in the large magellanic cloud. Rep. Prog. Phys., 52, 1421.CrossRefGoogle Scholar
Hillier, A. 2018. The magnetic Rayleigh–Taylor instability in solar prominences. Rev. Mod. Plasma Phys., 2, 1.CrossRefGoogle Scholar
Hillier, A. 2019. Ideal MHD instabilities, With a focus on the Rayleigh–Taylor and Kelvin– Helmholtz instabilities. In: MacTaggart, D., and Hillier, A. (eds), Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory. Springer, Cham, Switzerland.Google Scholar
Hillier, A., and Polito, V. 2018. Observations of the Kelvin–Helmholtz instability driven by dynamic motions in a solar prominence. Astrophys. J. Lett., 864, L10.CrossRefGoogle Scholar
Hillier, A., Isobe, H., Shibata, K., and Berger, T. 2011a. Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn-Schlüter prominence model. Astrophys. J. Lett., 736, L1.CrossRefGoogle Scholar
Hillier, A., Isobe, H., and Watanabe, H. 2011b. Observations of plasma blob ejection from a quiescent prominence by Hinode solar optical telescope. Publ. Astron. Soc. Jpn., 63, L19.CrossRefGoogle Scholar
Hillier, A., Berger, T., Isobe, H., and Shibata, K. 2012. Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn-Schlüter prominence model. I. Formation of upflows. Astrophys. J., 746, 120.CrossRefGoogle Scholar
Hillier, A., Matsumoto, T., and Ichimoto, K. 2017. Investigating prominence turbulence with Hinode SOT Dopplergrams. Astron. Astrophys., 597, A111.CrossRefGoogle Scholar
Hillier, A.S. 2016. On the nature of the magnetic Rayleigh–Taylor instability in astrophysical plasma: the case of uniform magnetic field strength. Mon. Not. R. Astron. Soc., 462, 2256.CrossRefGoogle Scholar
Hinze, J.O. 1975. Turbulence. McGraw-Hill, New York.Google Scholar
Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B. 1964. Molecular Theory of Gases and Liquids. Wiley, New York.Google Scholar
Ho, C.-M., and Huerre, P. 1984. Perturbed free shear layers. Annu. Rev. Fluid Mech., 16, 365.CrossRefGoogle Scholar
Hohenberger, M., Chang, P.Y., Fiksel, G., Knauer, J.P., Betti, R., Marshall, F.J., Meyerhofer, D.D., Séguin, F.H., and Petrasso, R.D. 2012. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser. Phys. Plasmas, 19, 056306.CrossRefGoogle Scholar
Holder, D.A., and Barton, C.J. 2004. Shock tube Richtmyer–Meshkov experiments: inverse chevron and half height. In: Proceedings of the Ninth International Workshop on the Physics of Compressible Turbulent Mixing. University of Cambridge, Cambridge, UK.Google Scholar
Holder, D.A., Smith, A.V., Barton, C.J., and Youngs, D.L. 2003a. Mix experiments using a two-dimensional convergent shock-tube. Laser Part. Beams, 21, 403.CrossRefGoogle Scholar
Holder, D.A., Smith, A.V., Barton, C.J., and Youngs, D.L. 2003b. Shock-tube experiments on Richtmyer–Meshkov instability growth using an enlarged double-bump perturbation. Laser Part. Beams, 21, 411.CrossRefGoogle Scholar
Holford, J.M., Dalziel, S.B., and Youngs, D.L. 2003. Rayleigh–Taylor instability at a tilted interface in laboratory experiments and numerical simulations. Laser Part. Beams, 21, 419.CrossRefGoogle Scholar
Holmes, R.L., Dimonte, G., Fryxell, B., Gittings, M.L., Grove, J.W., Schneider, M., Sharp, D.H., Velikovich, A.L., Weaver, R.P., and Zhang, Q. 1999. Richtmyer–Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech., 389, 55.CrossRefGoogle Scholar
Hoogenboom, T., and Houseman, G.A. 2006. Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus, 180, 292.CrossRefGoogle Scholar
Hopps, N., Danson, C., Duffield, S., et al. 2013. Overview of laser systems for the Orion facility at the AWE. Appl. Optics, 52, 3597.CrossRefGoogle ScholarPubMed
Hopps, N., Oades, K., Andrew, J., et al. 2015. Comprehensive description of the Orion laser facility. Plasma Phys. Control. Fusion, 57, 064002.CrossRefGoogle Scholar
Horne, J.T., and Lawrie, A.G.W. 2020. Aspect-ratio-constrained Rayleigh–Taylor instability. Physica D, 406, 132442.CrossRefGoogle Scholar
Horowitz, C.J., Caballero, O.L., Lin, Z., O’Connor, E., and Schwenk, A. 2017. Neutrino-nucleon scattering in supernova matter from the virial expansion. Phys. Rev. C, 95, 025801.CrossRefGoogle Scholar
Hou, T.Y., Wu, X., Chen, S., and Zhou, Y. 1998. Effect of finite computational domain on turbulence scaling law in both physical and spectral spaces. Phys. Rev. E, 58, 5841.CrossRefGoogle Scholar
Houas, L., and Chemouni, I. 1996. Experimental investigation of Richtmyer–Meshkov instability in shock tube. Phys. Fluids, 8, 614.CrossRefGoogle Scholar
Houim, R.W., and Oran, E.S. 2016. A multiphase model for compressible granular–gaseous flows: formulation and initial tests. J. Fluid Mech., 789, 166.CrossRefGoogle Scholar
Hsing, W.W., and Hoffman, N.M. 1997. Measurement of feedthrough and instability growth in radiation-driven cylindrical implosions. Phys. Rev. Lett., 78, 3876.CrossRefGoogle Scholar
Hsing, W.W., Barnes, C.W., Beck, J.B., Hoffman, N.M., Galmiche, D., Richard, A., Edwards, J., Graham, P., Rothman, S., and Thomas, B. 1997. Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions. Phys. Plasmas, 4, 1832.CrossRefGoogle Scholar
Hu, X., Liang, H., and Wang, H. 2020. Lattice Boltzmann method simulations of the immiscible Rayleigh–Taylor instability with high Reynolds numbers. Acta Physica Sinica, 69, 044701.CrossRefGoogle Scholar
Hu, Z., Zhang, Y., Tian, B., He, Z., and Li, L. 2019. Effect of viscosity on two-dimensional single-mode Rayleigh–Taylor instability during and after the reacceleration stage. Phys. Fluids, 31, 104108.CrossRefGoogle Scholar
Huang, H., Liang, H., and Xu, J. 2021. Effect of surface tension on late-time growth of high-Reynolds-number Rayleigh–Taylor instability. Acta Physica Sinica, 70, 114701.CrossRefGoogle Scholar
Huang, Z., De Luca, A., Atherton, T.J., Bird, M., Rosenblatt, C., and Carles, P. 2007. Rayleigh–Taylor instability experiments with precise and arbitrary control of the initial interface shape. Phys. Rev. Lett., 99, 204502.CrossRefGoogle ScholarPubMed
Hughes, K.T., Diggs, A., Park, C., Littrell, D., Haftka, R.T., Kim, N.H., and Balachandar, S. 2018. Simulation driven experiments of macroscale explosive dispersal of particles. Page 1545 of: 2018 AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Kissimmee, FL.Google Scholar
Hunt, J., and Kevlahan, N. 1993. Rapid distortion theory and the structure of turbulence. Pages 285–316 of: New Approaches and Concepts in Turbulence. Birkhäuser, Basel, Switzerland.Google Scholar
Huntington, C.M., Shimony, A., Trantham, M., et al. 2018. Ablative stabilization of Rayleigh–Taylor instabilities resulting from a laser-driven radiative shock. Phys. Plasmas, 25, 052118.CrossRefGoogle Scholar
Huntington, C.M., Raman, K.S., Nagel, S.R., MacLaren, S.A., Baumann, T., Bender, J.D., Prisbrey, S.T., Simmons, L., Wang, P., and Zhou, Y. 2020. Split radiographic tracer technique to measure the full width of a high energy density mixing layer. High Energy Density Phys., 35, 100733.CrossRefGoogle Scholar
Huppert, H.E., and Neufeld, J.A. 2014. The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech., 46, 255.CrossRefGoogle Scholar
Hurricane, O.A. 2008. Design for a high energy density Kelvin–Helmholtz experiment. High Energy Density Phys., 4, 97.CrossRefGoogle Scholar
Hurricane, O.A., and Herrmann, M.C. 2017. High-energy-density physics at the National Ignition Facility. Annu. Rev. Nucl. Part. Sci., 67, 213.CrossRefGoogle Scholar
Hurricane, O.A., Burke, E., Maples, S., and Viswanathan, M. 2000. Saturation of Richtmyer’s impulsive model. Phys. Fluids, 12, 2148.CrossRefGoogle Scholar
Hurricane, O.A., Hansen, J.F., Robey, H.F., Remington, B.A., Bono, M.J., Harding, E.C., Drake, R.P., and Kuranz, C.C. 2009. A high energy density shock driven Kelvin–Helmholtz shear layer experiment. Phys. Plasmas, 16, 056305.CrossRefGoogle Scholar
Hurricane, O.A., Smalyuk, V.A., Raman, K., et al. 2012. Validation of a turbulent Kelvin–Helmholtz shear layer model using a high-energy-density omega laser experiment. Phys. Rev. Lett., 109, 155004.CrossRefGoogle ScholarPubMed
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Hopkins, L.B., and Kline, J.L. 2014. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343.CrossRefGoogle Scholar
Hurricane, O.A., Patel, P.K., Betti, R., Froula, D.H., Regan, S.P., Slutz, S.A., Gomez, M.R. and Sweeney, M.A. 2023. Physics principles of inertial confinement fusion and US program overview. Rev. Mod. Phys., 95, 025005.CrossRefGoogle Scholar
Hurricane, O.A., Callahan, D., Casey, D., et al. 2024. Energy principles of scientific breakeven in an inertial fusion experiment. Phys. Rev. Lett., 132, 06510.CrossRefGoogle Scholar
Hysell, D.L., Larsen, M.F., and Zhou, Q.H. 2004. Common volume coherent and incoherent scatter radar observations of midlatitude sporadic E layers and QP echoes. Ann. Geophys., 22, 3277.CrossRefGoogle Scholar
Ibragimov, N. 1999. Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, New York.Google Scholar
Ichimaru, S., Iyetomi, H., and Tanaka, S. 1987. Statistical physics of dense plasmas: thermodynamics, transport coefficients and dynamic correlations. Phys. Rep., 149, 91.CrossRefGoogle Scholar
Ida, S., Nakagawa, Y., and Nakazawa, K. 1989. The Rayleigh–Taylor instability in a self-gravitating two-layer fluid sphere. Earth, Moon, and Planets, 44, 149.CrossRefGoogle Scholar
Igumenshchev, I.V., Goncharov, V.N., Marshall, F.J., et al. 2016. Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA. Phys. Plasmas, 23, 052702.CrossRefGoogle Scholar
Ingraham, R.L. 1954. Taylor instability of the interface between superposed fluids-solution by successive approximations. Proc. Phys. Soc. London B, 67, 748.CrossRefGoogle Scholar
Inogamov, N.A. 1978. Turbulent stage of the Rayleigh–Taylor instability. Sov. Tech. Phys. Lett., 4, 743.Google Scholar
Inogamov, N.A. 1999. The role of Rayleigh–Taylor and Richtmyer–Meshkiv instabilities in astrophysics: an introduction. Astrophys. Space Phys., 10, 1.Google Scholar
Inogamov, N.A., and Oparin, A.M. 2003. Bubble motion in inclined pipes. J. Exp. Theor. Phys., 97, 1168.CrossRefGoogle Scholar
Irving, T. 2013. Deadly Dust: Changes in Both Technology and Culture are Needed to Reduce the Risks of Dust Explosions. The Chemical Institute of Canada. Ottawa, Ontario, Canada. www.cheminst.ca/magazine/article/deadly-dust/.Google Scholar
Isenberg, C. 1992. The Science of Soap Films and Soap Bubbles. Dover, New York.Google Scholar
Ishihara, T., Morishita, K., Yokokawa, M., Uno, A., and Kaneda, Y. 2016. Energy spectrum in high-resolution direct numerical simulations of turbulence. Phys. Rev. Fluids, 1, 082403.CrossRefGoogle Scholar
Ishizaki, R., Nishihara, K., Sakagami, H., and Ueshima, Y. 1996. Instability of a contact surface driven by a nonuniform shock wave. Phys. Rev. E, 53, R5592.CrossRefGoogle ScholarPubMed
Jackson, D., and Launder, B. 2007. Osborne Reynolds and the publication of his papers on turbulent flow. Annu. Rev. Fluid Mech., 39, 19.CrossRefGoogle Scholar
Jacobs, J.W. 1992. Shock-induced mixing of a light-gas cylinder. J. Fluid Mech., 234, 629.CrossRefGoogle Scholar
Jacobs, J.W., and Catton, I. 1988a. Three-dimensional Rayleigh–Taylor instability Part 1. Weakly nonlinear theory. J. Fluid Mech., 187, 329.CrossRefGoogle Scholar
Jacobs, J.W., and Catton, I. 1988b. Three-dimensional Rayleigh–Taylor instability Part 2. Experiment. J. Fluid Mech., 187, 353.CrossRefGoogle Scholar
Jacobs, J.W., and Dalziel, S.B. 2005. Rayleigh–Taylor instability in complex stratifications. J. Fluid Mech., 542, 251.CrossRefGoogle Scholar
Jacobs, J.W., and Krivets, V.V. 2005. Experiments on the late-time development of single-mode Richtmyer–Meshkov instability. Phys. Fluids, 17, 034105.CrossRefGoogle Scholar
Jacobs, J.W., and Sheeley, J.M. 1996. Experimental study of incompressible Richtmyer–Meshkov instability. Phys. Fluids, 8, 405.CrossRefGoogle Scholar
Jacobs, J.W., Krivets, V.V., Tsiklashvili, V., and Likhachev, O.A. 2013. Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation. Shock Waves, 23, 407.CrossRefGoogle Scholar
Jacobs, M., Kim, I., and Mészáros, A. 2021. Weak solutions to the Muskat problem with surface tension via optimal transport. Arch. Ration. Mech. Anal., 239, 389.CrossRefGoogle Scholar
Jain, S.S., Mani, A., and Moin, P. 2020. A conservative diffuse-interface method for compressible two-phase flows. J. Comput. Phys., 418, 109606.CrossRefGoogle Scholar
Janka, H.-T., Melson, T., and Summa, A. 2016. Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci., 66, 341.CrossRefGoogle Scholar
Janka, H.T. 2012. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci., 62, 407.CrossRefGoogle Scholar
Jeffery, D.J., Leibundgut, B., Kirshner, R.P., Benetti, S., Branch, D., and Sonneborn, G. 1992. Analysis of the photospheric epoch spectra of type 1a supernovae SN 1990N and SN 1991T. Astrophys. J., 397, 304.CrossRefGoogle Scholar
Jeffreys, H. 1933. Evolution of hydrodynamics. Nature, 131, 313.CrossRefGoogle Scholar
Jensen, B.J., Cherne, F.J., Prime, M.B., et al. 2015. Jet formation in cerium metal to examine material strength. J. Appl. Phys., 118, 195903.CrossRefGoogle Scholar
Jevons, W.S. 1857. II. On the cirrous form of cloud. The London, Edinburgh, Dublin Philos. Mag. J. Sci., 14, 22.Google Scholar
Jiang, R., Huang, X., Zou, L., Shi, H., and Wu, J. 2018a. Experimental investigation on the characteristics of unstability at Liquid-liquid tilted interface induced by Rayleigh–Taylor instability. Chin. J. High Press. Phys., 32, 054201.Google Scholar
Jiang, S., Wang, F., Ding, Y., et al. 2018b. Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China. Nucl. Fusion, 59, 032006.CrossRefGoogle Scholar
Jinn, J., Connor, E.G., and Jacobs, L.F. 2020. How ambient environment influences olfactory orientation in search and rescue dogs. Chem. Senses, 45, 625.CrossRefGoogle ScholarPubMed
Joggerst, C.C., Almgren, A., and Woosley, S.E. 2010. Three-dimensional simulations of Rayleigh– Taylor mixing in core-collapse supernovae. Astrophys. J., 723, 353.CrossRefGoogle Scholar
Joggerst, C.C., Nelson, A., Woodward, Pa., Lovekin, C., Masser, T., Fryer, C.L., Ramaprabhu, P., Francois, M., and Rockefeller, G. 2014. Cross-code comparisons of mixing during the implosion of dense cylindrical and spherical shells. J. Comput. Phys., 275, 154.Google Scholar
Johnson, B.M., and Schilling, O. 2011a. Reynolds-averaged Navier–Stokes model predictions of linear instability. I: buoyancy-and shear-driven flows. J. Turbul., 12, N36.Google Scholar
Johnson, B.M., and Schilling, O. 2011b. Reynolds-averaged Navier–Stokes model predictions of linear instability. II: shock-driven flows. J. Turbul., 12, N37.Google Scholar
Johnson, J.R., Wing, S., and Delamere, P.A. 2014. Kelvin Helmholtz instability in planetary magnetospheres. Space Sci. Rev., 184, 1.CrossRefGoogle Scholar
Jones, W.P., and Launder, B.E. 1973. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, 16, 1119.CrossRefGoogle Scholar
Jourdan, G., and Houas, L. 1996. Experimental investigation of Richtmyer–Meshkov instability before and after the reflected shock compression. Phys. Fluids, 8, 1353.CrossRefGoogle Scholar
Jourdan, G., and Houas, L. 2005. High-amplitude single-mode perturbation evolution at the Richtmyer–Meshkov instability. Phys. Rev. Lett., 95, 204502.CrossRefGoogle ScholarPubMed
Jun, B.I., Norman, M.L., and Stone, J.M. 1995. A numerical study of Rayleigh–Taylor instability in magnetic fluids. Astrophys. J., 453, 332.CrossRefGoogle Scholar
Kadau, K., Germann, T.C., Hadjiconstantinou, N.G., Lomdahl, P.S., Dimonte, G., Holian, B.L., and Alder, B.J. 2004. Nanohydrodynamics simulations: an atomistic view of the Rayleigh–Taylor instability. Proc. Natl. Acad. Sci., 101, 5851.CrossRefGoogle ScholarPubMed
Kadau, K., Rosenblatt, C., Barber, J.L., Germann, T.C., Huang, Z., Carlès, P., and Alder, B.J. 2007. The importance of fluctuations in fluid mixing. Proc. Natl. Acad. Sci., 104, 7741.CrossRefGoogle ScholarPubMed
Kailasanath, K. 2000. Review of propulsion applications of detonation waves. AIAA J., 38, 1698.CrossRefGoogle Scholar
Kaman, T., and Holley, R. 2022. Validation and verification of turbulence mixing due to Richtmyer– Meshkov instability of an air/SF6 interface. Int. J. Numer. Anal. Model., 19, 822.Google Scholar
Kaman, T., Edwards, A., and McGarigal, J. 2021. Performance analysis of the parallel CFD code for turbulent mixing simulations. J. Comput. Sci. Ed., 12, 49.CrossRefGoogle Scholar
Kaneko, T., and Yokoyama, T. 2018. Impact of dynamic state on the mass condensation rate of solar prominences. Astrophys. J., 869, 136.CrossRefGoogle Scholar
Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., and Stewart, D.S. 2001. Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids, 13, 3002.CrossRefGoogle Scholar
Karkhanis, V., Ramaprabhu, P., Cherne, F.J., Hammerberg, J.E., and Andrews, M.J. 2018. A numerical study of bubble and spike velocities in shock-driven liquid metals. J. Appl. Phys., 123, 025902.CrossRefGoogle Scholar
Karlykhanov, N.G., Lykov, V.A., Timakova, M.S., and Chizhkov, M. 2004. 1D-simulation results of indirect-driven target optimization for ignition at Iskra-6 facility. J. Exp. Theor. Phys. Lett., 79, 25.CrossRefGoogle Scholar
Kartoon, D., Oron, D., Arazi, L., and Shvarts, D. 2003. Three-dimensional multimode Rayleigh–Taylor and Richtmyer–Meshkov instabilities at all density ratios. Laser Part. Beams, 21, 327.CrossRefGoogle Scholar
Keele, K.D. 1952. Leonardo Da Vinci on Movement of the Heart and Blood. J. B. Lippincott, Philadelphia, PA.Google Scholar
Keele, K.D. 2014. Leonardo da Vinci’s Elements of the Science of Man. Academic Press, New York.Google Scholar
Kelley, M.C. 2009. Earth’s Ionosphere. 2nd edn. Elsevier, Amsterdam.Google Scholar
Keppens, R., Xia, C., and Porth, O. 2015. Solar prominences: double, double … boil and bubble. Astrophys. J. Lett., 806, L13.CrossRefGoogle Scholar
Khokhlov, A. 1993. Flame modeling in supernovae. Astrophys. J., 419, L77.CrossRefGoogle Scholar
Khokhlov, A.M., Oran, E.S., Chtchelkanova, A.Y., and Wheeler, J.C. 1999. Interaction of a shock with a sinusoidally perturbed flame. Combust. Flame, 117, 99.CrossRefGoogle Scholar
Kida, S., and Orszag, S.A. 1990a. Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput., 5, 85.CrossRefGoogle Scholar
Kida, S., and Orszag, S.A. 1990b. Enstrophy budget in decaying compressible turbulence. J. Sci. Comput., 5, 1.CrossRefGoogle Scholar
Kidder, R.E. 1976. Laser-driven compression of hollow shells: power requirements and stability limitations. Nucl. Fusion, 16, 3.CrossRefGoogle Scholar
Kifonidis, K., Plewa, T., Janka, H.-Th., and Müller, E. 2003. Non-spherical core collapse supernovae-I. Neutrino-driven convection, Rayleigh–Taylor instabilities, and the formation and propagation of metal clumps. Astron. Astrophys., 408, 621.CrossRefGoogle Scholar
Kilkenny, J.D., Glendinning, S.G., Haan, S.W., Hammel, B.A., Lindl, J.D., Munro, D., Remington, B.A., Weber, S.V., Knauer, J.P., and Verdon, C.P. 1994. A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas, 1, 1379.CrossRefGoogle Scholar
Kitaura, F.-S., Janka, H.-Th., and Hillebrandt, W. 2006. Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astron. Astrophys., 450, 345.CrossRefGoogle Scholar
Kobayashi, K.U., and Kurita, R. 2022. Key connection between gravitational instability in physical gels and granular media. Sci. Rep., 12, 6290.CrossRefGoogle ScholarPubMed
Kokkinakis, I.W., Drikakis, D., Youngs, D.L., and Williams, R.J.R. 2015. Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing. Int. J. Heat Fluid Flow, 56, 233.CrossRefGoogle Scholar
Kokkinakis, I.W., Drikakis, D., and Youngs, D.L. 2019. Modeling of Rayleigh–Taylor mixing using single-fluid models. Phys. Rev. E, 99, 013104.CrossRefGoogle ScholarPubMed
Kokkinakis, I.W., Drikakis, D., and Youngs, D.L. 2020a. Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing. Phys. Fluids, 32, 074102.CrossRefGoogle Scholar
Kokkinakis, I.W., Drikakis, D., and Youngs, D.L. 2020b. Vortex morphology in Richtmyer– Meshkov-induced turbulent mixing. Physica D, 407, 132459.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR, 30, 301.Google Scholar
Koneru, R.B., Rollin, B., Durant, B., Ouellet, F., and Balachandar, S. 2020. A numerical study of particle jetting in a dense particle bed driven by an air-blast. Phys. Fluids, 32, 093301.CrossRefGoogle Scholar
Korycansky, D.G., Zahnle, K. J., and Law, M.-M. M. 2000. High-resolution calculations of asteroid impacts into the Venusian atmosphere. Icarus, 146, 387.CrossRefGoogle ScholarPubMed
Kraichnan, R.H. 1959. The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech., 5, 497.CrossRefGoogle Scholar
Kraichnan, R.H. 1965. Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids, 8, 1385.CrossRefGoogle Scholar
Kraichnan, R.H. 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 1417.CrossRefGoogle Scholar
Kraichnan, R.H., and Montgomery, D. 1980. Two-dimensional turbulence. Rep. Progr. Phys., 43, 547.CrossRefGoogle Scholar
Krasheninnikova, N.S., Schmitt, M.J., Molvig, K., Hsu, S.C., Scheiner, B.S., Schmidt, D.W., Geppert-Kleinrath, V., McKenty, P.W., Michel, D.T., Edgell, D.H., and Marshall, F.J. 2020. Development of a directly driven multi-shell platform: laser drive energetics. Phys. Plasmas, 27, 022706.CrossRefGoogle Scholar
Krasny, R. 1986. Desingularization of periodic vortex sheet roll-up. J. Comput. Phys., 65, 292.CrossRefGoogle Scholar
Krechetnikov, R. 2009. Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J. Fluid Mech., 625, 387.CrossRefGoogle Scholar
Krehl, P.O.K. 2008. History of Shock Waves, Explosions and Impact: a Chronological and Biographical Reference. Springer Science & Business Media, Berlin.Google Scholar
Kritcher, A. L., Zylstra, A. B., Callahan, D. A., et al. 2022. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition. Phys. Rev. E, 106, 025201.CrossRefGoogle ScholarPubMed
Kritcher, A.L., Zylstra, A.B., Weber, C.R., Hurricane, O.A., et al. 2024. Design of the first fusion experiment to achieve target energy gain G > 1. Phys. Rev. E, 109, 025204.CrossRefGoogle ScholarPubMed
Krivets, V.V., Ferguson, K.J., and Jacobs, J.W. 2017. Turbulent mixing induced by Richtmyer– Meshkov instability. AIP Conf. Proc., 1793, 150003.Google Scholar
Kruskal, M.D., and Schwarzschild, M. 1954. Some instabilities of a completely ionized plasma. Proc. R. Soc. Lond. Ser. A, 223, 348.Google Scholar
Krygier, A., Powell, P.D., McNaney, J.M., Huntington, C.M., Prisbrey, S.T., Remington, B.A., Rudd, R.E., Swift, D.C., Wehrenberg, C.E., Arsenlis, A., and Park, H.S. 2019. Extreme hardening of Pb at high pressure and strain rate. Phys. Rev. Lett., 123, 205701.CrossRefGoogle ScholarPubMed
Ku, H.C., Taylor, T.D., and Hirsh, R.S. 1987. Pseudospectral methods for solution of the incompressible Navier–Stokes equations. Comput. Fluids, 15, 195.CrossRefGoogle Scholar
Kuang, L., Li, H., Jing, L., Lin, Z., Zhang, L., Li, L., Ding, Y., Jiang, S., Liu, J., and Zheng, J. 2016. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition. Sci. Rep., 6, 34636.CrossRefGoogle ScholarPubMed
Kucherenko, Yu.A., Shibarshov, L.I., Chitaikin, V.I., Balabin, S.I., and Pylaev, A.P. 1991. Experimental study of the gravitational turbulent mixing self-similar mode. Pages 427–454 of: Dautray, R. (ed), Third International Workshop on the Physics of Compressible Turbulent Mixing. Cambridge University, Cambridge, UK.Google Scholar
Kucherenko, Yu.A., Balabzn, S.I., Ardashova, R.I., Kozelkov, O.E., I.A., Rornclnoc., Che’ret, R., and Haas, J.F. 1997. Experimental study of the gravitational turbulent mixing self-similar mode. Pages 258–265 of: Jourdan, G., and Houas, L. (eds), Sixth International Workshop on the Physics of Compressible Turbulent Mixing, Imprimerie Caractere, Marseille, France.Google Scholar
Kucherenko, Yu A., Shestachenko, O.E., Balabin, S.I., and Pylaev, A.P. 2003. RFNC-VNIITF multifunctional shock tube for investigating the evolution of instabilities in nonstationary gas dynamic flows. Laser Part. Beams, 21, 381.CrossRefGoogle Scholar
Kucherenko, Yu A., Pavlenko, A.V., Shestachenko, O.E., Balabin, S.I., Pylaev, A.P., and Tyaktev, A.A. 2010. Measurement of spectral characteristics of the turbulent mixing zone. J. Appl. Mech. Tech. Phys., 51, 299.CrossRefGoogle Scholar
Kuchibhatla, S., and Ranjan, D. 2013. Effect of initial conditions on Rayleigh–Taylor mixing: modal interaction. Phys. Scr., 2013, 014057.CrossRefGoogle Scholar
Kuchugov, P.A., Rozanov, V.B., and Zmitrenko, N.V. 2014. The differences in the development of Rayleigh–Taylor instability in 2D and 3D geometries. Plasma Phys. Rep., 40, 451.CrossRefGoogle Scholar
Kuhl, A. 1993. Mixing in Explosions. Tech. Rep. Lawrence Livermore National Laboratory, Livermore, CA.Google Scholar
Kuhl, A. 1996. Spherical mixing layers in explosions. Page 291 of: Bowen, J.R. (ed), Dynamics of Exothermicity. Gordon and Breach Amsterdam, Netherlands.Google Scholar
Kuhl, A. 2015. On the structure of self-similar detonation waves in TNT charges. Combust. Explos. Shock Waves, 51, 72.CrossRefGoogle Scholar
Kuhl, A., Ferguson, R., Priolo, F., Chien, K., and Collins, J. 1993. Baroclinic Mixing in He Fireballs. Tech. rept. UCRL-JC-114982 Lawrence Livermore National Lab., El Segundo, CA.Google Scholar
Kuhl, A.L., Bell, J.B., Beckner, V.E., and Reichenbach, H. 2011. Gasdynamic model of turbulent combustion in TNT explosions. Proc. Combust. Inst., 33, 2177.CrossRefGoogle Scholar
Kuhl, A.L., Bell, J.B., Beckner, V.E., Balakrishnan, K., and Aspden, A.J. 2013. Spherical combustion clouds in explosions. Shock Waves, 23, 233.CrossRefGoogle Scholar
Kuhlen, M, Woosley, SE, and Glatzmaier, GA. 2006. Carbon ignition in type Ia supernovae. II. A three-dimensional numerical model. Astrophys. J., 640, 407.CrossRefGoogle Scholar
Kull, H.J., and Anisimov, S.I. 1986. Ablative stabilization in the incompressible Rayleigh–Taylor instability. Phys. Fluids, 29, 2067.CrossRefGoogle Scholar
Kulsrud, R.M. 2005. Plasma Physics for Astrophysics. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Kundu, P.K., and Cohen, I.M. 2004. Fluid Mechanics. Elsevier, Boston, MA.Google Scholar
Kuranz, C.C., Park, H.-S., Huntington, C.M., et al. 2018. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nat. Commun., 9, 1564.CrossRefGoogle ScholarPubMed
Kurien, S., and Pal, N. 2022. The local wavenumber model for computation of turbulent mixing. Philos. Trans. R. Soc. A, 380, 20210076.CrossRefGoogle ScholarPubMed
Kurien, S., Doss, F.W., Livescu, D., and Flippo, K. 2020. Extracting a mixing parameter from 2D radiographic imaging of variable-density turbulent flow. Physica D, 405, 132354.CrossRefGoogle Scholar
La Fleche, M., Xiao, Q., Wang, Y., and Radulescu, M. 2017. Experimental study of the head-on interaction of a shock wave with a cellular flame. In: 26th International Colloquium on the Dynamics of Explosions and Reactive Systems. Boston, MA.Google Scholar
Lafay, M.-A., Le Creurer, B., and Gauthier, S. 2007. Compressibility effects on the Rayleigh–Taylor instability between miscible fluids. Europhys. Lett., 79, 64002.CrossRefGoogle Scholar
Lagerstrom, P.A. 2013. Matched Asymptotic Expansions: Ideas and Techniques. Vol. 76. Springer Science & Business Media, New York.Google Scholar
Lamb, H. 1932. Hydrodynamics. 6th edn. Cambridge University Press, Cambridge, UK.Google Scholar
Lan, K., Liu, J., Li, Z., et al. 2016. Progress in octahedral spherical hohlraum study. Mat. Rad. Extremes, 1, 8.CrossRefGoogle Scholar
Landau, L.D. 1944. On the theory of slow combustion. Acta Phys. USSR, 19, 77.Google Scholar
Landau, L.D., and Lifshitz, E.M. 1959. Fluid Mechanics. 2nd edn. Pergamon Press, Oxford, UK.Google Scholar
Landen, O.L., Baker, K.L., Clark, D.S., et al. 2016. Indirect-drive ablative Richtmyer–Meshkov node scaling. J. Phys. Conf. Ser., 717, 012034.CrossRefGoogle Scholar
Laney, C.B. 1998. Computational Gasdynamics. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Lanier, N.E., Barnes, C.W., Batha, S.H., Day, R.D., Magelssen, G.R., Scott, J.M., Dunne, A.M., Parker, K.W., and Rothman, S.D. 2003. Multimode seeded Richtmyer–Meshkov mixing in a convergent, compressible, miscible plasma system. Phys. Plasmas, 10, 1816.CrossRefGoogle Scholar
Laplace, P.S. 1805. Traite de Mechanique Celeste vol 4 supplements au Livre X. Gauthier-Villars, Paris.Google Scholar
Lapushkina, T.A., Erofeev, A.V., Azarova, O.A., and Kravchenko, O.V. 2019. Interaction of a plane shock wave with an area of ionization instability of discharge plasma in air. Aerospace Sci. Tech., 85, 347.CrossRefGoogle Scholar
Larmor, J. 1907. Memoir and Scientific Correspondence of George Gabriel Stokes. Cambridge University Press, Cambridge, UK.Google Scholar
Larroche, O., Rinderknecht, H.G., and Rosenberg, M.J. 2018. Nuclear yield reduction in inertial confinement fusion exploding-pusher targets explained by fuel-pusher mixing through hybrid kinetic-fluid modeling. Phys. Rev. E, 98, 031201.CrossRefGoogle Scholar
Latini, M., and Schilling, O. 2020. A comparison of two-and three-dimensional single-mode reshocked Richtmyer–Meshkov instability growth. Physica D, 401, 132201.CrossRefGoogle Scholar
Latini, M., Schilling, O., and Don, W.-S. 2007a. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer–Meshkov instability. J. Comput. Phys., 221, 805.CrossRefGoogle Scholar
Latini, M., Schilling, O., and Don, W.-S. 2007b. High-resolution simulations and modeling of reshocked single-mode Richtmyer–Meshkov instability: comparison to experimental data and to amplitude growth model predictions. Phys. Fluids, 19, 024104.CrossRefGoogle Scholar
Lau, Y.Y., Zier, J.C., Rittersdorf, I.M., Weis, M.R., and Gilgenbach, R.M. 2011. Anisotropy and feedthrough in magneto-Rayleigh–Taylor instability. Phys. Rev. E, 83, 066405.CrossRefGoogle ScholarPubMed
Launder, B. 2012. Horace Lamb and the circumstances of his appointment at Owens College. Notes Rec. R. Soc., 67, 139.CrossRefGoogle Scholar
Launder, B.E. 2015. First steps in modelling turbulence and its origins: a commentary on Reynolds (1895) ‘On the dynamical theory of incompressible viscous fluids and the determination of the criterion’. Philos. Trans. R. Soc. A, 373, 20140231.CrossRefGoogle ScholarPubMed
Launder, B.E., and Spalding, D.B. 1974. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng., 3, 269.CrossRefGoogle Scholar
Launder, B.E., Reece, G. Jr, and Rodi, W. 1975. Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68, 537.CrossRefGoogle Scholar
Law, C.K. 2006. Combustion Physics. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Lawrie, A.G.W., and Dalziel, S.B. 2011a. Rayleigh–Taylor mixing in an otherwise stable stratification. J. Fluid Mech., 688, 507.CrossRefGoogle Scholar
Lawrie, A.G.W., and Dalziel, S.B. 2011b. Turbulent diffusion in tall tubes. I. Models for Rayleigh– Taylor instability. Phys. Fluids, 23, 085109.CrossRefGoogle Scholar
Lawrie, A.G.W., and Dalziel, S.B. 2011c. Turbulent diffusion in tall tubes. II. Confinement by stratification. Phys. Fluids, 23, 085110.CrossRefGoogle Scholar
Lax, P.D., and Richtmyer, R.D. 1956. Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math., 9, 267.CrossRefGoogle Scholar
Layes, G., and Le Métayer, O. 2007. Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Phys. Fluids, 19, 042105.CrossRefGoogle Scholar
Layes, G., Jourdan, G., and Houas, L. 2003. Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys. Rev. Lett., 91, 174502.CrossRefGoogle ScholarPubMed
Layes, G., Jourdan, G., and Houas, L. 2005. Experimental investigation of the shock wave interaction with a spherical gas inhomogeneity. Phys. Fluids, 17, 028103.CrossRefGoogle Scholar
Layes, G., Jourdan, G., and Houas, L. 2009. Experimental study on a plane shock wave accelerating a gas bubble. Phys. Fluids, 21, 074102.CrossRefGoogle Scholar
Layzer, D. 1955. On the instability of superposed fluids in a gravitational field. Astrophys. J., 122, 1.CrossRefGoogle Scholar
Lazarowski, L., and Dorman, D.C. 2014. Explosives detection by military working dogs: olfactory generalization from components to mixtures. Appl. Anim. Behav. Sci., 151, 84.CrossRefGoogle Scholar
Le Creurer, B., and Gauthier, S. 2008. A return toward equilibrium in a 2D Rayleigh–Taylor instability for compressible fluids with a multidomain adaptive Chebyshev method. Theor. Comput. Fluid Dyn., 22, 125.CrossRefGoogle Scholar
Le Pape, S., Berzak Hopkins, L.F., Divol, L., et al. 2018. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett., 120, 245003.CrossRefGoogle Scholar
Lebedev, A.I., Nizovtsev, P.N., Rayevsky, V.A., and Solovyov, V.P. 1996. Rayleigh–Taylor instability in strong media, experimental study. In: Young, R., Glimm, J., and Boston, B. (eds), Proceedings of the Fifth International Workshop on Compressible Turbulent Mixing. World Scientific, Singapore.Google Scholar
Lebedev, S.V., Beg, F.N., Bland, S.N., Chittenden, J.P., Dangor, A.E., Haines, M.G., Kwek, K.H., Pikuz, S.A., and Shelkovenko, T.A. 2001. Effect of discrete wires on the implosion dynamics of wire array Z pinches. Phys. Plasmas, 8, 3734.CrossRefGoogle Scholar
Lebedev, S.V., Ampleford, D.J., Bland, S.N., et al. 2005. Physics of wire array Z-pinch implosions: experiments at Imperial College. Plasma Phys. Control. Fusion, 47, A91.CrossRefGoogle Scholar
Lebedev, S.V., Frank, A., and Ryutov, D.D. 2019. Exploring astrophysics-relevant magnetohydrody-namics with pulsed-power laboratory facilities. Rev. Mod. Phys., 91, 025002.CrossRefGoogle Scholar
LeBlanc, J.M., and Wilson, J.R. 1970. A numerical example of the collapse of a rotating magnetized star. Astrophys. J., 161, 541.CrossRefGoogle Scholar
Lee, T.D. 1951. Difference between turbulence in a two-dimensional fluid and in a three-dimensional fluid. J. Appl. Phys., 22, 524.CrossRefGoogle Scholar
Lee, Y.T., and More, R.M. 1984. An electron conductivity model for dense plasmas. Phys. Fluids, 27, 1273.CrossRefGoogle Scholar
Lei, F. 2017. Experimental and theoretical study on converging Richtmyer–Meshkov instability. Ph.D. thesis, University of Science and Technology of China, Hefei, China.Google Scholar
Lei, F., Ding, J., Si, T., Zhai, Z., and Luo, X. 2017. Experimental study on a sinusoidal air/SF interface accelerated by a cylindrically converging shock. J. Fluid Mech., 826, 819.CrossRefGoogle Scholar
Leinov, E., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G., Shvarts, D., and Sadot, O. 2009. Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions. J. Fluid Mech., 626, 449.CrossRefGoogle Scholar
Leith, C.E. 1967. Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids, 10, 1409.CrossRefGoogle Scholar
Leith, C.E. 1986. Development of a two-equation turbulent mix model. Tech. rept. Lawrence Livermore National Laboratory, UCRL-96036, Livermore, CA.Google Scholar
Leith, CE. 1990. Stochastic backscatter in a subgrid-scale model: plane shear mixing layer. Phys. Fluids A, 2, 297.CrossRefGoogle Scholar
Lekner, J. 2017. Nurturing genius: the childhood and youth of Kelvin and Maxwell. Substantia, 1, 133.Google Scholar
LeLevier, R., Lasher, G.J., and Bjorklund, F. 1955. Effect of a density gradient on Taylor instability. Tech. rept. Radiation Lab., University of California, Livermore, CA.CrossRefGoogle Scholar
Leonardis, E., Chapman, S.C., and Foullon, C. 2012. Turbulent characteristics in the intensity fluctuations of a solar quiescent prominence observed by the Hinode Solar Optical Telescope. Astrophys. J., 745, 185.CrossRefGoogle Scholar
Leroy, J.L. 1988. Observation of prominence magnetic fields. Pages 77–113 of: Priest, E.R. (ed), Dynamics and Structure of Quiescent Solar Prominences. Springer, Dordrecht, Netherlands.Google Scholar
Lesieur, M. 1987. Turbulence in Fluids: Stochastic and Numerical Modelling. Nijhoff, Boston, MA.CrossRefGoogle Scholar
Lesieur, M., and Metais, O. 1996. New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech., 28, 45.CrossRefGoogle Scholar
Lesieur, M., and Schertzer, D. 1978. Dynamique des gros tourbillons et décroissance de lénergie cinétique en turbulence tridimensionelle isotrope á grand nombre de Reynolds. J. Méch., 17, 607.Google Scholar
Levens, P.J., Schmieder, B., LópezAriste, A., Labrosse, N., Dalmasse, K., and Gelly, B. 2016. Magnetic field in atypical prominence structures: bubble, tornado, and eruption. Astrophys. J., 826, 164.Google Scholar
Lewis, D.J. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II. Proc. R. Soc. Lond. A, 202, 81.Google Scholar
Lherm, V., Deguen, R., Alboussière, T., and Landeau, M. 2022. Rayleigh–Taylor instability in impact cratering experiments. J. Fluid Mech., 937, A20.CrossRefGoogle Scholar
Li, H., He, Z., Zhang, Y., and Tian, B. 2019a. On the role of rarefaction/compression waves in Richtmyer–Meshkov instability with reshock. Phys. Fluids, 31, 054102.CrossRefGoogle Scholar
Li, H., Tian, B., He, Z., and Zhang, Y. 2021a. Growth mechanism of interfacial fluid-mixing width induced by successive nonlinear wave interactions. Phys. Rev. E, 103, 053109.CrossRefGoogle ScholarPubMed
Li, J., Sun, Y., Pan, J., and Ren, Y. 2016. Instability and turbulent mixing of shocked “V” shaped interface. Acta Phys. Sin., 65, 245202.Google Scholar
Li, J., Ding, J., Luo, X., and Zou, L. 2022a. Instability of a heavy gas layer induced by a cylindrical convergent shock. Phys. Fluids, 34, 042123.CrossRefGoogle Scholar
Li, J., Yan, R., Zhao, B., Zheng, J., Zhang, H., and Lu, X. 2022b. Mitigation of the ablative Rayleigh– Taylor instability by nonlocal electron heat transport. Matter Radiat. Extrem., 7, 055902.CrossRefGoogle Scholar
Li, M., Ding, J., Zhai, Z., Si, T., Liu, N., Huang, S., and Luo, X. 2020a. On divergent Richtmyer– Meshkov instability of a light/heavy interface. J. Fluid Mech., 901, A38.CrossRefGoogle Scholar
Li, X., Zhang, J., Yang, S., Hou, Y., and Erdélyi, R. 2018a. Observing Kelvin–Helmholtz instability in solar blowout jet. Sci. Rep., 8, 8136.CrossRefGoogle ScholarPubMed
Li, X., Fu, Y., Yu, C., and Li, L. 2021b. Statistical characteristics of turbulent mixing in spherical and cylindrical converging Richtmyer–Meshkov instabilities. J. Fluid Mech., 928, A10.CrossRefGoogle Scholar
Li, X.L., and Zhang, Q. 1997. A comparative numerical study of the Richtmyer–Meshkov instability with nonlinear analysis in two and three dimensions. Phys. Fluids, 9, 3069.CrossRefGoogle Scholar
Li, Y., and Luo, X. 2014. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh–Taylor instability. Acta Phys. Sin., 63, 85203.Google Scholar
Li, Y., Samtaney, R., and Wheatley, V. 2018b. The Richtmyer–Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics. Matter Radiat. Extremes, 3, 207.CrossRefGoogle Scholar
Li, Z., Wang, Z., Xu, R., Yang, J., Ye, F., Chu, Y., Xu, Z., Chen, F., Meng, S., Qi, J., and Hu, Q. 2019b. Experimental investigation of Z-pinch radiation source for indirect drive inertial confinement fusion. Matter Radiat. Extremes, 4, 046201.CrossRefGoogle Scholar
Li, Z., Wang, L., Wu, J., and Ye, W. 2020b. Numerical study on the laser ablative Rayleigh–Taylor instability. Acta Mech. Sin., 36, 789.CrossRefGoogle Scholar
Liang, H., Li, Q.X., Shi, B.C., and Chai, Z.H. 2016. Lattice Boltzmann simulation of three-dimensional Rayleigh–Taylor instability. Phys. Rev. E, 93, 033113.CrossRefGoogle ScholarPubMed
Liang, H., Hu, X., Huang, X., and Xu, J. 2019. Direct numerical simulations of multi-mode immiscible Rayleigh–Taylor instability with high Reynolds numbers. Phys. Fluids, 31, 112104.CrossRefGoogle Scholar
Liang, H., Xia, Z., and Huang, H. 2021a. Late-time description of immiscible Rayleigh–Taylor instability: a lattice Boltzmann study. Phys. Fluids, 33, 082103.CrossRefGoogle Scholar
Liang, Y. 2022. The phase effect on the Richtmyer–Meshkov instability of a fluid layer. Phys. Fluids, 34, 034106.CrossRefGoogle Scholar
Liang, Y., and Luo, X. 2021a. On shock-induced heavy-fluid-layer evolution. J. Fluid Mech., 920, A13.CrossRefGoogle Scholar
Liang, Y., and Luo, X. 2021b. Shock-induced dual-layer evolution. J. Fluid Mech., 929, R3.CrossRefGoogle Scholar
Liang, Y., and Luo, X. 2022. On shock-induced light-fluid-layer evolution. J. Fluid Mech., 933, A10.CrossRefGoogle Scholar
Liang, Y., and Luo, X. 2023. Hydrodynamic instabilities of two successive slow/fast interfaces induced by a weak shock. J. Fluid Mech., 955, A40.CrossRefGoogle Scholar
Liang, Y., Liu, L., Zhai, Z., Si, T., and Wen, C. 2020. Evolution of shock-accelerated heavy gas layer. J. Fluid Mech., 886, A7.CrossRefGoogle Scholar
Liang, Y., Liu, L., Zhai, Z., Ding, J., Si, T., and Luo, X. 2021b. Richtmyer–Meshkov instability on two-dimensional multi-mode interfaces. J. Fluid Mech., 928, A37.CrossRefGoogle Scholar
Liang, Y., Liu, L., Zhai, Z., Si, T., and Luo, X. 2021c. Universal perturbation growth of Richtmyer– Meshkov instability for minimum-surface featured interface induced by weak shock waves. Phys. Fluids, 33, 032110.CrossRefGoogle Scholar
Liang, Y., Liu, L., Luo, X., and Wen, C.-Y. 2023. Hydrodynamic instabilities of a dual-mode air–SF6 interface induced by a cylindrically convergent shock. J. Fluid Mech., 963, A25.CrossRefGoogle Scholar
Liao, S., Zhang, W., Chen, H., Zou, L., Liu, J., and Zheng, X. 2019. Atwood number effects on the instability of a uniform interface driven by a perturbed shock wave. Phys. Rev. E, 99, 013103.CrossRefGoogle ScholarPubMed
Liberatore, S., Gauthier, P., Willien, J.L., et al., 2023. First indirect drive inertial confinement fusion campaign on Laser Megajoule. Phys. Plasmas, 30, 122707.CrossRefGoogle Scholar
Lighthill, J. 1986. An Informal Introduction to Theoretical Fluid Mechanics. Clarendon Press, Oxford, UK.Google Scholar
Lilly, D.K. 1983. Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749.2.0.CO;2>CrossRefGoogle Scholar
Lin, C.C. 1956. Aspects of the problem of turbulent motion. J. Aeronaut. Sci., 23, 453.CrossRefGoogle Scholar
Lindemuth, I.R., and Kirkpatrick, R.C. 1983. Parameter space for magnetized fuel targets in inertial confinement fusion. Nucl. Fusion, 23, 263.CrossRefGoogle Scholar
Linden, P.F., Redondo, J.M., and Youngs, D.L. 1994. Molecular mixing in Rayleigh–Taylor instability. J. Fluid Mech., 265, 97.CrossRefGoogle Scholar
Lindl, J.D. 1995. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933.CrossRefGoogle Scholar
Lindl, J.D. 1998. Inertial Confinement Fusion: The Quest for Ignition and Energy Gain using Indirect Drive. American Institute of Physics Press, New York.Google Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L., and Suter, L.J. 2004. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339.CrossRefGoogle Scholar
Ling, Y., Wagner, J.L., Beresh, S.J., Kearney, S.P., and Balachandar, S. 2012. Interaction of a planar shock wave with a dense particle curtain: modeling and experiments. Phys. Fluids, 24, 113301.CrossRefGoogle Scholar
Liu, B., Zhang, C., Lou, Q., and Liang, H. 2022. Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage. Front. Phys., 17, 53506.CrossRefGoogle Scholar
Liu, C., Zhang, Y., and Xiao, Z. 2023a. A unified theoretical model for spatiotemporal development of Rayleigh–Taylor and Richtmyer–Meshkov fingers. J. Fluid Mech., 954, A13.CrossRefGoogle Scholar
Liu, H., and Xiao, Z. 2016. Scale-to-scale energy transfer in mixing flow induced by the Richtmyer– Meshkov instability. Phys. Rev. E, 93, 053112.CrossRefGoogle ScholarPubMed
Liu, H.-C., Yu, B., Chen, H., Zhang, B., Xu, H., and Liu, H. 2020. Contribution of viscosity to the circulation deposition in the Richtmyer–Meshkov instability. J. Fluid Mech., 895, A10.CrossRefGoogle Scholar
Liu, J., Tan, D., Zhang, X., Huang, W., and Zou, L. 2012a. Experimental investigation of mixing at tilted interface induced by Rayleigh–Taylor instability. Chin. J. High Press. Phys., 26, 688.Google Scholar
Liu, J., Zou, L., Liao, S., Cao, R., Wang, Y., and Tan, D. 2014a. The Richtmyer–Meshkov instability by diffracted incident shock waves and reshock. Sci. Sin.-Phys. Mech. Astron., 44, 1203.Google Scholar
Liu, J.H., Tan, D.W., Bai, J.S., Wang, W.B., Zou, L.Y., and Zhang, X. 2012b. Experimental study of Richtmyer–Meshkov instability in nonuniform flow by shock tube. J. Exp. Mech, 27, 160.Google Scholar
Liu, L., Liang, Y., Ding, J., Liu, N., and Luo, X. 2018a. An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech., 853 R2.CrossRefGoogle Scholar
Liu, W.-H., Ma, W.F., and Wang, X.L. 2015a. Cylindrical effects in weakly nonlinear Rayleigh– Taylor instability. Chin. Phys. B, 24, 015202.CrossRefGoogle Scholar
Liu, W.-H., Chen, Y., Yu, C., and Li, X. 2015b. Harmonic growth of spherical Rayleigh–Taylor instability in weakly nonlinear regime. Phys. Plasmas, 22, 112112.CrossRefGoogle Scholar
Liu, W.-H., Yu, C., Jiang, H., and Li, X. 2017. Bell-Plessett effect on harmonic evolution of spherical Rayleigh–Taylor instability in weakly nonlinear scheme for arbitrary Atwood numbers. Phys. Plasmas, 24, 022102.CrossRefGoogle Scholar
Liu, W.B., Ma, D.J., He, A.M., and Wang, P. 2018b. Ejecta from periodic grooved Sn surface under unsupported shocks. Chin. Phys. B, 27, 016202.CrossRefGoogle Scholar
Liu, W.H., He, X.T., and Yu, C.P. 2012c. Cylindrical effects on Richtmyer–Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime. Phys. Plasmas, 19, 072108.CrossRefGoogle Scholar
Liu, W.H., Yu, C.P, and Li, X.L. 2014b. Effects of initial radius of the interface and Atwood number on nonlinear saturation amplitudes in cylindrical Rayleigh–Taylor instability. Phys. Plasmas, 21, 112103.CrossRefGoogle Scholar
Liu, W.H., Yu, C.-P., Ye, W.-H., and Wang, L.-F. 2014c. Nonlinear saturation amplitude of cylindrical Rayleigh–Taylor instability. Chin. Phys. B, 23, 94502.CrossRefGoogle Scholar
Liu, W.H., Yu, C.P., Chang, Ye, W.H., Wang, L.F., and He, X.T. 2014d. Nonlinear theory of classical cylindrical Richtmyer–Meshkov instability for arbitrary Atwood numbers. Phys. Plasmas, 21, 062119.Google Scholar
Liu, X., George, E., Bo, W., and Glimm, J. 2006. Turbulent mixing with physical mass diffusion. Phys. Rev. E, 73, 056301.CrossRefGoogle ScholarPubMed
Liu, Y., and Grieves, B. 2014. Ejecta production and transport from a shocked Sn coupon. J. Fluids Eng., 136, 091202.CrossRefGoogle Scholar
Liu, Y.X., Chen, Z., Wang, L.F., Li, Z.Y., Wu, J.F., Ye, W.H., and Li, Y.J. 2023b. Dynamic of shock– bubble interactions and nonlinear evolution of ablative hydrodynamic instabilities initialed by capsule interior isolated defects. Phys. Plasmas, 30, 042302.Google Scholar
Livescu, D. 2004. Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids. Phys. Fluids, 16, 118.CrossRefGoogle Scholar
Livescu, D. 2013. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh–Taylor instability. Phil. Trans. R. Soc. A, 371, 20120185.CrossRefGoogle Scholar
Livescu, D. 2020. Turbulence with large thermal and compositional density variations. Annu. Rev. Fluid Mech., 52, 309.CrossRefGoogle Scholar
Livescu, D., and Ristorcelli, J.R. 2007. Buoyancy-driven variable-density turbulence. J. Fluid Mech., 591, 43.CrossRefGoogle Scholar
Livescu, D., Wei, T., and Petersen, M.R. 2011. Direct numerical simulations of Rayleigh–Taylor instability. J. Phys. Conf. Ser, 318, 082007.CrossRefGoogle Scholar
Livescu, D., Wei, T., and Brady, P.T. 2021. Rayleigh–Taylor instability with gravity reversal. Physica D, 417, 132832.CrossRefGoogle Scholar
Llor, A. 2003. Bulk turbulent transport and structure in Rayleigh–Taylor, Richtmyer–Meshkov, and variable acceleration instabilities. Laser Part. beams, 21, 305.CrossRefGoogle Scholar
Llor, A. 2005. Statistical Hydrodynamic Models for Developed Mixing Instability Flows: Analytical “0D” Evaluation Criteria, and Comparison of Single-and Two-Phase Flow Approaches. Lecture Notes in Physics. Vol. 681. Springer Science & Business Media, Berlin.CrossRefGoogle Scholar
Llor, A. 2006. Invariants of free turbulent decay. arXiv preprint physics/0612220.Google Scholar
Llor, A., and Bailly, P. 2003. A new turbulent two-field concept for modeling Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz mixing layers. Laser Part. Beams, 21, 311.CrossRefGoogle Scholar
Lobatchev, V., and Betti, R. 2000. Ablative stabilization of the deceleration phase Rayleigh–Taylor instability. Phys. Rev. Lett., 85, 4522.CrossRefGoogle ScholarPubMed
Lombardini, M., Hill, D.J., Pullin, D.I., and Meiron, D.I. 2011. Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations. J. Fluid Mech., 670, 439.CrossRefGoogle Scholar
Lombardini, M., Pullin, D.I., and Meiron, D.I. 2012. Transition to turbulence in shock-driven mixing: a Mach number study. J. Fluid Mech., 690, 203.CrossRefGoogle Scholar
Lombardini, M., Pullin, D.I., and Meiron, D.I. 2014a. Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J. Fluid Mech., 748, 85.CrossRefGoogle Scholar
Lombardini, M., Pullin, D.I., and Meiron, D.I. 2014b. Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics. J. Fluid Mech., 748, 113.CrossRefGoogle Scholar
Long, C.C., Krivets, V.V., Greenough, J.A., and Jacobs, J.W. 2009. Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer–Meshkov instability. Phys. Fluids, 21, 114104.CrossRefGoogle Scholar
López Ortega, A., Lombardini, M., Pullin, D.I., and Meiron, D.I. 2014. Numerical simulations of the Richtmyer–Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws. Phys. Rev. E, 89, 033018.CrossRefGoogle ScholarPubMed
López Ortega, A., Lombardini, M., Barton, P.T., Pullin, D.I., and Meiron, D.I. 2015. Richtmyer– Meshkov instability for elastic–plastic solids in converging geometries. J. Mech. Phys. Solids, 76, 291.CrossRefGoogle Scholar
Lugomer, S. 2019. Laser-generated Richtmyer–Meshkov and Rayleigh–Taylor instabilities in a semi-confined configuration: bubble dynamics in the central region of the Gaussian spot. Phys. Scr., 94, 015001.CrossRefGoogle Scholar
Lugomer, S. 2020. Nano-wrinkles, compactons, and wrinklons associated with laser-induced Rayleigh–Taylor instability: I. Bubble environment. Laser Part. Beams, 38, 101.Google Scholar
Lumley, J.L. 1970. Toward a turbulent constitutive relation. J. Fluid Mech., 41, 413.CrossRefGoogle Scholar
Lumley, J.L. 1992. Some comments on turbulence. Phys. Fluids A, 4, 203.CrossRefGoogle Scholar
Lund, H.M., and Dalziel, S.B. 2014. Bursting water balloons. J. Fluid Mech., 756, 771.CrossRefGoogle Scholar
Luo, K., Luo, Y., Jin, T., and Fan, J. 2017. Numerical analysis on shock-cylinder interaction using immersed boundary method. Sci. China Technol. Sci., 60, 1423.CrossRefGoogle Scholar
Luo, T., and Wang, J. 2022. Mixing and energy transfer in compressible Rayleigh–Taylor turbulence for initial isothermal stratification. Phys. Rev. Fluids, 7, 104608.CrossRefGoogle Scholar
Luo, T., Wang, J., Xie, C., Wan, M., and Chen, S. 2020a. Effects of compressibility and Atwood number on the single-mode Rayleigh–Taylor instability. Phys. Fluids, 32, 012110.CrossRefGoogle Scholar
Luo, X., Wang, X., and Si, T. 2013. The Richtmyer–Meshkov instability of a three-dimensional air/SF6 interface with a minimum-surface feature. J. Fluid Mech., 722, R2.CrossRefGoogle Scholar
Luo, X., Wang, M., Si, T., and Zhai, Z. 2015a. On the interaction of a planar shock with an polygon. J. Fluid Mech., 773, 366.CrossRefGoogle Scholar
Luo, X., Ding, J., Wang, M., Zhai, Z., and Si, T. 2015b. A semi-annular shock tube for studying cylindrically converging Richtmyer–Meshkov instability. Phys. Fluids, 27, 091702.CrossRefGoogle Scholar
Luo, X., Guan, B., Zhai, Z., and Si, T. 2016a. Principal curvature effects on the early evolution of three-dimensional single-mode Richtmyer–Meshkov instabilities. Phys. Rev. E, 93, 023110.CrossRefGoogle ScholarPubMed
Luo, X., Dong, P., Si, T., and Zhai, Z. 2016b. The Richtmyer–Meshkov instability of a ‘V’ shaped air/interface. J. Fluid Mech., 802, 186.CrossRefGoogle Scholar
Luo, X., Guan, B., Si, T., Zhai, Z., and Wang, X. 2016c. Richtmyer–Meshkov instability of a three-dimensional SF6-air interface with a minimum-surface feature. Phys. Rev. E, 93, 013101.CrossRefGoogle Scholar
Luo, X., Li, M., Ding, J., Zhai, Z., and Si, T. 2019. Nonlinear behaviour of convergent Richtmyer– Meshkov instability. J. Fluid Mech., 877, 130.CrossRefGoogle Scholar
Luo, X., Liu, L., Liang, Y., Ding, J., and Wen, C. 2020b. Richtmyer–Meshkov instability on a dual-mode interface. J. Fluid Mech., 905, A5.CrossRefGoogle Scholar
Lutoschkin, E. 2013. Pressure-gain combustion for gas turbines based on shock-flame interaction. Ph.D. thesis, University Stuttgart, Stuttgart, Germany.Google Scholar
Ma, C., Liu, B., and Liang, H. 2022. Lattice Boltzmann simulation of three-dimensional fluid interfacial instability coupled with surface tension. Acta Phys. Sin., 71, 044701.CrossRefGoogle Scholar
Ma, J., Chen, Y., Gan, B., and Yu, M.Y. 2006. Behavior of the Rayleigh–Taylor mode in a dusty plasma with rotational and shear flows. Planet. Space Sci., 54, 719.CrossRefGoogle Scholar
Ma, T., Patel, P.K., Izumi, N., et al. 2013. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions. Phys. Rev. Lett., 111, 085004.CrossRefGoogle ScholarPubMed
Ma, T., Patel, P.K., Izumi, N., et al. 2017. The role of hot spot mix in the low-foot and high-foot implosions on the NIF. Phys. Plasmas, 24, 056311.CrossRefGoogle Scholar
Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., and Aulanier, G. 2010. Physics of solar prominences: II – magnetic structure and dynamics. Space Sci. Rev., 151, 333.CrossRefGoogle Scholar
MacLaren, S.A., Ho, D.D.-M., Hurricane, O.A., et al. 2021. A pushered capsule implosion as an alternate approach to the ignition regime for inertial confinement fusion. Phys. Plasmas, 28, 122710.CrossRefGoogle Scholar
MacPhee, A., Casey, D., Clark, D., et al. 2017. X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube. Phys. Rev. E, 95, 031204.CrossRefGoogle ScholarPubMed
MacPhee, A., Smalyuk, V., Landen, O., et al. 2018. Mitigation of x-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube. Phys. Plasmas, 25, 054505.CrossRefGoogle Scholar
Maeder, A., Meynet, G., Lagarde, N., and Charbonnel, C. 2013. The thermohaline, Richardson, Rayleigh–Taylor, Solberg–Høiland, and GSF criteria in rotating stars. Astron. Astrophys., 553, A1.CrossRefGoogle Scholar
Magyar, N., Van Doorsselaere, T., and Goossens, M. 2019. Understanding uniturbulence: self-cascade of MHD waves in the presence of inhomogeneities. Astrophys. J., 882, 50.CrossRefGoogle Scholar
Malamud, G., Di Stefano, C.A., Elbaz, Y., Huntington, C.M., Kuranz, C.C., Keiter, P.A., and Drake, R.P. 2013a. A design of a two-dimensional, multimode RM experiment on OMEGA-EP. High Energy Density Phys., 9, 122.CrossRefGoogle Scholar
Malamud, G., Shimony, A., Wan, W.C., Di Stefano, C.A., Elbaz, Y., Kuranz, C.C., Keiter, P.A., Drake, R.P., and Shvarts, D. 2013b. A design of a two-dimensional, supersonic KH experiment on OMEGA-EP. High Energy Density Phys., 9, 672.CrossRefGoogle Scholar
Malamud, G., Leinov, E., Sadot, O., Elbaz, Y., Ben-Dor, G., and Shvarts, D. 2014. Reshocked Richtmyer–Meshkov instability: numerical study and modeling of random multi-mode experiments. Phys. Fluids, 26, 084107.CrossRefGoogle Scholar
Mandal, L., Roy, S., Banerjee, R., Khan, M., and Gupta, M.R. 2011. Evolution of nonlinear interfacial structure induced by combined effect of Rayleigh–Taylor and Kelvin–Helmholtz instability. Nucl. Instrum. Methods Phys. Res. A, 653, 103.CrossRefGoogle Scholar
Mankbadi, M., and Balachandar, S. 2013. Viscous effects on the non-classical Rayleigh–Taylor instability of spherical material interfaces. Shock Waves, 23, 603.CrossRefGoogle Scholar
Mankbadi, M.R., and Balachandar, S. 2012. Compressible inviscid instability of rapidly expanding spherical material interfaces. Phys. Fluids, 24, 034106.CrossRefGoogle Scholar
Mansoor, M. M., Dalton, S. M., Martinez, A. A., Desjardins, T., Charonko, J. J., and Prestridge, K. P. 2020. The effect of initial conditions on mixing transition of the Richtmyer–Meshkov instability. J. Fluid Mech., 904, A3.CrossRefGoogle Scholar
Manuel, M.J.E., Li, C.K., Séguin, F.H., Frenje, J., Casey, D.T., Petrasso, R.D., Hu, S.X., Betti, R., Hager, J.D., Meyerhofer, D.D., and Smalyuk, V.A. 2012. First measurements of Rayleigh–Taylor-induced magnetic fields in laser-produced plasmas. Phys. Rev. Lett., 108, 255006.CrossRefGoogle ScholarPubMed
Manuel, M.J.E., Khiar, B., Rigon, G., et al. 2021. On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas. Matter Radiat. Extrem., 6, 026904.CrossRefGoogle Scholar
Marble, F.E., Hendricks, G.J., and Zukoski, E.E. 1989. Progress toward shock enhancement of supersonic combustion processes. Pages 932–950 of: Borghi, R., Murthy, S.N.B. (eds), Turbulent Reactive Flows. Springer, New York.Google Scholar
Marble, F.E., Zukoski, E.E., Jacobs, J., Hendricks, G., and Waitz, I. 1990. Shock enhancement and control of hypersonic mixing and combustion. AIAA paper, 26th Joint Propulsion Conference, Orlando, FL. https://arc.aiaa.org/doi/abs/10.2514/6.1990–1981.Google Scholar
Marek, A., and Janka, H.-Th. 2009. Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability. Astrophys. J., 694, 664.CrossRefGoogle Scholar
Margolin, L.G., and Reisner, J.M. 2017. Fully compressible solutions for early stage Richtmyer– Meshkov instability. Comput. Fluids, 151, 46.CrossRefGoogle Scholar
Mariani, C., Vandenboomgaerde, M., Jourdan, G., Souffland, D., and Houas, L. 2008. Investigation of the Richtmyer–Meshkov instability with stereolithographed interfaces. Phys. Rev. Lett., 100, 254503.CrossRefGoogle ScholarPubMed
Marinak, M.M., Tipton, R.E., Landen, O.L., Murphy, T.J., Amendt, P., Haan, S.W., Hatchett, S.P., Keane, C.J., McEachern, R., and Wallace, R. 1996. Three-dimensional simulations of Nova high growth factor capsule implosion experiments. Phys. Plasmas, 3, 2070.CrossRefGoogle Scholar
Marinak, M.M., Glendinning, S.G., Wallace, R.J., Remington, B.A., Budil, K.S., Haan, S.W., Tipton, R.E., and Kilkenny, J.D. 1998. Nonlinear Rayleigh–Taylor evolution of a three-dimensional multimode perturbation. Phys. Rev. Lett., 80, 4426.CrossRefGoogle Scholar
Marinak, M.M., Kerbel, G.D., Gentile, N.A., Jones, O., Munro, D., Pollaine, S., Dittrich, T.R., and Haan, S.W. 2001. Three-dimensional HYDRA simulations of National Ignition Facility targets. Phys. Plasmas, 8, 2275.CrossRefGoogle Scholar
Markstein, G.H. 1951. Experimental and theoretical studies of flame-front stability. J. Aeronaut. Sci., 18, 199.CrossRefGoogle Scholar
Markstein, G.H. 1957a. Flow disturbances induced near a slightly wavy contact surface, or flame front, traversed by a shock wave. J Aerosp. Sci., 24, 238.Google Scholar
Markstein, G.H. 1957b. A shock-tube study of flame front-pressure wave interaction. Symposium (International) on Combustion, 6, 387.CrossRefGoogle Scholar
Markstein, G.H., and Schwartz, D. 1955. Interaction between pressure waves and flame fronts. Jet Propulsion, 24, 173.Google Scholar
Marrow, T.J., Buffiere, J.Y., Withers, P.J., Johnson, G., and Engelberg, D. 2004. High resolutionX-ray tomography of short fatigue crack nucleation in austempered ductile cast iron. Int. J. Fatigue, 26, 717.CrossRefGoogle Scholar
Martinez, D.A., Smalyuk, V.A., Kane, J.O., Casner, A., Liberatore, S., and Masse, L.P. 2015. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh–Taylor instability experiments on the NIF. Phys. Rev. Lett., 114, 215004.CrossRefGoogle ScholarPubMed
Marusic, I., and Broomhall, S. 2021. Leonardo da Vinci and fluid mechanics. Annu. Rev. Fluid Mech., 53, 1.CrossRefGoogle Scholar
Massa, L., and Jha, P. 2012. Linear analysis of the Richtmyer–Meshkov instability in shock-flame interactions. Phys. Fluids, 24, 056101.CrossRefGoogle Scholar
Matalon, M. 2018. The Darrieus-Landau instability of premixed flames. Fluid Dyn. Res., 50, 051412.CrossRefGoogle Scholar
Matsumoto, J., and Masada, Y. 2013. Two-dimensional numerical study for Rayleigh–Taylor and Richtmyer–Meshkov instabilities in relativistic jets. Astrophys. J. Lett., 772, L1.CrossRefGoogle Scholar
Matsuo, K., Sano, T., Nagatomo, H., Somekawa, T., Law, K.F.F., Morita, H., Arikawa, Y., and Fujioka, S. 2021. Enhancement of ablative Rayleigh–Taylor instability growth by thermal conduction suppression in a magnetic field. Phys. Rev. Lett., 127, 165001.CrossRefGoogle ScholarPubMed
Matsuoka, C. 2009. Vortex sheet motion in incompressible Richtmyer–Meshkov and Rayleigh– Taylor instabilities with surface tension. Phys. Fluids, 21, 092107.CrossRefGoogle Scholar
Matsuoka, C. 2020. Nonlinear dynamics of double-layer unstable interfaces with non-uniform velocity shear. Phys. Fluids, 32, 102109.CrossRefGoogle Scholar
Matsuoka, C., and Nishihara, K. 2006a. Analytical and numerical study on a vortex sheet in incompressible Richtmyer–Meshkov instability in cylindrical geometry. Phys. Rev. E, 74, 066303.CrossRefGoogle Scholar
Matsuoka, C., and Nishihara, K. 2006b. Fully nonlinear evolution of a cylindrical vortex sheet in incompressible Richtmyer–Meshkov instability. Phys. Rev. E, 73, 055304.CrossRefGoogle ScholarPubMed
Matsuoka, C., and Nishihara, K. 2006c. Vortex core dynamics and singularity formations in incompressible Richtmyer–Meshkov instability. Phys. Rev. E, 73, 026304.CrossRefGoogle ScholarPubMed
Matsuoka, C., and Nishihara, K. 2020. Nonlinear interaction between bulk point vortices and an unstable interface with nonuniform velocity shear such as Richtmyer–Meshkov instability. Phys. Plasmas, 27, 052305.CrossRefGoogle Scholar
Matsuoka, C., Nishihara, K., and Fukuda, Y. 2003. Nonlinear evolution of an interface in the Richtmyer–Meshkov instability. Phys. Rev. E, 67, 036301.CrossRefGoogle ScholarPubMed
Matthaeus, W.H., and Zhou, Y. 1989. Extended inertial range phenomenology of magnetohydrody-namic turbulence. Phys. Fluids B, 1, 1929.CrossRefGoogle Scholar
Matzen, M.K. 1997. Z pinches as intense X-ray sources for high-energy density physics applications. Phys. Plasmas, 4, 1519.CrossRefGoogle Scholar
Maxwell, J.C. 1891. Theory of Heat. Longmans, Green and Co., London, UK.Google Scholar
McBride, R.D., Slutz, S.A., Jennings, C.A., et al. 2012. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator. Phys. Rev. Lett., 109, 135004.CrossRefGoogle ScholarPubMed
McBride, R.D., Martin, M.R., Lemke, R.W., et al. 2013. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion. Phys. Plasmas, 20, 056309.CrossRefGoogle Scholar
McComb, D. 2008. Scale-invariance in three-dimensional isotropic turbulence: a paradox and its resolution. J. Phys. A, 41, 075501.CrossRefGoogle Scholar
McCray, R. 1993. Supernova 1987A revisited. Annu. Rev. Astron. Astrophys., 31, 175.CrossRefGoogle Scholar
McFarland, J.A., Greenough, J.A., and Ranjan, D. 2013. Investigation of the initial perturbation amplitude for the inclined interface Richtmyer–Meshkov instability. Phys. Scr., T155, 014014.CrossRefGoogle Scholar
McFarland, J.A., Reilly, D., Creel, S., McDonald, C., Finn, T., and Ranjan, D. 2014. Experimental investigation of the inclined interface Richtmyer–Meshkov instability before and after reshock. Exp. Fluids, 55, 1640.CrossRefGoogle Scholar
McFarland, J.A., Reilly, D., Black, W., Greenough, J.A., and Ranjan, D. 2015. Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer–Meshkov instability. Phys. Rev. E, 92, 013023.CrossRefGoogle Scholar
McFarland, J.A., Black, W.J., Dahal, J., and Morgan, B.E. 2016. Computational study of the shock driven instability of a multiphase particle-gas system. Phys. Fluids, 28, 024105.CrossRefGoogle Scholar
McLaren, C.P., Kovar, T.M., Penn, A., Müller, C.R., and Boyce, C.M. 2019. Gravitational instabilities in binary granular materials. Proc. Nat. Acad. Sci., 116, 9263.CrossRefGoogle ScholarPubMed
Meaburn, J., Boumis, P., Walsh, J.R., Steffen, W., Holloway, A.J., Williams, R.J.R., and Bryce, M. 1996. Highly supersonic motions within the outer features of the η Carinae nebulosity. Mon. Not. R. Astron. Soc., 282, 1313.CrossRefGoogle Scholar
Meier, D.L., Epstein, R.I., Arnett, W.D., and Schramm, D.N. 1976. Magnetohydrodynamic phenomena in collapsing stellar cores. Astrophys. J., 204, 869.CrossRefGoogle Scholar
Meinecke, J., Tzeferacos, P., Bell, A., et al. 2015. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas. Proc. Natl. Acad. Sci., 112, 8211.CrossRefGoogle ScholarPubMed
Mejia-Alvarez, R., Wilson, B., Leftwich, M.C., Martinez, A.A., and Prestridge, K.P. 2015. Design of a fast diaphragmless shock tube driver. Shock Waves, 25, 635.CrossRefGoogle Scholar
Mellado, J.P., Sarkar, S., and Zhou, Y. 2005. Large-eddy simulation of Rayleigh–Taylor turbulence with compressible miscible fluids. Phys. Fluids, 17, 076101.CrossRefGoogle Scholar
Mellor, G.L., and Herring, H.J. 1973. A survey of the mean turbulent field closure models. AIAA J., 11, 590.CrossRefGoogle Scholar
Mellor, G.L., and Yamada, T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851.CrossRefGoogle Scholar
Melvin, J., Rao, P., Kaufman, R., Lim, H., Yu, Y., Glimm, J., and Sharp, D.H. 2013. Atomic scale mixing for inertial confinement fusion associated hydro instabilities. High Energy Density Phys., 9, 288.CrossRefGoogle Scholar
Melvin, J., Rao, P., Kaufman, R., Lim, H., Yu, Y., Glimm, J., and Sharp, D.H. 2014. Turbulent transport at high Reynolds numbers in an inertial confinement fusion context. J. Fluids Eng., 136, 091206.CrossRefGoogle Scholar
Mendel, J., Frank, K., Edlin, L., Hall, K., Webb, D., Mills, J., Holness, H.K., Furton, K.G., and Mills, D. 2021. Preliminary accuracy of COVID-19 odor detection by canines and HS-SPME-GC-MS using exhaled breath samples. Forensic Sci. Int., 3, 100155.Google ScholarPubMed
Meneveau, C., and Katz, J. 2000. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32, 1.CrossRefGoogle Scholar
Menikoff, R., and Zemach, C. 1983. Rayleigh–Taylor instability and the use of conformal maps for ideal fluid flow. J. Comput. Phys., 51, 28.CrossRefGoogle Scholar
Menikoff, R., Mjolsness, R.C., Sharp, D.H., and Zemach, C. 1977. Unstable normal mode for Rayleigh–Taylor instability in viscous fluids. Phys. Fluids, 20, 2000.CrossRefGoogle Scholar
Merritt, E.C., Doss, F.W., Loomis, E.N., Flippo, K.A., and Kline, J.L. 2015. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA. Phys. Plasmas, 22, 062306.CrossRefGoogle Scholar
Merritt, E.C., Sauppe, J.P., Loomis, E.N., et al. 2019. Experimental study of energy transfer in double shell implosions. Phys. Plasmas, 26, 052702.CrossRefGoogle Scholar
Meshkov, E.E. 1969. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn., 4, 101.CrossRefGoogle Scholar
Meshkov, E.E. 2013. Some peculiar features of hydrodynamic instability development. Phil. Trans. R. Soc. A, 371, 20120288.CrossRefGoogle ScholarPubMed
Meyer, K.A., and Blewett, P.J. 1972. Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys. Fluids, 15, 753.CrossRefGoogle Scholar
Mikaelian, K.O. 1982. Normal modes and symmetries of the Rayleigh–Taylor instability in stratified fluids. Phys. Rev. Lett., 48, 1365.CrossRefGoogle Scholar
Mikaelian, K.O. 1983. Time evolution of density perturbations in accelerating stratified fluids. Phys. Rev. A, 28, 1637.CrossRefGoogle Scholar
Mikaelian, K.O. 1985. Richtmyer–Meshkov instabilities in stratified fluids. Phys. Rev. A, 31, 410.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1986. Approximate treatment of density gradients in Rayleigh–Taylor instabilities. Phys. Rev. A, 33, 1216.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1987. Comment on “Rayleigh–Taylor instability in spherical geometry.” Phys. Rev. A, 36, 411.CrossRefGoogle Scholar
Mikaelian, K.O. 1989. Turbulent mixing generated by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physica D, 36, 343.CrossRefGoogle Scholar
Mikaelian, K.O. 1990a. Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified spherical shells. Phys. Rev. A, 42, 3400.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1990b. Rayleigh–Taylor and Richtmyer–Meshkov instabilities in multilayer fluids with surface tension. Phys. Rev. A, 42, 7211.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1990c. Stability and mix in spherical geometry. Phys. Rev. Lett., 65, 992.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1990d. Turbulent energy at accelerating and shocked interfaces. Phys. Fluids A, 2, 592.CrossRefGoogle Scholar
Mikaelian, K.O. 1991. Kinetic energy of Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids A, 3, 2625.CrossRefGoogle Scholar
Mikaelian, K.O. 1993a. Effect of viscosity on Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E, 47, 375.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1993b. Growth rate of the Richtmyer–Meshkov instability at shocked interfaces. Phys. Rev. Lett., 71, 2903.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1994a. Freeze-out and the effect of compressibility in the Richtmyer–Meshkov instability. Phys. Fluids, 6, 356.CrossRefGoogle Scholar
Mikaelian, K.O. 1994b. Oblique shocks and the combined Rayleigh–Taylor, Kelvin–Helmholtz, and Richtmyer–Meshkov instabilities. Phys. Fluids, 6, 1943.CrossRefGoogle Scholar
Mikaelian, K.O. 1995. Rayleigh–Taylor and Richtmyer–Meshkov instabilities in finite-thickness fluid layers. Phys. Fluids, 7, 888.CrossRefGoogle Scholar
Mikaelian, K.O. 1996. Connection between the Rayleigh and the Schrödinger equations. Phys. Rev. E, 53, 3551.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1998. Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. Lett., 80, 508.CrossRefGoogle Scholar
Mikaelian, K.O. 2003. Explicit expressions for the evolution of single-mode Rayleigh–Taylor and Richtmyer–Meshkov instabilities at arbitrary Atwood numbers. Phys. Rev. E, 67, 026319.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2005a. Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids, 17, 094105.CrossRefGoogle Scholar
Mikaelian, K.O. 2005b. Richtmyer–Meshkov instability of arbitrary shapes. Phys. Fluids, 17, 034101.CrossRefGoogle Scholar
Mikaelian, K.O. 2008. Limitations and failures of the Layzer model for hydrodynamic instabilities. Phys. Rev. E, 78, 015303.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2009a. Nonlinear hydrodynamic interface instabilities driven by time-dependent accelerations. Phys. Rev. E, 79, 065303(R).CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2009b. Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities. Phys. Fluids, 21, 024103.CrossRefGoogle Scholar
Mikaelian, K.O. 2010. Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Phys. Rev. E, 81, 016325.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2011. Extended model for Richtmyer–Meshkov mix. Physica D, 240, 935.CrossRefGoogle Scholar
Mikaelian, K.O. 2013. Shock-induced interface instability in viscous fluids and metals. Phys. Rev. E, 87, 031003.CrossRefGoogle Scholar
Mikaelian, K.O. 2014a. Boussinesq approximation for Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids, 26, 054103.CrossRefGoogle Scholar
Mikaelian, K.O. 2014b. Comment on “The effect of viscosity, surface tension and non-linearity on Richtmyer–Meshkov instability”[Eur. J. Mech. B Fluids 21 (2002) 511–526]. Eur. J. Mech. B Fluids, 43, 183.CrossRefGoogle Scholar
Mikaelian, K.O. 2014c. Solution to Rayleigh–Taylor instabilities: bubbles, spikes, and their scalings. Phys. Rev. E, 89, 053009.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2015. Testing an analytic model for Richtmyer–Meshkov turbulent mixing widths. Shock Waves, 25, 35.CrossRefGoogle Scholar
Mikaelian, K.O. 2019. Exact, approximate, and hybrid treatments of viscous Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E, 99, 023112.CrossRefGoogle ScholarPubMed
Mikaelian, K.O., and Lindl, J.D. 1984. Density gradients to reduce fluid instabilities in multishell inertial-confinement-fusion targets. Phys. Rev. A, 29, 290.CrossRefGoogle Scholar
Mikaelian, K.O., and Olson, B.J. 2020. On modeling Richtmyer–Meshkov turbulent mixing widths. Physica D, 402, 132243.CrossRefGoogle Scholar
Mikhailov, A.L., Ogorodnikov, V.A., Sasik, V.S., Raevskii, V.A., Lebedev, A.I., Zotov, D.E., Erunov, S.V., Syrunin, M.A., Sadunov, V.D., Nevmerzhitskii, N.V., and Lobastov, S.A. 2014. Experimental-calculation simulation of the ejection of particles from a shock-loaded surface. Sov. Phys. JETP, 118, 785.CrossRefGoogle Scholar
Miles, A.R., Edwards, M.J., and Greenough, J.A. 2004. Effect of initial conditions on two-dimensional Rayleigh–Taylor instability and transition to turbulence in planar blast-wave-driven systems. Phys. Plasmas, 11, 5278.CrossRefGoogle Scholar
Miller, G.H., Moses, E.I., and Wuest, C.R. 2004. The national ignition facility. Optical Eng., 43, 2841.CrossRefGoogle Scholar
Milne, A., Parrish, C., and Worland, I. 2010. Dynamic fragmentation of blast mitigants. Shock Waves, 20, 41.CrossRefGoogle Scholar
Milovich, J.L., Amendt, P., Marinak, M., and Robey, H. 2004. Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs. Phys. Plasmas, 11, 1552.CrossRefGoogle Scholar
Mima, K., Kato, Y., Azechi, H., et al. 1996. Recent progress of implosion experiments with uniformity-improved GEKKO XII laser facility at the Institute of Laser Engineering, Osaka University. Phys. Plasmas, 3, 2077.CrossRefGoogle Scholar
Mirabel, I.F., and Rodriguez, L.F. 1999. Sources of relativistic jets in the galaxy. Annu. Rev. Astron. Astrophys., 37, 409.CrossRefGoogle Scholar
Mishra, S.K., and Srivastava, A.K. 2019. The evolution of magnetic Rayleigh–Taylor unstable plumes and hybrid KH-RT instability into a loop-like eruptive prominence. Astrophys. J., 874, 57.CrossRefGoogle Scholar
Misra, A., and Pullin, D.I. 1997. A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids, 9, 2443.CrossRefGoogle Scholar
Mizuno, Y., Pohl, M., Niemiec, J., Zhang, B., Nishikawa, K.I., and Hardee, P.E. 2010. Magnetic-field amplification by turbulence in a relativistic shock propagating through an inhomogeneous medium. Astrophys. J., 726, 62.CrossRefGoogle Scholar
Mizuno, Y., Pohl, M., Niemiec, J., Zhang, B., Nishikawa, K.I., and Hardee, P.E. 2014. Magnetic field amplification and saturation in turbulence behind a relativistic shock. Mon. Not. R. Astron. Soc., 439, 3490.CrossRefGoogle Scholar
Moffatt, H.K. 2002. G.K. Batchelor and the homogenization of turbulence. Annu. Rev. Fluid Mech., 34, 19.CrossRefGoogle Scholar
Moffatt, H.K. 2008. Vortex dynamics: the legacy of Helmholtz and Kelvin. Page 1 of: Borisov, A.V., Kozlov, V.V., Mamaev, I.S., and Sokolovskiy, M.A. (eds), IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence. Springer, Dordrecht, Netherlands.Google Scholar
Moffatt, H.K. 2010. George Batchelor: A personal tribute, ten years on. J. Fluid Mech., 663, 2. Mogilner, A., and Manhart, A. 2018. Intracellular fluid mechanics: coupling cytoplasmic flow with active cytoskeletal gel. Annu. Rev. Fluid Mech., 50, 347.Google Scholar
Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J., and Ranjan, D. 2017. Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech., 831, 779.CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Pathikonda, G., and Ranjan, D. 2019. The transition to turbulence in shockdriven mixing: effects of Mach number and initial conditions. J. Fluid Mech., 871, 595.CrossRefGoogle Scholar
Mohaghar, M., McFarland, J., and Ranjan, D. 2022. Three-dimensional simulations of reshocked inclined Richtmyer–Meshkov instability: effects of initial perturbations. Phys. Rev. Fluids, 7, 093902.CrossRefGoogle Scholar
Moin, P., and Mahesh, K. 1998. Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech., 30, 539.CrossRefGoogle Scholar
Molvig, K., Schmitt, M.J., Albright, B.J., Dodd, E.S., Hoffman, N.M., McCall, G.H., and Ramsey, S.D. 2016. Low fuel convergence path to direct-drive fusion ignition. Phys. Rev. Lett., 116, 255003.CrossRefGoogle ScholarPubMed
Molvig, K., Schmitt, M.J., Betti, R., Campbell, E.M., and McKenty, P. 2018. Stable and confined burn in a Revolver ignition capsule. Phys. Plasmas, 25, 082708.CrossRefGoogle Scholar
Mondal, P., and Korenaga, J. 2017. The Rayleigh–Taylor instability in a self-gravitating two-layer viscous sphere. Geophys. J. Int., 212, 1859.CrossRefGoogle Scholar
Monin, A.S., and Yaglom, A.M. 1971. Statistical Fluid Mechanics, Volume I. MIT Press, Cambridge, MA.Google Scholar
Monin, A.S., and Yaglom, A.M. 1975. Statistical Fluid Mechanics, Volume II. MIT Press, Cambridge, MA.Google Scholar
Montgomery, D.S., Daughton, W.S., Albright, B.J., Simakov, A.N., Wilson, D.C., Dodd, E.S., Kirkpatrick, R.C., Watt, R.G., Gunderson, M.A., Loomis, E.N., and Merritt, E.C. 2018. Design considerations for indirectly driven double shell capsules. Phys. Plasmas, 25, 092706.CrossRefGoogle Scholar
Moore, A.S., Meezan, N.B., Thomas, C.A., et al. 2020a. Experimental demonstration of the reduced expansion of a laser-heated surface using a low density foam layer, pertaining to advanced hohlraum designs with less wall-motion. Phys. Plasmas, 27, 082706.CrossRefGoogle Scholar
Moore, A.S., Meezan, N.B., Milovich, J., et al. 2020b. Foam-lined hohlraum, inertial confinement fusion experiments on the National Ignition Facility. Phys. Rev. E, 102, 051201.CrossRefGoogle ScholarPubMed
Morán-López, J. T., and Schilling, O. 2013. Multicomponent Reynolds-averaged Navier–Stokes simulations of reshocked Richtmyer–Meshkov instability-induced mixing. High Energy Density Phys., 9, 112.CrossRefGoogle Scholar
Morán-López, J.T., and Schilling, O. 2014. Multi-component Reynolds-averaged Navier–Stokes simulations of Richtmyer–Meshkov instability and mixing induced by reshock at different times. Shock Waves, 24, 325.CrossRefGoogle Scholar
Morgan, B.E. 2021a. Scalar mixing in a Kelvin–Helmholtz shear layer and implications for Reynolds-averaged Navier–Stokes modeling of mixing layers. Phys. Rev. E, 103, 053108.CrossRefGoogle Scholar
Morgan, B.E. 2021b. Self-consistent, high-order spatial profiles in a model for two-fluid turbulent mixing. Phys. Rev. E, 104, 015107.CrossRefGoogle Scholar
Morgan, B.E. 2022a. Large-eddy simulation and Reynolds-averaged Navier–Stokes modeling of three Rayleigh–Taylor mixing configurations with gravity reversal. Phys. Rev. E, 106, 025101.CrossRefGoogle ScholarPubMed
Morgan, B.E. 2022b. Simulation and Reynolds-averaged Navier–Stokes modeling of a three-component Rayleigh–Taylor mixing problem with thermonuclear burn. Phys. Rev. E, 105, 045104.CrossRefGoogle ScholarPubMed
Morgan, B.E., and Black, W.J. 2020. Parametric investigation of the transition to turbulence in Rayleigh–Taylor mixing. Physica D, 402, 132223.CrossRefGoogle Scholar
Morgan, B.E., and Greenough, J.A. 2016. Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder. Shock Waves, 26, 355.CrossRefGoogle Scholar
Morgan, B.E., and Wickett, M.E. 2015. Three-equation model for the self-similar growth of Rayleigh–Taylor and Richtmyer–Meskov instabilities. Phys. Rev. E, 91, 043002.CrossRefGoogle ScholarPubMed
Morgan, B.E., Olson, B.J., Black, W.J., and McFarland, J.A. 2018a. Large-eddy simulation and Reynolds-averaged Navier–Stokes modeling of a reacting Rayleigh–Taylor mixing layer in a spherical geometry. Phys. Rev. E, 98, 033111.CrossRefGoogle Scholar
Morgan, B.E., Schilling, O., and Hartland, T.A. 2018b. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing. Phys. Rev. E, 97, 013104.CrossRefGoogle ScholarPubMed
Morgan, B.E., Ferguson, K., and Olson, B.J. 2023. Two self-similar Reynolds-stress transport models with anisotropic eddy viscosity. Phys. Rev. E, 108, 055104.CrossRefGoogle ScholarPubMed
Morgan, R.V., and Jacobs, J.W. 2020. Experiments and simulations on the turbulent, rarefaction wave driven Rayleigh–Taylor instability. J. Fluids Eng., 142, 121101.CrossRefGoogle Scholar
Morgan, R.V., Aure, R., Stockero, J.D., Greenough, J.A., Cabot, W., Likhachev, O.A., and Jacobs, J.W. 2012. On the late-time growth of the two-dimensional Richtmyer–Meshkov instability in shock tube experiments. J. Fluid Mech., 712, 354.CrossRefGoogle Scholar
Morgan, R.V., Likhachev, O.A., and Jacobs, J.W. 2016. Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory. J. Fluid Mech., 791, 34.CrossRefGoogle Scholar
Morgan, R.V., Cabot, W.H., Greenough, J.A., and Jacobs, J.W. 2018c. Rarefaction-driven Rayleigh– Taylor instability. Part 2. Experiments and simulations in the nonlinear regime. J. Fluid Mech., 838, 320.CrossRefGoogle Scholar
Moser, R.D., Haering, S.W., and Yalla, G.R. 2021. Statistical properties of subgrid-scale turbulence models. Annu. Rev. Fluid Mech., 53, 255.CrossRefGoogle Scholar
Moses, E.I., and Wuest, C.R. 2003. The National Ignition Facility: status and plans for laser fusion and high-energy-density experimental studies. Fusion Sci. Tech., 43, 420.CrossRefGoogle Scholar
Mostert, W., Pullin, D.I., Wheatley, V., and Samtaney, R. 2017. Magnetohydrodynamic implosion symmetry and suppression of Richtmyer–Meshkov instability in an octahedrally symmetric field. Phys. Rev. Fluids, 2, 013701.CrossRefGoogle Scholar
Motl, B., Oakley, J., Ranjan, D., Weber, C., Anderson, M., and Bonazza, R. 2009. Experimental validation of a Richtmyer–Meshkov scaling law over large density ratio and shock strength ranges. Phys. Fluids, 21, 126102.CrossRefGoogle Scholar
Movahed, P., and Johnsen, E. 2013. A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer–Meshkov instability. J. Comput. Phys., 239, 166.CrossRefGoogle Scholar
Mueschke, N.J. 2010. Experimental and numerical study of molecular mixing dynamics in Rayleigh–Taylor unstable flows. Ph.D. thesis, Texas A&M, College Station, TX.Google Scholar
Mueschke, N.J., and Schilling, O. 2009a. Investigation of Rayleigh–Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. I. Comparison to experimental data. Phys. Fluids, 21, 014106.CrossRefGoogle Scholar
Mueschke, N.J., and Schilling, O. 2009b. Investigation of Rayleigh–Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. II. Dynamics of transitional flow and mixing statistics. Phys. Fluids, 21, 014107.CrossRefGoogle Scholar
Mueschke, N.J., Andrews, M.J., and Schilling, O. 2006. Experimental characterization of initial conditions and spatio-temporal evolution of a small-Atwood-number Rayleigh–Taylor mixing layer. J. Fluid Mech., 567, 27.CrossRefGoogle Scholar
Mueschke, N.J., Schilling, O., Youngs, D.L., and Andrews, M. 2007. Measurements of molecular mixing in a high Schmidt number Rayleigh–Taylor mixing layer. J. Fluid Mech., 632, 17.CrossRefGoogle Scholar
Mügler, C., and Gauthier, S. 2000. Two-dimensional Navier–Stokes simulations of gaseous mixtures induced by Richtmyer–Meshkov instability. Phys. Fluids, 12, 1783.CrossRefGoogle Scholar
Müller, B. 2019. A critical assessment of turbulence models for 1D core-collapse supernova simulations. Mon. Not. R. Astron. Soc., 487, 5304.CrossRefGoogle Scholar
Müller, B. 2020. Hydrodynamics of core-collapse supernovae and their progenitors. Living Rev. Comput. Astrophys., 6, 1.CrossRefGoogle Scholar
Müller, B., and Janka, H.-Th. 2015. Non-radial instabilities and progenitor asphericities in core-collapse supernovae. Mon. Not. R. Astron. Soc., 448, 2141.CrossRefGoogle Scholar
Müller, B., Gay, D.W., Heger, A., Tauris, T.M., and Sim, S.A. 2018. Multidimensional simulations of ultrastripped supernovae to shock breakout. Mon. Not. R. Astron. Soc., 479, 3675.CrossRefGoogle Scholar
Munro, D.H. 1988. Analytic solutions for Rayleigh–Taylor growth rates in smooth density gradients. Phys. Rev. A, 38, 1433.CrossRefGoogle ScholarPubMed
Munson, B.R., Young, D.F., and Okiishi, T.H. 1998. Fundamentals of Fluid Mechanics. 3rd edn. Wiley & Sons, New York.Google Scholar
Murdin, P., and Murdin, L. 1985. Supernovae. Cambridge University Press, Cambridge, UK.Google Scholar
Murillo, M.S. 2008. Viscosity estimates of liquid metals and warm dense matter using the Yukawa reference system. High Energy Density Phys., 4, 49.CrossRefGoogle Scholar
Musci, B., Petter, S., Pathikonda, G., Ranjan, D., and Denissen, N. 2018. An experimental study of the blast driven Rayleigh–Taylor and Richtmyer–Meshkov instabilities: preliminary results. Page 202 of: Proceedings of the 16th International Workshop on the Physics of Compressible Turbulent Mixing. Marseille, France.Google Scholar
Musci, B., Petter, S., Pathikonda, G., Ochs, B., and Ranjan, D. 2020. Supernova hydrodynamics: a lab-scale study of the blast-driven instability using high-speed diagnostics. Astrophys. J., 896, 92.CrossRefGoogle Scholar
Musci, B., Olson, B., Petter, S., Pathikonda, G., and Ranjan, D. 2023. Multifidelity validation of digital surrogates using variable-density turbulent mixing models. Phys. Rev. Fluids, 8, 014501.CrossRefGoogle Scholar
Muskat, M. 1937. The Flow of Homogeneous Fluids through Porous Media: Analogies with Other Physical Problems. McGraw-Hill, New York.Google Scholar
Nagel, S.R., Haan, S.W., Rygg, J.R., et al. 2015. Effect of the mounting membrane on shape in inertial confinement fusion implosions. Phys. Plasmas, 22, 022704.CrossRefGoogle Scholar
Nagel, S.R., Raman, K.S., Huntington, C.M., MacLaren, S.A., Wang, P., Barrios, M.A., Baumann, T., Bender, J.D., Benedetti, L.R., Doane, D.M., Felker, S., Fitzsimmons, P., Flippo, K.A., Holder, J.P., Kaczala, D.N., Perry, T.S., Seugling, R. M., Savage, L., and Zhou, Y. 2017. A platform for studying the Rayleigh–Taylor and Richtmyer–Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility. Phys. Plasmas, 24, 072704.CrossRefGoogle Scholar
Nagel, S.R., Raman, K.S., Huntington, C.M., MacLaren, S.A., Wang, P., Bender, J.D., Prisbrey, S.T., and Zhou, Y. 2022. Experiments on the single-mode Richtmyer–Meshkov instability with reshock at high energy densities. Phys. Plasmas, 29, 032308.CrossRefGoogle Scholar
Nakaya, S., Hikichi, Y., Nakazawa, Y., Sakaki, K., Choi, M., Tsue, M., Kono, M., and Tomioka, S. 2015. Ignition and supersonic combustion behavior of liquid ethanol in a scramjet model combustor with cavity flame holder. Proc. Combust. Inst., 35, 2091.Google Scholar
Narkis, J., Conti, F., and Beg, F.N. 2022. Material effects on dynamics in triple-nozzle gas-puff Z pinches. Phys. Rev. E, 105, 045205.CrossRefGoogle ScholarPubMed
Navier, C.L.M.H. 1827. Sur les lois du mouvement des fluids. Memoir Acad. Roy. Sci. Inst. Fr, 6, 389.Google Scholar
Nayfeh, A.H. 1969. On the non-linear Lamb-Taylor instability. J. Fluid Mech., 38, 619.CrossRefGoogle Scholar
Nayfeh, A.H. 1973. Perturbation Methods. Wiley, New York.Google Scholar
Nelkin, M. 1994. Universality and scaling in fully developed turbulence. Adv. Phys., 43, 143.CrossRefGoogle Scholar
Nelson, N.J., and Grinstein, F.F. 2015. Effects of initial condition spectral content on shock-driven turbulent mixing. Phys. Rev. E, 92, 013014.CrossRefGoogle ScholarPubMed
Neugebauer, O. 1975. A History of Ancient Mathematical Astronomy. Vol. 1. Springer Science & Business Media, Berlin.CrossRefGoogle Scholar
Neuvazhaev, V.E., and Yakovlev, V.G. 1976a. Theory of turbulent mixing at the interface of fluids in a gravity field. J. Appl. Mech. Tech. Phys., 17, 513.CrossRefGoogle Scholar
Neuvazhaev, V.E., and Yakovlev, V.G. 1976b. Turbulent mixing of an interface in a numerical gasdynamic calculation. Zh. Vychisl. Mat. Mat. Fiz, 16, 154.Google Scholar
Nguyen, Q.M., Oza, A.U., Abouezzi, J., Sun, G., Childress, S., Frederick, C., and Ristroph, L. 2021. Flow rectification in loopy network models of bird lungs. Phys. Rev. Lett., 126, 114501.CrossRefGoogle ScholarPubMed
Nicoud, F., and Ducros, F. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust., 62, 183.CrossRefGoogle Scholar
Niederhaus, C.E., and Jacobs, J.W. 2003. Experimental study of the Richtmyer–Meshkov instability of incompressible fluids. J. Fluid Mech., 485, 243.CrossRefGoogle Scholar
Nield, D.A., and Bejan, A. 2006. Convection in Porous Media. 5th edn. Springer, Cham, Switzerland. Nikiforov, V. V., Andronov, V. A., Razin, A. N., and Trutnev, Yu. A. 1995. Development of a turbulent mixing zone driven by a shock wave. Physics – Doklady, 40, 333.Google Scholar
Nikolov, A., Wasan, D., and Lee, J. 2018. Tears of wine: the dance of the droplets. Adv. Colloid Interface Sci., 256, 94.CrossRefGoogle ScholarPubMed
Nishihara, K., Wouchuk, J.G., Matsuoka, C., Ishizaki, R., and Zhakhovsky, V.V. 2010. Richtmyer– Meshkov instability: theory of linear and nonlinear evolution. Phil. Trans. R. Soc. A, 368, 1769.CrossRefGoogle ScholarPubMed
Nobile, A., Nikroo, A., Cook, R.C., et al. 2006. Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the National Ignition Facility. Laser Part. Beams, 24, 567.CrossRefGoogle Scholar
Noble, C.D., Herzog, J.M., Ames, A.M., Oakley, J., Rothamer, D.A., and Bonazza, R. 2020a. High speed PLIF study of the Richtmeyer-Meshkov instability upon re-shock. Physica D, 401, 132519.CrossRefGoogle Scholar
Noble, C.D., Herzog, J.M., Rothamer, D.A., Ames, A.M., Oakley, J., and Bonazza, R. 2020b. Scalar power spectra and scalar structure function evolution in the Richtmyer–Meshkov instability upon reshock. J. Fluids Eng., 142, 121102.CrossRefGoogle Scholar
Noble, C., Ames, A., McConnell, R., Oakley, J., Rothamer, D., and Bonazza, R. 2023. Simultaneous measurements of kinetic and scalar energy spectrum time evolution in the Richtmyer–Meshkov instability upon reshock. J. Fluid Mech., 975, A39.CrossRefGoogle Scholar
Nuckolls, J., Wood, L., Thiessen, A., and Zimmerman, G. 1972. Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature, 239, 139.CrossRefGoogle Scholar
Obenschain, S.P., Bodner, S.E., Colombant, D., et al. 1996. The Nike KrF laser facility: performance and initial target experiments. Phys. Plasmas, 3, 2098.CrossRefGoogle Scholar
Obukhov, AM. 1949. Temperature field structure in a turbulent flow. Izv. Acad. Nauk SSSR Ser. Geog. Geofiz, 13, 58.Google Scholar
Ofer, D., Alon, U., Shvarts, D., McCrory, R.L., and Verdon, C.P. 1996. Modal model for the nonlinear multimode Rayleigh–Taylor instability. Phys. Plasmas, 3, 3073.CrossRefGoogle Scholar
Oggian, T., Drikakis, D., Youngs, D.L., and Williams, R.J.R. 2015. Computing multi-mode shock-induced compressible turbulent mixing at late times. J. Fluid Mech., 779, 411.CrossRefGoogle Scholar
Olson, B.J., and Cook, A.W. 2007. Rayleigh–Taylor shock waves. Phys. Fluids, 19, 128108.CrossRefGoogle Scholar
Olson, B.J., and Greenough, J.A. 2014. Comparison of two-and three-dimensional simulations of miscible Richtmyer–Meshkov instability with multimode initial conditions. Phys. Fluids, 26, 101702.CrossRefGoogle Scholar
Olson, B.J., Larsson, J., Lele, S.K., and Cook, A.W. 2011. Nonlinear effects in the combined Rayleigh–Taylor/Kelvin–Helmholtz instability. Phys. Fluids, 23, 114107.CrossRefGoogle Scholar
Olson, D.H., and Jacobs, J.W. 2009. Experimental study of Rayleigh–Taylor instability with a complex initial perturbation. Phys. Fluids, 21, 034103.CrossRefGoogle Scholar
Olsthoorn, J., Tedford, E.W., and Lawrence, G.A. 2019. Diffused-interface Rayleigh–Taylor instability with a nonlinear equation of state. Phys. Rev. Fluids, 4, 094501.CrossRefGoogle Scholar
Olver, P.J. 2000. Applications of Lie Groups to Differential Equations. Springer Science & Business Media New York.Google Scholar
Onsager, L. 1945. The distribution of energy in turbulence. Phys. Rev., 68, 286.Google Scholar
Onsager, L. 1949. Statistical hydrodynamics. Il Nuovo Cimento (1943–1954), 6, 279.CrossRefGoogle Scholar
Oran, E.S. 2005. Astrophysical combustion. Proc. Comb. Inst., 30, 1823.Google Scholar
Oren, G.H., and Terrones, G. 2022. Finite boundary effects on the spherical Rayleigh–Taylor instability between viscous fluids. AIP Adv., 12, 045009.CrossRefGoogle Scholar
Orlicz, G.C., Balasubramanian, S., and Prestridge, K.P. 2015a. Investigation of Mach number dependence on the Richtmyer–Meshkov mixing transition for a shocked heavy-gas curtain. Pages 1101–1106 of: Bonazza, R., and Ranjan, D. (eds), 29th International Symposium on Shock Waves 2. Springer International Publishing, Cham, Switzerland.Google Scholar
Orlicz, G.C., Balasubramanian, S., and Prestridge, K.P. 2013. Incident shock Mach number effects on Richtmyer–Meshkov mixing in a heavy gas layer. Phys. Fluids, 25, 114101.CrossRefGoogle Scholar
Orlicz, G.C., Balasubramanian, S., Vorobieff, P., and Prestridge, K.P. 2015b. Mixing transition in a shocked variable-density flow. Phys. Fluids, 27, 114102.CrossRefGoogle Scholar
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U., and Shvarts, D. 2001. Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas, 8, 2883.CrossRefGoogle Scholar
O’Rourke, P.J., and Amsden, A.A. 1987. The TAB method for numerical calculation of spray droplet breakup. Tech. rept. SAE technical paper.Google Scholar
Orszag, S.A. 1970a. Analytical theories of turbulence. J. Fluid Mech., 41, 363.CrossRefGoogle Scholar
Orszag, S.A. 1970b. Transform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890.2.0.CO;2>CrossRefGoogle Scholar
Orszag, S.A. 1977. Statistical theory of turbulence. In Les Houcher Summer School in Physics, Gordon and Breach, New York.Google Scholar
Orszag, S.A., and PattersonJr, G.S. 1972. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett., 28, 76.CrossRefGoogle Scholar
Osin, D., Kroupp, E., Starobinets, A., Rosenzweig, G., Alumot, D., Maron, Y., Fisher, A., Yu, E., Giuliani, J.L., and Deeney, C. 2011. Evolution of MHD instabilities in plasma imploding under magnetic field. IEEE Trans. Plasma Sci., 39, 2392.CrossRefGoogle Scholar
Otto, C.M., Sell, T.K., Veenema, T.G., Hosangadi, D., Vahey, R.A., Connell, N.D., and Privor-Dumm, L. 2021. The promise of disease detection dogs in pandemic response: lessons learned from COVID-19. Disaster Med. Public Health Prep. https://doi.org/10.1017/dmp.2021.183.Google ScholarPubMed
O’Neill, P.L., Nicolaides, D., Honnery, D., Soria, J., et al. 2004. Autocorrelation functions and the determination of integral length with reference to experimental and numerical data. Behnia, M., Lin, W., and McBain, G. D. (eds), 15th Australasian Uid Mechanics Conference. Vol. 1. University of Sydney, Sydney, Australia.Google Scholar
Pacitto, G., Flament, C., Bacri, J.-C., and Widom, M. 2000. Rayleigh–Taylor instability with magnetic fluids: experiment and theory. Phys. Rev. E, 62, 7941.CrossRefGoogle ScholarPubMed
Pak, A., Zylstra, A.B., et al. 2024. Observations and properties of the first laboratory fusion experiment to exceed target gain of unity. Phys. Rev. E, 109, 025203.CrossRefGoogle ScholarPubMed
Pal, N., Boureima, I., Braun, N., Kurien, S., Ramaprabhu, P., and Lawrie, A. 2021. Local wave-number model for inhomogeneous two-fluid mixing. Phys. Rev. E, 104, 025105.CrossRefGoogle ScholarPubMed
Palmer, C.A.J., Schreiber, J., Nagel, S.R., et al. 2012. Rayleigh–Taylor instability of an ultra-thin foil accelerated by the radiation pressure of an intense laser. Phys. Rev. Lett., 108, 225002.CrossRefGoogle Scholar
Papamoschou, D. 1995. Evidence of shocklets in a counterflow supersonic shear layer. Phys. Fluids, 7, 233.CrossRefGoogle Scholar
Paquette, C., Pelletier, C., Fontaine, G., and Michaud, G. 1986. Diffusion coefficients for stellar plasmas. Astrophys. J. Suppl. Ser., 61, 177.CrossRefGoogle Scholar
Park, H.S., Lorenz, K.T., Cavallo, R.M., Pollaine, S.M., Prisbrey, S.T., Rudd, R.E., Becker, R.C., Bernier, J.V., and Remington, B.A. 2010. Viscous Rayleigh–Taylor instability experiments at high pressure and strain rate. Phys. Rev. Lett., 104, 135504.CrossRefGoogle ScholarPubMed
Park, H.S., Rudd, R.E., Cavallo, R.M., Barton, N.R., Arsenlis, A., Belof, J.L., Blobaum, K.J.M., El-dasher, B.S., Florando, J.N., Huntington, C.M., and Maddox, B.R. 2015. Grain-size-independent plastic flow at ultrahigh pressures and strain rates. Phys. Rev. Lett., 114, 065502.CrossRefGoogle ScholarPubMed
Park, J., Min, K.W., Kim, V.P., Kil, H., Su, S.Y., Chao, C.K., and Lee, J.J. 2008. Equatorial plasma bubbles with enhanced ion and electron temperatures. J. Geophys. Res. Space Phys., 113, A09318.CrossRefGoogle Scholar
Parker, K., Horsfield, C.J., Rothman, S.D., Batha, S.H., Balkey, M.M., Delamater, N.D., Fincke, J.R., Hueckstaedt, R.M., Lanier, N.E., and Magelssen, G.R. 2004. Observation and simulation of plasma mix after reshock in a convergent geometry. Phys. Plasmas, 11, 2696.CrossRefGoogle Scholar
Pathikonda, G., Petter, S.J., Wall, I., and Ranjan, D. 2022. Temporal evolution of scalar modes in Richtmyer–Meshkov instability of inclined interface using high-speed PIV and PLIF measurements at 60 kHz. Meas. Sci. Tech., 33, 105206.CrossRefGoogle Scholar
Pellone, Sa., Di Stefano, C.A., Rasmus, A.M., Kuranz, C.C., and Johnsen, E. 2021. Vortex-sheet modeling of hydrodynamic instabilities produced by an oblique shock interacting with a perturbed interface in the HED regime. Phys. Plasmas, 28, 022303.Google Scholar
Peltier, W.R., and Caulfield, C.P. 2003. Mixing efficiency in stratified shear flows. Ann. Rev. Fluid Mech., 35, 135.CrossRefGoogle Scholar
Peng, N., Yang, Y., and Xiao, Z. 2021a. Effects of the secondary baroclinic vorticity on the energy cascade in the Richtmyer–Meshkov instability. J. Fluid Mech., 925, A39.CrossRefGoogle Scholar
Peng, N., Yang, Y., Wu, J., and Xiao, Z. 2021b. Mechanism and modelling of the secondary baroclinic vorticity in the Richtmyer–Meshkov instability. J. Fluid Mech., 911, A56.CrossRefGoogle Scholar
Peng, Q., Bao, B., Yang, C., and Zhang, L. 2020. Simulations of young type Ia supernova remnants undergoing shock acceleration in a turbulent medium Astrophys. J., 891, 75.CrossRefGoogle Scholar
Penney, W.G., and Price, A.T. 1942. On the changing form of a nearly spherical submarine bubble. Page 145 of: Hartmann, G.K. and Hill, E. G. (eds), Underwater Explosion Research. Vol. 2. Office of Naval Research, Washington, DC.Google Scholar
Pereira, F.S., Grinstein, F.F., Israel, D.M., and Rauenzahn, R. 2021. Molecular viscosity and diffusivity effects in transitional and shock-driven mixing flows. Phys. Rev. E, 103, 013106.CrossRefGoogle ScholarPubMed
Perez, F., Koenig, M., Batani, D., et al. 2009. Fast-electron transport in cylindrically laser-compressed matter. Plasma Phys. Control. Fusion, 51, 124035.CrossRefGoogle Scholar
Perkins, L.J., Logan, B.G., Zimmerman, G.B., and Werner, C.J. 2013. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields. Phys. Plasmas, 20, 072708.CrossRefGoogle Scholar
Perkins, L.J., Ho, D.M., Logan, B.G., Zimmerman, G.B., Rhodes, M.A., Strozzi, D.J., Blackfield, D.T., and Hawkins, S.A. 2017. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion. Phys. Plasmas, 24, 062708.CrossRefGoogle Scholar
Perlmutter, S., Gabi, S., Goldhaber, G., et al. 1997. Measurements of the cosmological parameters Ω and Λ from the first seven supernovae at Z ≥ 0.35. Astrophys. J., 483, 565.CrossRefGoogle Scholar
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J., 517, 565.CrossRefGoogle Scholar
Peterson, D.L., Bowers, R.L., Brownell, J.H., Greene, A.E., McLenithan, K.D., Oliphant, T.A., Roderick, N.F., and Scannapieco, A.J. 1996. Two-dimensional modeling of magnetically driven Rayleigh–Taylor instabilities in cylindrical Z pinches. Phys. Plasmas, 3, 368.CrossRefGoogle Scholar
Peterson, J.L., Clark, D.S., Masse, L.P., and Suter, L.J. 2014. The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions. Phys. Plasmas, 21, 092710.CrossRefGoogle Scholar
Peyser, T.A., Miller, P.L., Stry, P.E., Budil, K.S., Burke, E.W., Wojtowicz, D.A., Griswold, D.L., Hammel, B.A., and Phillion, D.W. 1995. Measurement of radiation-driven shock-induced mixing from nonlinear initial perturbations. Phys. Rev. Lett., 75, 2332.CrossRefGoogle ScholarPubMed
Philippe, F., Casner, A., Caillaud, T., et al. 2010. Experimental demonstration of X-ray drive enhancement with rugby-shaped hohlraums. Phys. Rev. Lett., 104, 035004.CrossRefGoogle ScholarPubMed
Phillion, D.W., and Pollaine, S.M. 1994. Dynamical compensation of irradiation nonuniformities in a spherical hohlraum illuminated with tetrahedral symmetry by laser beams. Phys. Plasmas, 1, 2963.CrossRefGoogle Scholar
Picone, J.M., Oran, E.S., Boris, J.P., and Young, T.R. 1985. Theory of vorticity generation by shock wave and flame interactions. Pages 429–448 of: Dynamics of Shock Waves, Explosions, and Detonations. American Institute of Aeronautics and Astronautics, New York.Google Scholar
Ping, Y., Smalyuk, V.A., Amendt, P., et al. 2019. Enhanced energy coupling for indirectly driven inertial confinement fusion. Nat. Phys., 15, 138.CrossRefGoogle Scholar
Piriz, A.R., López Cela, J.J., Tahir, N.A., and Hoffmann, D.H.H. 2008. Richtmyer–Meshkov instability in elastic-plastic media. Phys. Rev. E, 78, 056401.CrossRefGoogle ScholarPubMed
Piriz, A.R., López Cela, J.J., and Tahir, N.A. 2009. Richtmyer–Meshkov instability as a tool for evaluating material strength under extreme conditions. Nucl. Instrum. Methods Phys. Res. A, 606, 139.CrossRefGoogle Scholar
Piriz, A.R., Piriz, S.A., and Tahir, N.A. 2022. Cylindrical convergence effects on the Rayleigh–Taylor instability in elastic and viscous media. Phys. Rev. E, 106, 015109.CrossRefGoogle ScholarPubMed
Plesset, M.S. 1954. On the stability of fluid flows with spherical symmetry. J. Appl. Phys., 25, 96.CrossRefGoogle Scholar
Poggi, F. 1997. Analyse par vélocimétrie d’un mélange gazeux créé par instabilité de Richtmyer– Meshkov. Ph.D. thesis, Université de Poitiers, Poitiers, France.Google Scholar
Poggi, F., Thorembey, M.-H., and Rodriguez, G. 1998. Velocity measurements in turbulent gaseous mixtures induced by Richtmyer–Meshkov instability. Phys. Fluids, 10, 2698.CrossRefGoogle Scholar
Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion. R.T. Edwards, Inc. Philadelphia, PA.Google Scholar
Polavarapu, R., Roach, P., and Banerjee, A. 2019. Rayleigh–Taylor-instability experiments with elastic-plastic materials. Phys. Rev. E, 99, 053104.Google Scholar
Polchinski, J.G. 1998. String Theory. Vols. I and II. Cambridge University Press, Cambridge, UK.Google Scholar
Pope, S.B. 2000. Turbulent Flows. Cambridge University Press, Cambridge, UK.Google Scholar
Pope, S.B. 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys., 6, 35.CrossRefGoogle Scholar
Popescu Braileanu, B., Lukin, V.S., Khomenko, E., and de Vicente, A. 2021a. Two-fluid simulations of Rayleigh–Taylor instability in a magnetized solar prominence thread. I. Effects of prominence magnetization and mass loading. Astron. Astrophys., 646, A93.CrossRefGoogle Scholar
Popescu Braileanu, B., Lukin, V.S., Khomenko, E., and de Vicente, A. 2021b. Two-fluid simulations of Rayleigh–Taylor instability in a magnetized solar prominence thread. II. Effects of collisionality. Astron. Astrophys., 650, A181.CrossRefGoogle Scholar
Popil, R., and Curzon, F.L. 1979. Production of reproducible Rayleigh–Taylor instabilities. Rev. Sci. Instrum., 50, 1291.CrossRefGoogle ScholarPubMed
Porter, D.H., Jones, T.W., and Ryu, D. 2015. Vorticity, shocks, and magnetic fields in subsonic, ICM-like turbulence. Astrophys. J., 810, 93.CrossRefGoogle Scholar
Poujade, O., and Peybernes, M. 2010. Growth rate of Rayleigh–Taylor turbulent mixing layers with the foliation approach. Phys. Rev. E, 81, 016316.CrossRefGoogle ScholarPubMed
Pozzi, A. 1994. Applications of Padé Approximation Theory in Fluid Dynamics. Vol. 14. World Scientific, Singapore.CrossRefGoogle Scholar
Praskovsky, A.A., Gledzer, E.B., Karyakin, M.Yu, and Zhou, Y. 1993. The sweeping decorrelation hypothesis and energy–inertial scale interaction in high Reynolds number flows. J. Fluid Mech., 248, 493.CrossRefGoogle Scholar
Preston, D. L, Tonks, D. L, and Wallace, D. C. 2003. Model of plastic deformation for extreme loading conditions. J. Appl. Phys., 93, 211.CrossRefGoogle Scholar
Prestridge, K., Balasubramanian, S., and Orlicz, G. 2012. Effects of initial conditions on mixing in Richtmyer–Meshkov turbulence experiments. Pages 321–327 of: Kontis, K., (ed), 28th International Symposium on Shock Waves. Springer, Berlin Heidelberg.Google Scholar
Prime, M.B., Buttler, W.T., Buechler, M.A., et al. 2017. Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov instabilities. J. Dyn. Behavior Mater., 3, 189.CrossRefGoogle Scholar
Prime, M.B., Buttler, W.T., Fensin, S.J., et al. 2019. Tantalum strength at extreme strain rates from impact-driven Richtmyer–Meshkov instabilities. Phys. Rev. E, 100, 053002.CrossRefGoogle ScholarPubMed
Pringle, J.E. 1981. Accretion discs in astrophysics. Annu. Rev. Astron. Astrophys., 19, 137.CrossRefGoogle Scholar
Probyn, M., Thornber, B., Drikakis, D., Youngs, D., and Williams, R.J.R. 2014. An investigation into nonlinear growth rate of two-dimensional and three-dimensional single-mode Richtmyer– Meshkov instability using an arbitrary-Lagrangian-Eulerian algorithm. J. Fluids Eng., 136, 091208.CrossRefGoogle Scholar
Probyn, M.G., Williams, R.J.R., Thornber, B., Drikakis, D., and Youngs, D.L. 2021. 2D single-mode Richtmyer–Meshkov instability. Physica D, 418, 132827.CrossRefGoogle Scholar
Pu, Y., Huang, T., Ge, F., Zou, S., Wang, F., Yang, J., Jiang, S., and Ding, Y. 2018. First integrated implosion experiments on the SG-III laser facility. Plasma Phys. Control. Fusion, 60, 085017.CrossRefGoogle Scholar
Pullin, D.I., and Saffman, P.G. 1998. Vortex dynamics in turbulence. Annu. Rev. Fluid Mech., 30, 31.CrossRefGoogle Scholar
Puranik, P.B., Oakley, J.G., Anderson, M.H., and Bonazza, R. 2004. Experimental study of the Richtmyer–Meshkov instability induced by a Mach 3 shock wave. Shock Waves, 13, 413.CrossRefGoogle Scholar
Purcell, E.M. 1977. Life at low Reynolds number. Amer. J. Phys., 45, 3.CrossRefGoogle Scholar
Radice, D., Abdikamalov, E., Ott, C.D., Mösta, P., Couch, S.M., and Roberts, L.F. 2018. Turbulence in core-collapse supernovae. J. Phys. G, 45, 053003.CrossRefGoogle Scholar
Raga, A.C., Cantó, J., Binette, L., and Calvet, N. 1990. Stellar jets with intrinsically variable sources. Astrophys. J., 364, 601.CrossRefGoogle Scholar
Raghavarao, R., Sekar, R., and Suhasini, R. 1992. Nonlinear numerical simulation of equatorial spread F – Effects of winds and electric fields. Adv. Space Res., 12, 227.CrossRefGoogle Scholar
Raman, K.S., Hurricane, O.A., Park, H.-S., Remington, B.A., et al. 2012. Three-dimensional modeling and analysis of a high energy density Kelvin–Helmholtz experiment. Phys. Plasmas, 19, 092112.CrossRefGoogle Scholar
Ramaprabhu, P., and Andrews, M.J. 2004. On the initialization of Rayleigh–Taylor simulations. Phys. Fluids, 16, L59.CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G., and Andrews, M.J. 2005. A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability. J. Fluid Mech., 536, 285.CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G., Young, Y.-N., Calder, A.C., and Fryxell, B. 2006. Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem. Phys. Rev. E, 74, 066308.CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G., Woodward, P., Fryer, C., Rockefeller, G., Muthuraman, K., Lin, P.-H., and Jayaraj, J. 2012. The late-time dynamics of the single-mode Rayleigh–Taylor instability. Phys. Fluids, 24, 074107.CrossRefGoogle Scholar
Ramaprabhu, P., Karkhanis, V., and Lawrie, A.G.W. 2013. The Rayleigh–Taylor Instability driven by an accel-decel-accel profile. Phys. Fluids, 25, 115104.CrossRefGoogle Scholar
Ramaprabhu, P., Karkhanis, V., Banerjee, R., Varshochi, H., Khan, M., and Lawrie, A.G.W. 2016. Evolution of the single-mode Rayleigh–Taylor instability under the influence of time-dependent accelerations. Phys. Rev. E, 93, 013118.CrossRefGoogle ScholarPubMed
Ramis, R. 2013. Hydrodynamic analysis of laser-driven cylindrical implosions. Phys. Plasmas, 20, 082705.CrossRefGoogle Scholar
Rampp, M., and Janka, H.-T. 2002. Radiation hydrodynamics with neutrinos-Variable Eddington factor method for core-collapse supernova simulations. Astron. Astrophys., 396, 361.CrossRefGoogle Scholar
Ramshaw, J.D. 1998. Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration. Phys. Rev. E, 58, 5834.CrossRefGoogle Scholar
Ramshaw, J.D. 1999. Simple model for linear and nonlinear mixing at unstable fluid interfaces in spherical geometry. Phys. Rev. E, 60, 1775.CrossRefGoogle ScholarPubMed
Ramshaw, J.D. 2000. Effect of slow compression on the linear stability of an accelerated shear layer. Phys. Rev. E, 61, 1486.CrossRefGoogle ScholarPubMed
Ranjan, D., Anderson, M., Oakley, J., and Bonazza, R. 2005. Experimental investigation of a strongly shocked gas bubble. Phys. Rev. Lett., 94, 184507.CrossRefGoogle ScholarPubMed
Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., and Bonazza, R. 2007. Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Phys. Rev. Lett., 98, 024502.CrossRefGoogle ScholarPubMed
Ranjan, D., Niederhaus, J.H.J., Oakley, J.G., Anderson, M.H., Bonazza, R., and Greenough, J.A. 2008. Shock-bubble interactions: features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids, 20, 036101.CrossRefGoogle Scholar
Ranjan, D., Oakley, J., and Bonazza, R. 2011. Shock-bubble interactions. Annu. Rev. Fluid Mech., 43, 117.CrossRefGoogle Scholar
Rasmus, A.M., Di Stefano, C.A., Flippo, K.A., et al. 2018. Shock-driven discrete vortex evolution on a high-Atwood number oblique interface. Phys. Plasmas, 25, 032119.CrossRefGoogle Scholar
Rasmus, A.M., Di Stefano, C.A., Flippo, K.A., Doss, F.W., Kawaguchi, C.F., Kline, J.L., Merritt, E.C., Desjardins, T.R., Cardenas, T., Schmidt, D.W., and Donovan, P.M. 2019. Shock-driven hydrodynamic instability of a sinusoidally perturbed, high-Atwood number, oblique interface. Phys. Plasmas, 26, 062103.CrossRefGoogle Scholar
Rast, M.P., Bello González, N., Bellot Rubio, L., et al. 2021. Critical science plan for the Daniel K. Inouye solar telescope (DKIST). Solar Phys., 296, 70.CrossRefGoogle Scholar
Rasteiro dos Santos, M., Bury, Y., Jamme, S., and Griffond, J. 2023. On the effect of characterised initial conditions on the evolution of the mixing induced by the Richtmyer–Meshkov instability. Shock Waves, 33, 117.Google Scholar
Rasteiro dos Santos, M., Bury, Y., and Jamme, S. 2022. Designing multi-shape dual-gas initial conditions for the study of hydrodynamic instabilities. J. Fluids Eng., 144, 041503.Google Scholar
Ravid, A., Citron, R.I., and Jeanloz, R. 2021. Hydrodynamic instability at impact interfaces and planetary implications. Nat. Comm., 12, 2104.CrossRefGoogle ScholarPubMed
Rayleigh, Lord. 1883. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc., 14, 170.Google Scholar
Rayleigh, Lord. 1916. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. The London, Edinburgh, and Dublin Philos. Mag. and J. Sci., 32, 529.CrossRefGoogle Scholar
Read, K.I. 1984. Experimental investigation of turbulent mixing by Rayleigh–Taylor instability. Physica D, 12, 45.CrossRefGoogle Scholar
Read, K.I., and Youngs, D.L. 1983. Experimental investigation of turbulent mixing by Rayleigh– Taylor instability. AWRE Report, 11/83. Atomic Weapons Establishment, Aldermaston, UK.Google ScholarPubMed
Reckinger, S.J., Livescu, D., and Vasilyev, O.V. 2010. Adaptive wavelet collocation method simulations of Rayleigh–Taylor instability. Phys. Scr., 2010, 014064.CrossRefGoogle Scholar
Reckinger, S.J., Livescu, D., and Vasilyev, O.V. 2016. Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh–Taylor instability. J. Comput. Phys., 313, 181.CrossRefGoogle Scholar
Reddy, G., Murthy, V.N., and Vergassola, M., 2021. Olfactory sensing and navigation in turbulent environments. Annu. Rev. Condensed Matter Phys., 13, 191.CrossRefGoogle Scholar
Reese, D.T., Ames, A.M., Noble, C.D., Oakley, J.G., Rothamer, D.A., and Bonazza, R. 2018. Simultaneous direct measurements of concentration and velocity in the Richtmyer–Meshkov instability. J. Fluid Mech., 849, 541.CrossRefGoogle Scholar
Regan, S.P., Epstein, R., Hammel, B.A., et al. 2013. Hot-spot mix in ignition-scale inertial confinement fusion targets. Phys. Rev. Lett., 111, 045001.CrossRefGoogle ScholarPubMed
Reid, W.H. 1961. The effects of surface tension and viscosity on the stability of two superposed fluids. Proc. Cambridge Phil. Soc., 57, 415.CrossRefGoogle Scholar
Reipurth, B., and Bally, J. 2001. Herbig-Haro flows: probes of early stellar evolution. Annu. Rev. Astron. Astrophys., 39, 403.CrossRefGoogle Scholar
Remington, B.A., Arnett, D., Drake, P.R., and Takabe, H. 1999. Modeling astrophysical phenomena in the laboratory with intense lasers. Science, 284, 1488.CrossRefGoogle Scholar
Remington, B.A., Drake, R.P., Takabe, H., and Arnett, D. 2000. A review of astrophysics experiments on intense lasers. Phys. Plasmas, 7, 1641.CrossRefGoogle Scholar
Remington, B.A., Bazan, G., Belak, J., et al. 2004. Materials science under extreme conditions of pressure and strain rate. Metall. Mater. Trans. A, 35, 2587.Google Scholar
Remington, B.A., Drake, R.P., and Ryutov, D.D. 2006. Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys., 78, 755.CrossRefGoogle Scholar
Remington, B.A., Park, H.-S., Casey, D.T., et al. 2019. Rayleigh–Taylor instabilities in high-energy density settings on the National Ignition Facility. Proc. Natl. Acad. Sci., 116, 18233.CrossRefGoogle ScholarPubMed
Remming, I.S., and Khokhlov, A.M. 2014. The classification of magnetohydrodynamic regimes of thermonuclear combustion. Astrophys. J., 794, 87.CrossRefGoogle Scholar
Remming, I.S., and Khokhlov, A.M. 2016. The internal structure and propagation of magnetohydro-dynamical thermonuclear flames. Astrophys. J., 831, 162.CrossRefGoogle Scholar
Renoult, M.-C., Carles, P., Ferjani, S., and Rosenblatt, C. 2013. 2D Rayleigh–Taylor instability: interfacial arc-length vs. deformation amplitude. Europhys. Lett., 101, 54001.CrossRefGoogle Scholar
Renshaw, C.E., and Schulson, E.M. 2001. Universal behaviour in compressive failure of brittle materials. Nature, 412, 897.CrossRefGoogle ScholarPubMed
Retterer, J.M. 2010a. Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 1. Plume model. J. Geophys. Res., 115, A03306.Google Scholar
Retterer, J.M. 2010b. Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 2. Scintillation calculation. J. Geophys. Res., 115, A03307.Google Scholar
Reynolds, O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc., 174, 935.Google Scholar
Reynolds, O. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc., 186, 123.Google Scholar
Richardson, L.F. 1922. Weather Prediction by Numerical Process. Cambridge University Press, Cambridge, UK.Google Scholar
Richtmyer, R.D. 1960. Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math., 13, 297.CrossRefGoogle Scholar
Riess, A.G., Filippenko, A.V., Challis, P., et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., 116, 1009.CrossRefGoogle Scholar
Rigg, P.A., Anderson, W.W., Olson, R.T., Buttler, W.T., and Hixson, R.S. 2006. Investigation of ejecta production in tin using plate impact experiments. AIP Conf. Proc., 845, 1283.Google Scholar
Rigon, G., Casner, A., Albertazzi, B., et al. 2019. Rayleigh–Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remnants. Phys. Rev. E, 100, 021201.CrossRefGoogle ScholarPubMed
Rigon, G., Albertazzi, B., Mabey, P., Michel, ThFalize, , E., Bouffetier, V., Ceurvorst, L., Masse, L., Koenig, M., and Casner, A. 2021a. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh–Taylor instability regime in high-energy-density conditions. Phys. Rev. E, 104, 045213.CrossRefGoogle ScholarPubMed
Rigon, G., Albertazzi, B., Pikuz, T., et al. 2021b. Micron-scale phenomena observed in a turbulent laser-produced plasma. Nat. Commun., 12, 2679.CrossRefGoogle Scholar
Rigon, G., Albertazzi, B., Mabey, P., Michel, ThBarroso, , P., Faenov, A., Kumar, R., Michaut, C., Pikuz, T., Sakawa, Y., Sano, T., Shimogawara, H., Tamatani, H., Casner, A., and Koenig, M. 2022. Hydrodynamic instabilities in a highly radiative environment. Phys. Plasmas, 29, 072106.CrossRefGoogle Scholar
Rikanati, A., Oron, D., Alon, U., and Shvarts, D. 2000. Statistical mechanics merger model for hydrodynamic instabilities. Astrophys. J. Suppl. Ser., 127, 451.CrossRefGoogle Scholar
Rikanati, A., Oron, D., Sadot, O., and Shvarts, D. 2003. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer–Meshkov instability. Phys. Rev. E, 67, 026307.CrossRefGoogle ScholarPubMed
Ripley, R., Donahue, L., and Zhang, F. 2012. Jetting instabilities of particles from explosive dispersal. AIP Conf. Proc., 1426, 1615.Google Scholar
Ristorcelli, J.R., and Clark, T.T. 2004. Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech., 507, 213.CrossRefGoogle Scholar
Roberts, M.S., and Jacobs, J.W. 2016. The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh–Taylor instability. J. Fluid Mech., 787, 50.CrossRefGoogle Scholar
Robey, H.F. 2004. Effects of viscosity and mass diffusion in hydrodynamically unstable plasma flows. Phys. Plasmas, 11, 4123.CrossRefGoogle Scholar
Robey, H.F., Zhou, Y., Buckingham, A.C., Keiter, P., Remington, B.A., and Drake, R.P. 2003. The time scale for the transition to turbulence in a high Reynolds number, accelerated flow. Phys. Plasmas, 10, 614.CrossRefGoogle Scholar
Robey, H.F., Celliers, P.M., Moody, J.D., Sater, J., Parham, T., Kozioziemski, B., Dylla-Spears, R., Ross, J.S., LePape, S., Ralph, J.E., and Hohenberger, M. 2014. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF. Phys. Plasmas, 21, 022703.CrossRefGoogle Scholar
Robey, H.F., Berzak Hopkins, L., Milovich, J.L., and Meezan, N.B. 2018. The I-Raum: a new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility. Phys. Plasmas, 25, 012711.CrossRefGoogle Scholar
Roble, R.G., and Ridley, E.C. 1994. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM): equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett., 21, 417.CrossRefGoogle Scholar
Rodriguez, V., Saurel, R., Jourdan, G., and Houas, L. 2017. Impulsive dispersion of a granular layer by a weak blast wave. Shock Waves, 27, 187.CrossRefGoogle Scholar
Rodriguez Azara, J.L., and Emanuel, G. 1989. Compressible rotational flows generated by the substitution principle. II. Phys. Fluids A, 1, 600.CrossRefGoogle Scholar
Rogallo, R.S. 1981. Numerical experiments in homogeneous turbulence. Rep. 81315. National Aeronautics and Space Administration, Moffett field, CA.Google Scholar
Roland, C., de Rességuier, T., Sollier, A., Lescoute, E., Loison, D., and Soulard, L. 2017. Ejection of micron-scale fragments from triangular grooves in laser shock-loaded copper samples. J. Dynam. Behav. Mater, 3, 156.CrossRefGoogle Scholar
Roland, C., de Rességuier, T., Sollier, A., Lescoute, E., Tandiang, D., Toulminet, M., and Soulard, L. 2018. Ballistic properties of ejecta from a laser shock-loaded groove: SPH versus experiments. AIP Conf. Proc., 080012.Google Scholar
Rollin, B., and Andrews, M.J. 2013. On generating initial conditions for turbulence models: the case of Rayleigh–Taylor instability turbulent mixing. J. Turbul., 14, 77.CrossRefGoogle Scholar
Romero, B., Poroseva, S.V., Vorobieff, P., and Reisner, J.M. 2021. Simulations of the shock-driven Kelvin–Helmholtz instability in inclined gas curtains. Phys. Fluids, 33, 064103.CrossRefGoogle Scholar
Rose, H.A., and Sulem, P.L. 1978. Fully developed turbulence and statistical mechanics. J. de Physique, 39, 441.CrossRefGoogle Scholar
Rosen, M.D. 1999. The physics issues that determine inertial confinement fusion target gain and driver requirements: a tutorial. Phys. Plasmas, 6, 1690.CrossRefGoogle Scholar
Rosensweig, R.E., Hirota, Y., Tsuda, S., and Raj, K. 2008. Study of audio speakers containing ferrofluid. J. Phys. Condens. Matter, 20, 204147.CrossRefGoogle ScholarPubMed
Rott, N. 1956. Diffraction of a weak shock with vortex generation. J. Fluid Mech., 1, 111.CrossRefGoogle Scholar
Rotta, J.C. 1951. Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik, 129, 547. Rotty, R.M. 1962. Introduction to Gas Dynamics. Wiley, New York.CrossRefGoogle Scholar
Roy, A., Ghosh, D., and Mandal, N. 2024. Dampening effect of global flows on Rayleigh–Taylor instabilities: Implications for deep-mantle plumes vis-à-vis hotspot distributions. Geophys. J. Int., 236, 119.CrossRefGoogle Scholar
Roy, S., Mandal, L.K., Khan, M., and Gupta, M.R. 2014. Combined effect of viscosity, surface tension and compressibility on Rayleigh–Taylor bubble growth between two fluids. J. Fluids Eng., 136, 091101.CrossRefGoogle Scholar
Rozanov, V.B., Kuchugov, P.A., Zmitrenko, N.V., and Yanilkin, Yu V. 2015. Effect of initial conditions on the development of Rayleigh–Taylor instability. J. Russian Laser Res., 36, 139.CrossRefGoogle Scholar
Ruan, Y., Zhang, Y., Tian, B., and Zhang, X. 2020. Density-ratio-invariant mean-species profile of classical Rayleigh–Taylor mixing. Phys. Rev. Fluids, 5, 054501.CrossRefGoogle Scholar
Rubinstein, R., and Barton, J.M. 1990. Nonlinear Reynolds stress models and the renormalization group. Phys. Fluids A, 2, 1472.CrossRefGoogle Scholar
Ruderman, M.S., Terradas, J., and Ballester, J.L. 2014. Rayleigh–Taylor instabilities with sheared magnetic fields. Astrophys. J., 785, 110.CrossRefGoogle Scholar
Rudinger, G. 1958. Shock wave and flame interactions, Third AGARD Coll. Pergamon, London.Google Scholar
Rudinger, G., and Somers, L.M. 1960. Behaviour of small regions of different gases carried in accelerated gas flows. J. Fluid Mech., 7, 161.CrossRefGoogle Scholar
Rudyak, V., and Minakov, A. 2014. Modeling and optimization of Y-type micromixers. Microma-chines, 5, 886.CrossRefGoogle Scholar
Ruev, G.A., Fedorov, A.V., and Fomin, V.M. 2006. Development of the Rayleigh–Taylor instability due to interaction of a diffusion mixing layer of two gases with compression waves. Shock Waves, 16, 65.CrossRefGoogle Scholar
Ruiz, D. E., Schmit, P. F., Yager-Elorriaga, D. A., Jennings, C. A., and Beckwith, K. 2023a. Exploring the parameter space of MagLIF implosions using similarity scaling. I. Theoretical framework. Phys. Plasmas, 30, 032707.CrossRefGoogle Scholar
Ruiz, D. E., Schmit, P. F., Yager-Elorriaga, D. A., Gomez, M. R., Weis, M. R., Jennings, C. A., Harvey-Thompson, A. J., Knapp, P. F., Slutz, S. A., Ampleford, D. J., Beckwith, K., and Matzen, M. K. 2023b. Exploring the parameter space of MagLIF implosions using similarity scaling. II. Current scaling. Phys. Plasmas, 30, 032708.CrossRefGoogle Scholar
Ruiz, D.E., Yager-Elorriaga, D.A., Peterson, K.J., Sinars, D.B., Weis, MR, Schroen, D.G., Tomlinson, K., Fein, J.R., and Beckwith, K. 2022. Harmonic generation and inverse cascade in the Z-pinch driven, preseeded multimode, magneto-Rayleigh–Taylor instability. Phys. Rev. Lett., 128, 255001.CrossRefGoogle ScholarPubMed
Ryu, D., and Vishniac, E.T. 1988. A linear stability analysis for wind-driven bubbles. Astrophys. J., 331, 350.CrossRefGoogle Scholar
Ryu, J., and Livescu, D. 2014. Turbulence structure behind the shock in canonical shock–vortical turbulence interaction. J. Fluid Mech., 756, R1.CrossRefGoogle Scholar
Ryutov, D., Drake, R.P., Kane, J., Liang, E., Remington, B.A., and Wood-Vasey, W.M. 1999. Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J., 518, 821.CrossRefGoogle Scholar
Ryutov, D.D. 2015. Characterizing the plasmas of dense Z-pinches. IEEE Trans. Plasma Sci., 43, 2363.CrossRefGoogle Scholar
Ryutov, D.D., Drake, R.P., and Remington, B.A. 2000a. Criteria for scaled laboratory simulations of astrophysical MHD phenomena. Astrophys. J. Suppl. Ser., 127, 465.CrossRefGoogle Scholar
Ryutov, D.D., Derzon, M.S., and Matzen, M.K. 2000b. The physics of fast Z pinches. Rev. Mod. Phys., 72, 167.CrossRefGoogle Scholar
Ryutov, D.D., Remington, B.A., Robey, H.F., and Drake, R.P. 2001. Magnetohydrodynamic scaling: from astrophysics to the laboratory. Phys. Plasmas, 8, 1804.CrossRefGoogle Scholar
Ryutov, D.D., Awe, T.J., Hansen, S.B., McBride, R.D., Peterson, K.J., Sinars, D.B., and Slutz, S.A. 2014. Effect of axial magnetic flux compression on the magnetic Rayleigh–Taylor instability (theory). AIP Conf. Proc., 1639, 63.Google Scholar
Ryutova, M., Berger, T., Frank, Z., and Tarbell, T. 2010. Observation of plasma instabilities in quiescent prominences. Solar Phys., 267, 75.CrossRefGoogle Scholar
Sabet, N., Hassanzadeh, H., De Wit, A., and Abedi, J. 2021. Scalings of Rayleigh–Taylor instability at large viscosity contrasts in porous media. Phys. Rev. Lett., 126, 094501.CrossRefGoogle ScholarPubMed
Saddoughi, S.G., and Veeravalli, S.V. 1994. Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech., 268, 333.CrossRefGoogle Scholar
Sadek, M., and Aluie, H. 2018. Extracting the spectrum of a flow by spatial filtering. Phys. Rev. Fluids, 3, 124610.CrossRefGoogle Scholar
Sadler, J.D., Li, H., and Haines, B.M. 2020. Magnetization around mix jets entering inertial confinement fusion fuel. Phys. Plasmas, 27, 072707.CrossRefGoogle Scholar
Sadler, J.D., Green, S., Li, S., Zhou, Y., Flippo, K.A., and Li, H. 2022a. Faster ablative Kelvin– Helmholtz instability growth in a magnetic field. Phys. Plasmas, 29, 052708.CrossRefGoogle Scholar
Sadler, J.D., Walsh, C.A., Zhou, Y., and Li, H. 2022b. Role of self-generated magnetic fields in the inertial fusion ignition threshold. Phys. Plasmas, 29, 072701.CrossRefGoogle Scholar
Sadler, J.D., Louie, C., and Zhou, Y. 2023. Intricate structure of the plasma Rayleigh–Taylor instability in shock tubes. Phys. Plasmas, 30, 022709.CrossRefGoogle Scholar
Sadot, O., Erez, L., Alon, U., Oron, D., Levin, L.A., Erez, G., Ben-Dor, G., and Shvarts, D. 1998. Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer– Meshkov instability. Phys. Rev. Lett., 80, 1654.CrossRefGoogle Scholar
Sadot, O., Rikanati, A., Oron, D., Ben-Dor, G., and Shvarts, D. 2003. An experimental study of the high Mach number and high initial-amplitude effects on the evolution of the single-mode Richtmyer–Meshkov instability. Laser Part. Beams, 21, 341.CrossRefGoogle Scholar
Saenz, J.A., Aslangil, D., and Livescu, D. 2021. Filtering, averaging, and scale dependency in homogeneous variable density turbulence. Phys. Fluids, 33, 025115.CrossRefGoogle Scholar
Saffman, P.G. 1967. The large-scale structure of homogeneous turbulence. J. Fluid Mech., 27, 581.CrossRefGoogle Scholar
Saffman, P.G., and Meiron, D.I. 1989. Kinetic energy generated by the incompressible Richtmyer– Meshkov instability in a continuously stratified fluid. Phys. Fluids A, 1, 1767.CrossRefGoogle Scholar
Sagaut, P. 2006. Large Eddy Simulation for Incompressible Flows: An Introduction. Springer Science & Business Media, Berlin.Google Scholar
Sagaut, P., and Cambon, C. 2019. Homogeneous Turbulence Dynamics. 2nd edn. Springer Cham, Switzerland.CrossRefGoogle Scholar
Saigo, T, and Hamaguchi, S. 2002. Shear viscosity of strongly coupled Yukawa systems. Phys. Plasmas, 9, 1210.CrossRefGoogle Scholar
Sakagami, H., and Nishihara, K. 1990. Rayleigh–Taylor instability on the pusher–fuel contact surface of stagnating targets. Phys. Fluids B, 2, 2715.CrossRefGoogle Scholar
Samtaney, R. 2003. Suppression of the Richtmyer–Meshkov instability in the presence of a magnetic field. Phys. Fluids, 15, L53.CrossRefGoogle Scholar
Samtaney, R., and Zabusky, N.J. 1994. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech., 269, 45.CrossRefGoogle Scholar
Samtaney, R., Ray, J., and Zabusky, N.J. 1998. Baroclinic circulation generation on shock accelerated slow/fast gas interfaces. Phys. Fluids, 10, 1217.CrossRefGoogle Scholar
Sandoval, D. 1995. The dynamics of variable-density turbulence. Ph.D. thesis, University of Washington, Seattle, WA.Google Scholar
Sano, T. 2021. Alfvén Number for the Richtmyer–Meshkov Instability in Magnetized Plasmas. Astrophys. J., 920, 29.CrossRefGoogle Scholar
Sano, T., Nishihara, K., Matsuoka, C., and Inoue, T. 2012. Magnetic field amplification associated with the Richtmyer–Meshkov instability. Astrophys. J., 758, 126.CrossRefGoogle Scholar
Sano, T., Inoue, T., and Nishihara, K. 2013. Critical magnetic field strength for suppression of the Richtmyer–Meshkov instability in plasmas. Phys. Rev. Lett., 111, 205001.CrossRefGoogle ScholarPubMed
Sano, T., Ishigure, K., and Cobos-Campos, F. 2020. Suppression of the Richtmyer–Meshkov instability due to a density transition layer at the interface. Phys. Rev. E, 102, 013203.CrossRefGoogle ScholarPubMed
Sanz, J. 1994. Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. Lett., 73, 2700.CrossRefGoogle ScholarPubMed
Sardina, G., Brandt, L., Boffetta, G., and Mazzino, A. 2018. Buoyancy-driven flow through a bed of solid particles produces a new form of Rayleigh–Taylor turbulence. Phys. Rev. Lett., 121, 224501.CrossRefGoogle Scholar
Sasaki, T., and Abe, Y. 2007. Rayleigh–Taylor instability after giant impacts: imperfect equilibration of the Hf-W system and its effect on the core formation age. Earth, Planets and Space, 59, 1035.CrossRefGoogle Scholar
Saunders, A.M., Ali, S.J., Park, H.-S., Eggert, J., Najjar, F., Huntington, C., Haxhimali, T., Morgan, B., Ping, Y., and Rinderknecht, H.G. 2020. Development of high power laser platforms to study metal ejecta interactions. AIP Conf. Proc., 2272, 120025.Google Scholar
Sauppe, J.P., Palaniyappan, S., Tobias, B.J., et al. 2020. Demonstration of scale-invariant Rayleigh– Taylor instability growth in laser-driven cylindrical implosion Experiments. Phys. Rev. Lett., 124, 185003.CrossRefGoogle ScholarPubMed
Scannapieco, E., and Brüggen, M. 2008. Subgrid modeling of AGN-driven turbulence in galaxy clusters. Astrophys. J., 686, 927.CrossRefGoogle Scholar
Scase, M.M., and Sengupta, S. 2021. Cylindrical rotating Rayleigh–Taylor instability. J. Fluid Mech., 907.CrossRefGoogle Scholar
Scase, M.M., Baldwin, K.A., and Hill, R.J.A. 2017. Rotating Rayleigh–Taylor instability. Phys. Rev. Fluids, 2, 024801.CrossRefGoogle Scholar
Scase, M.M., Baldwin, K.A., and Hill, R.J.A. 2020. Magnetically induced Rayleigh–Taylor instability under rotation: comparison of experimental and theoretical results. Phys. Rev. E, 102, 043101.CrossRefGoogle ScholarPubMed
Scharfman, B.E., Techet, A.H., Bush, J.W.M., and Bourouiba, L. 2016. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Exp. Fluids, 57, 24.CrossRefGoogle ScholarPubMed
Schauer, M.M., Buttler, W.T., Frayer, D.K., Grover, M., Lalone, B.M., Monfared, S.K., Sorenson, D.S., Stevens, G.D., and Turley, W.D. 2017. Ejected particle size distributions from shocked metal surfaces. J. Dynam. Behav. Mater., 3, 217.CrossRefGoogle Scholar
Scheiner, B., Schmitt, M.J., Hsu, S.C., Schmidt, D., Mance, J., Wilde, C., Polsin, D.N., Boehly, T.R., Marshall, F.J., Krasheninnikova, N., and Molvig, K. 2019. First experiments on Revolver shell collisions at the OMEGA laser. Phys. Plasmas, 26, 072707.CrossRefGoogle Scholar
Schill, W.J., Armstrong, M.R., Nguyen, J.H., Sterbentz, D.M., White, D.A., Benedict, L.X., Rieben, R.N., Hoff, A, Lorenzana, H.E., Belof, J.L., La Lone, B.M., and Staska, M.D. 2024. Suppression of Richtmyer–Meshkov instability via special pairs of shocks and phase transitions. Phys. Rev. Lett., 132, 024001.CrossRefGoogle ScholarPubMed
Schilling, O. 2020a. A buoyancy–shear–drag-based turbulence model for Rayleigh–Taylor, reshocked Richtmyer–Meshkov, and Kelvin–Helmholtz mixing. Physica D, 402, 132238.CrossRefGoogle Scholar
Schilling, O. 2020b. Progress on understanding Rayleigh–Taylor flow and mixing using synergy between simulation, modeling, and experiment. J. Fluids Eng., 142.CrossRefGoogle Scholar
Schilling, O. 2021. Self-similar Reynolds-averaged mechanical–scalar turbulence models for Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz instability-induced mixing in the small Atwood number limit. Phys. Fluids, 33, 085129.CrossRefGoogle Scholar
Schilling, O., and Latini, M. 2010. High-order WENO simulations of three-dimensional reshocked Richtmyer–Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data. Acta Math. Scientia, 30, 595.CrossRefGoogle Scholar
Schilling, O., and Mueschke, N.J. 2010. Analysis of turbulent transport and mixing in transitional Rayleigh–Taylor unstable flow using direct numerical simulation data. Phys. Fluids, 22, 105102.CrossRefGoogle Scholar
Schilling, O., and Mueschke, N.J. 2017. Turbulent transport and mixing in transitional Rayleigh– Taylor unstable flow: a priori assessment of gradient-diffusion and similarity modeling. Phys. Rev. E, 96, 063111.CrossRefGoogle Scholar
Schilling, O., Latini, M., and Don, W.S. 2007. Physics of reshock and mixing in single-mode Richtmyer–Meshkov instability. Phys. Rev. E, 76, 026319.CrossRefGoogle ScholarPubMed
Schils, R. 2012. How James Watt Invented the Copier: Forgotten Inventions of Our Great Scientists. Springer Science & Business Media, New York.CrossRefGoogle Scholar
Schmit, P.F., Velikovich, A.L., McBride, R.D., and Robertson, G.K. 2016. Rayleigh–Taylor instabilities in magnetically driven solid metal shells by means of a dynamic screw pinch. Phys. Rev. Lett., 117, 205001.CrossRefGoogle ScholarPubMed
Schmitt, F.G. 2017. Turbulence from 1870 to 1920: the birth of a noun and of a concept. Comptes Rendus Mécanique, 345, 620.CrossRefGoogle Scholar
Schneider, N. and Gauthier, S., 2015. Asymptotic analysis of Rayleigh–Taylor flow for Newtonian miscible fluids. J. Eng. Math., 92, 55.CrossRefGoogle Scholar
Schnittman, J.D., and Craxton, R.S. 1996. Indirect-drive radiation uniformity in tetrahedral hohlraums. Phys. Plasmas, 3, 3786.CrossRefGoogle Scholar
Schowalter, D.G., Van Van Atta, C.W., and Lasheras, J.C. 1994. A study of streamwise vortex structure in a stratified shear layer. J. Fluid Mech., 281, 247.CrossRefGoogle Scholar
Schwarzkopf, J.D., Livescu, D., Gore, R.A., Rauenzahn, R.M., and Ristorcelli, J.R. 2011. Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids. J. Turbul., 12, N49.CrossRefGoogle Scholar
Schwarzkopf, J.D., Livescu, D., Baltzer, J.R., Gore, R.A., and Ristorcelli, J.R. 2016. A two-length scale turbulence model for single-phase multi-fluid mixing. Flow, Turbul. Combust., 96, 1.CrossRefGoogle Scholar
Schwarzschild, M. 2015. Structure and Evolution of Stars. Princeton University Press, Princeton, NJ.Google Scholar
Sefkow, A.B. 2016. On the helical instability and efficient stagnation pressure production in thermonuclear magnetized inertial fusion. Tech. rept. Sandia National Lab., Albuquerque, NM.Google Scholar
Sekar, R., and Kherani, E.A. 2002. Effects of molecular ions on the collisional Rayleigh–Taylor instability: nonlinear evolution. J. Geophys. Res. Space Phys., 107, 1139.CrossRefGoogle Scholar
Sekar, R., Suhasini, R., and Raghavarao, R. 1994. Effects of vertical winds and electric fields in the nonlinear evolution of equatorial spread F. J. Geophys. Res. Space Phys., 99, 2205.CrossRefGoogle Scholar
Sembian, S., Liverts, M., and Apazidis, N. 2018. Plane blast wave interaction with an elongated straight and inclined heat-generated inhomogeneity. J. Fluid Mech., 851, 245.CrossRefGoogle Scholar
Sen, S., and Storer, R.G. 1997. Suppression of Rayleigh–Taylor instability by flow curvature. Phys. Plasmas, 4, 3731.CrossRefGoogle Scholar
Séon, T, Hulin, J-P, Salin, D, Perrin, B, and Hinch, EJ. 2004. Buoyant mixing of miscible fluids in tilted tubes. Phys. Fluids, 16, L103.CrossRefGoogle Scholar
Séon, T, Znaien, J, Salin, D, Hulin, JP, Hinch, EJ, and Perrin, B. 2007. Transient buoyancy-driven front dynamics in nearly horizontal tubes. Phys. Fluids, 19, 123603.CrossRefGoogle Scholar
Settles, G.S. 2005. Sniffers: fluid-dynamic sampling for olfactory trace detection in nature and homeland security. J. Fluids Eng., 127, 189.CrossRefGoogle Scholar
Sewell, E.G., Ferguson, K.J., Krivets, V.V., and Jacobs, J.W. 2021. Time-resolved particle image velocimetry measurements of the turbulent Richtmyer–Meshkov instability. J. Fluid Mech., 917, A41.CrossRefGoogle Scholar
Seyler, C.E., Martin, M.R., and Hamlin, N.D. 2018. Helical instability in MagLIF due to axial flux compression by low-density plasma. Phys. Plasmas, 25, 062711.CrossRefGoogle Scholar
Shakura, N.I., and Sunyaev, R.A. 1973. Black holes in binary systems. Observational appearance. Astron. Astrophys., 24, 337.Google Scholar
Shankar, S.K., and Lele, S.K. 2014. Numerical investigation of turbulence in reshocked Richtmyer– Meshkov unstable curtain of dense gas. Shock Waves, 24, 79.CrossRefGoogle Scholar
Shao, J.L., Wang, P., and He, A.M. 2014. Microjetting from a grooved Al surface under supported and unsupported shocks. J. Appl. Phys., 116, 073501.CrossRefGoogle Scholar
Sharp, D.H. 1984. Overview of Rayleigh–Taylor instability. Physica D, 12, 3.CrossRefGoogle Scholar
Sharp, D.H., and Wheeler, J.A. 1961. Late stage of Rayleigh–Taylor instability. Tech. rept. Institute for Defense Analyses, Alexandria, VA.CrossRefGoogle Scholar
Shen, C., Chen, B., Reeves, K.K., Yu, S., Polito, V., and Xie, X. 2022. The origin of underdense plasma downflows associated with magnetic reconnection in solar flares. Nat. Astron., 6, 317.CrossRefGoogle Scholar
Sherman, F. 1955. A low-density wind-tunnel study of shock-wave structure and relaxation phenomena in gases. Tech. rept. Tech. Note 3298. National Advisory Committee for Aeronautics, Washington DC.Google Scholar
Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., and Zhu, J. 1995. A new K-E eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids, 24, 227.CrossRefGoogle Scholar
Shimony, A., Shvarts, D., Malamud, G., Di Stefano, C.A., Kuranz, C.C., and Drake, R.P. 2016. The effect of a dominant initial single mode on the Kelvin–Helmholtz instability evolution: new insights on previous experimental results. J. Fluids Eng., 138, 070902.CrossRefGoogle Scholar
Shin, S., Sohn, S.-I., and Hwang, W. 2022. Numerical simulation of single-and multi-mode Rayleigh–Taylor instability with surface tension in two dimensions. European J. Mech.-B/Fluids, 91, 141.CrossRefGoogle Scholar
Shipley, G.A., Jennings, C.A., and Schmit, P.F. 2019. Design of dynamic screw pinch experiments for magnetized liner inertial fusion. Phys. Plasmas, 26, 102702.CrossRefGoogle Scholar
Shvarts, D., Alon, U., Ofer, D., McCrory, R.L., and Verdon, C.P. 1995. Nonlinear evolution of multimode Rayleigh–Taylor instability in two and three dimensions. Phys. Plasmas, 2, 2465.CrossRefGoogle Scholar
Shvarts, D., Sadot, O., Oron, D., Rikanati, A., and Alon, U. 2000. Shock-induced instability of interfaces. Page 489 of: Ben-Dor, G., Igra, O., and Elperin, T. (eds), Handbook of Shock Waves, Vol. 2. Academic, San Diego, CA.Google Scholar
Si, T., Zhai, Z., Yang, J., and Luo, X. 2012. Experimental investigation of reshocked spherical gas interfaces. Phys. Fluids, 24, 054101.CrossRefGoogle Scholar
Si, T., Long, T., Zhai, Z., and Luo, X. 2015. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech., 784, 225.CrossRefGoogle Scholar
Signor, L., Roy, G., Chanal, P.Y., Héreil, P.L., Buy, F., Voltz, C., Llorca, F., de Rességuier, T., and Dragon, A. 2009. Debris cloud ejection from shock-loaded tin melted on release or on compression. AIP Conf. Proc., 1195, 1065.Google Scholar
Simakov, A.N., and Molvig, K. 2014. Electron transport in a collisional plasma with multiple ion species. Phys. Plasmas, 21, 024503.CrossRefGoogle Scholar
Simakov, A.N., and Molvig, K. 2016a. Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation. Phys. Plasmas, 23, 032115.CrossRefGoogle Scholar
Simakov, A.N., and Molvig, K. 2016b. Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas. Phys. Plasmas, 23, 032116.CrossRefGoogle Scholar
Sinars, D.B., Slutz, S.A., Herrmann, M.C., McBride, R.D., Cuneo, M.E., Peterson, K.J., Vesey, R.A., Nakhleh, C., Blue, B.E., Killebrew, K., and Schroen, D. 2010. Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility. Phys. Rev. Lett., 105, 185001.CrossRefGoogle ScholarPubMed
Sinars, D.B., Slutz, S.A., Herrmann, et al. 2011. Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners. Phys. Plasmas, 18, 056301.CrossRefGoogle Scholar
Sinars, D.B., Sweeney, M.A., Alexander, C.S., et al. 2020. Review of pulsed power-driven high energy density physics research on Z at Sandia. Phys. Plasmas, 27, 070501.CrossRefGoogle Scholar
Singh, S. 2021. Contribution of Mach number to the evolution of the Richtmyer–Meshkov instability induced by a shock-accelerated square light bubble. Phys. Rev. Fluids, 6, 104001.CrossRefGoogle Scholar
Singh, S., Battiato, M. and Myong, R.S., 2021. Impact of bulk viscosity on flow morphology of shock-accelerated cylindrical light bubble in diatomic and polyatomic gases. Phys. Fluids, 33, 066103.CrossRefGoogle Scholar
Siqueiros, D.A. 1936a. Collective suicide. Museum of Modern Art, New York. Available at www.moma.org/collection/object.php?object_id=79146.Google Scholar
Siqueiros, D.A. 1936b. Cosmos and disaster. Tate Modern Museum, London, United Kingdom. Available at www.tate.org.uk/art/artworks/siqueiros-cosmos-and-disaster-l02487.Google Scholar
Siqueiros, D.A. 1969. Landscape in red. Los Angeles County Museum of Art. Available at http://collections.lacma.org/node/193844.Google Scholar
Skinner, M. A., Burrows, A., and Dolence, J.C. 2016. Should one use the ray-by-ray approximation in core-collapse supernova simulations? Astrophys. J., 831, 81.CrossRefGoogle Scholar
Skoutnev, V., Most, E.R., Bhattacharjee, A., and Philippov, A.A. 2021. Scaling of Small-scale Dynamo Properties in the Rayleigh–Taylor Instability. Astrophys. J., 921, 75.CrossRefGoogle Scholar
Slutz, S.A., and Vesey, R.A. 2012. High-gain magnetized inertial fusion. Phys. Rev. Lett., 108, 025003.CrossRefGoogle ScholarPubMed
Slutz, S.A., Herrmann, M.C., Vesey, R.A., Sefkow, A.B., Sinars, D.B., Rovang, D.C., Peterson, K.J., and Cuneo, M.E. 2010. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas, 17, 056303.CrossRefGoogle Scholar
Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Rev., 91, 99.2.3.CO;2>CrossRefGoogle Scholar
Smalyuk, V.A. 2012. Experimental techniques for measuring Rayleigh–Taylor instability in inertial confinement fusion. Phys. Scr., 86, 058204.CrossRefGoogle Scholar
Smalyuk, V.A., Boehly, T.R., Bradley, D.K., Goncharov, V.N., Delettrez, J.A., Knauer, J.P., Mey-erhofer, D.D., Oron, D., and Shvarts, D. 1998. Saturation of the Rayleigh–Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets. Phys. Rev. Lett., 81, 5342.CrossRefGoogle Scholar
Smalyuk, V.A., Sadot, O., Delettrez, J.A., Meyerhofer, D.D., Regan, S.P., and Sangster, T.C. 2005. Fourier-space nonlinear Rayleigh–Taylor growth measurements of 3D laser-imprinted modulations in planar targets. Phys. Rev. Lett., 95, 215001.CrossRefGoogle ScholarPubMed
Smalyuk, V.A., Sadot, O., Betti, R., Goncharov, V.N., Delettrez, J.A., Meyerhofer, D.D., Regan, S.P., Sangster, T.C., and Shvarts, D. 2006. Rayleigh–Taylor growth measurements of three-dimensional modulations in a nonlinear regime. Phys. Plasmas, 13, 056312.CrossRefGoogle Scholar
Smalyuk, V.A., Tipton, R.E., Pino, J.E., et al. 2014. Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility. Phys. Rev. Lett., 112, 025002.CrossRefGoogle ScholarPubMed
Smalyuk, V.A., Robey, H.F., Casey, D.T., et al. 2017. Mix and hydrodynamic instabilities on NIF. J. Instrum., 12, C06001.CrossRefGoogle Scholar
Smalyuk, V.A., Robey, H.F., Alday, C.L., et al. 2018. Review of hydro-instability experiments with alternate capsule supports in indirect-drive implosions on the National Ignition Facility. Phys. Plasmas, 25, 072705.CrossRefGoogle Scholar
Smeeton, V.S., and Youngs, D.L. 1987. Experimental investigation of turbulent mixing by Rayleigh– Taylor instability, III. AWRE Report, 35/87. Atomic Weapons Establishment, Aldermaston, UK.Google Scholar
Smith, A.V., Holder, D.A., Barton, C.J., Morris, A.P., and Youngs, D.L. 2001. Shock tube experiments on Richtmyer–Meshkov instability across a chevron profiled interface. In: Proceedings of the Eighth International Workshop on the Physics of Compressible Turbulent Mixing. Pasedena, CA.Google Scholar
Snider, D.M., and Andrews, M.J. 1994. Rayleigh–Taylor and shear driven mixing with an unstable thermal stratification. Phys. Fluids, 6, 3324.CrossRefGoogle Scholar
Sohn, S.-I. 2003. Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E, 67, 026301.CrossRefGoogle ScholarPubMed
Sohn, S.-I. 2004a. Density dependence of a Zufiria-type model for Rayleigh–Taylor bubble fronts. Phys. Rev. E, 70, 045301.CrossRefGoogle ScholarPubMed
Sohn, S.-I. 2004b. Vortex model and simulations for Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E, 69, 036703.CrossRefGoogle ScholarPubMed
Sohn, S.-I. 2009. Effects of surface tension and viscosity on the growth rates of Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E, 80, 055302(R).CrossRefGoogle ScholarPubMed
Sohn, S.-I., and Baek, S. 2017. Bubble merger and scaling law of the Rayleigh–Taylor instability with surface tension. Phys. Lett. A, 381, 3812.CrossRefGoogle Scholar
Sojka, J.J. 1989. Global scale, physical models of the F region ionospere. Rev. Geophys., 27, 371.CrossRefGoogle Scholar
Sollier, A., and Lescoute, E. 2020. Characterization of the ballistic properties of ejecta from laser shock-loaded samples using high resolution picosecond laser imaging. Int. J. Impact Eng., 136,CrossRefGoogle Scholar
103429.
Song, Y., Wang, P., Wang, L., Ma, D., He, A., Chen, D., Fan, Z., Ma, Z., and Wang, J. 2021a. The early-time dynamics of Rayleigh–Taylor mixing with a premixed layer. Comput. Fluids, 229, 105061.CrossRefGoogle Scholar
Song, Y., Wang, P., and Wang, L. 2021b. Numerical investigations of Rayleigh–Taylor instability with a density gradient layer. Comput. Fluids, 220, 104869.CrossRefGoogle Scholar
Sorenson, D.S., Capelle, G.A., Grover, M., Johnson, R.P., Kaufman, M.I., LaLone, B.M., Malone, R.M., Marshall, B.F., Minich, R.W., Pazuchanics, P.D., and Smalley, D.D. 2017. Measurements of Sn ejecta particle-size distributions using ultraviolet in-line Fraunhofer holography. J. Dynam. Behav. Mater., 3, 233.CrossRefGoogle Scholar
Soulaine, C., Quintard, M., Baudouy, B., and Van Weelderen, R. 2017. Numerical investigation of thermal counterflow of He II past cylinders. Phys. Rev. Lett., 118, 074506.CrossRefGoogle ScholarPubMed
Soulard, O., and Griffond, J. 2022. Permanence of large eddies in Richtmyer–Meshkov turbulence for weak shocks and high Atwood numbers. Phys. Rev. Fluids, 7, 014605.CrossRefGoogle Scholar
Soulard, O., Griffond, J., and Gréa, B.-J. 2015. Large-scale analysis of unconfined self-similar Rayleigh–Taylor turbulence. Phys. Fluids, 27, 095103.CrossRefGoogle Scholar
Soulard, O., Guillois, F., Griffond, J., Sabelnikov, V., and Simoëns, S. 2018. Permanence of large eddies in Richtmyer–Meshkov turbulence with a small Atwood number. Phys. Rev. Fluids, 3, 104603.CrossRefGoogle Scholar
Soulard, O., Guillois, F., Griffond, J., Sabelnikov, V., and Simoëns, S. 2020. A two-scale Langevin PDF model for Richtmyer–Meshkov turbulence with a small Atwood number. Physica D, 403, 132276.CrossRefGoogle Scholar
Speziale, C.G. 1991. Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech., 23, 107.CrossRefGoogle Scholar
Speziale, C.G. 1998a. A combined large-eddy simulation and time-dependent RANS capability for high-speed compressible flows. J. Sci. Comput., 13, 253.CrossRefGoogle Scholar
Speziale, C.G. 1998b. Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J., 36, 173.CrossRefGoogle Scholar
Spielman, R.B., Deeney, C., Chandler, G.A., et al. 1998. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas, 5, 2105.CrossRefGoogle Scholar
Spitzer, L. 2006. Physics of Fully Ionized Gases. 2nd edn. Dover Publications, New York.Google Scholar
Srebro, Y., Elbaz, Y., Sadot, O., Arazi, L., and Shvarts, D. 2003. A general buoyancy–drag model for the evolution of the Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Laser Part. Beams, 21, 347.CrossRefGoogle Scholar
Sreenivasan, K.R. 1995. On the universality of the Kolmogorov constant. Phys. Fluids, 7, 2778.CrossRefGoogle Scholar
Sreenivasan, K.R. 2011. G.I. Taylor: the inspiration behind the Cambridge school. Pages 127–186 of: Davidson, P.A., Kaneda, Y., Moffatt, K., and Sreenivasan, K.R. (eds), A Voyage through Turbulence. Cambridge University Press, Cambridge, UK.Google Scholar
Srinivasan, B., and Tang, X.Z. 2012. Mechanism for magnetic field generation and growth in Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Plasmas, 19, 082703.CrossRefGoogle Scholar
Srinivasan, B., and Tang, X.Z. 2013. The mitigating effect of magnetic fields on Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Plasmas, 20, 056307.CrossRefGoogle Scholar
Srinivasan, B., Dimonte, G., and Tang, X.-Z. 2012. Magnetic field generation in Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Rev. Lett., 108, 165002.CrossRefGoogle ScholarPubMed
Stalsberg-Zarling, K., and Gore, R.A. 2011. The BHR-2 Turbulence Model: Incompressible Isotropic Decay, Rayleigh–Taylor, Kelvin–Helmholtz, and Homogeneous Variable Density Turbulence. Tech. Rept. LA-UR-11-04773. Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Stanton, L.G., and Murillo, M.S. 2016. Ionic transport in high-energy-density matter. Phys. Rev. E, 93, 043203.CrossRefGoogle ScholarPubMed
Statsenko, V.P., Yanilkin, Yu V., and Zhmaylo, V.A. 2013. Direct numerical simulation of turbulent mixing. Phil. Trans. R. Soc. Lond. A, 371, 20120216.Google ScholarPubMed
Steele, P.T., Jacoby, B.A., Compton, S.M., and Sinibaldi, J.O. 2017. Advances in ejecta diagnostics at LLNL. J. Dynam. Behav. Mater., 3, 253.CrossRefGoogle Scholar
Steenburgh, R.A., Smithtro, C.G., and Groves, K.M. 2008. Ionospheric scintillation effects on single frequency GPS. Space Weather, 6, S04D02.CrossRefGoogle Scholar
Steinberg, D.J., and Lund, C.M. 1989. A constitutive model for strain rates from 10−4 to 106 s−1. J. Appl. Phys., 65, 1528.CrossRefGoogle Scholar
Steinberg, D.J., Cochran, S.G., and Guinan, M.W. 1980. A constitutive model for metals applicable at high-strain rate. J. Appl. Phys., 51, 1498.CrossRefGoogle Scholar
Stellmacher, G., and Wiehr, E. 1973. Observation of an instability in a quiescent prominence. Astron. Astrophys., 24, 321.Google Scholar
Sterbentz, D.M., Jekel, C.F., White, D.A., Aubry, S., Lorenzana, H.E., and Belof, J.L. 2022. Design optimization for Richtmyer–Meshkov instability suppression at shock-compressed material interfaces. Phys. Fluids, 34, 082109.CrossRefGoogle Scholar
Stokes, G.G. 1845. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of pendulums. Trans. Camb. Phil. Soc. 8, 287.Google Scholar
Strykowski, P.J., Krothapalli, A., and Jendoubi, S. 1996. The effect of counterflow on the development of compressible shear layers. J. Fluid Mech., 308, 63.CrossRefGoogle Scholar
Sturtevant, B., and Kulkarny, V.A. 1976. The focusing of weak shock waves. J. Fluid Mech., 73, 651. Suárez, D.O., Díaz, A.J., Ramos, A.A., and Bueno, J.T. 2014. Time evolution of plasma parameters during the rise of a solar prominence instability. Astrophys. J. Lett., 785, L10.Google Scholar
Suchandra, P., and Ranjan, D. 2023. Dynamics of multilayer Rayleigh–Taylor instability at moderately high Atwood numbers. J. Fluid Mech., 974, A35.CrossRefGoogle Scholar
Sun, M., and Takayama, K. 2003. Vorticity production in shock diffraction. J. Fluid Mech., 478, 237. Sun, P., Ding, J., Huang, S., Luo, X., and Cheng, W. 2020a. Microscopic Richtmyer–Meshkov instability under strong shock. Phys. Fluids, 32, 024109.Google Scholar
Sun, R., Ding, J., Zhai, Z., Si, T., and Luo, X. 2020b. Convergent Richtmyer–Meshkov instability of heavy gas layer with perturbed inner surface. J. Fluid Mech., 902, A3.CrossRefGoogle Scholar
Sun, Y.B., Zeng, R.H., and Tao, J.J. 2021. Effects of viscosity and elasticity on Rayleigh–Taylor instability in a cylindrical geometry. Phys. Plasmas, 28, 062701.CrossRefGoogle Scholar
Sun, Z.P., Turco, R.P., Walterscheid, R.L., Venkateswaran, S.V., and Jones, P.W. 1995. Thermo-spheric response to morningside diffuse aurora: high-resolution three-dimensional simulations. J. Geophys. Res. Space Phys., 100, 23779.CrossRefGoogle Scholar
Susskind, L. 2003. Superstrings. Phys. World, 16, 29.CrossRefGoogle Scholar
Svetsov, V.V., Nemtchinov, I.V., and Teterev, A.V. 1995. Disintegration of large meteoroids in Earth’s atmosphere: theoretical models. Icarus, 116, 131.CrossRefGoogle Scholar
Sykes, J.P., Gallagher, T.P., and Rankin, B.A. 2021. Effects of Rayleigh–Taylor instabilities on turbulent premixed flames in a curved rectangular duct. Proc. Combust. Inst., 38, 6059.CrossRefGoogle Scholar
Tabeling, P. 2002. Two-dimensional turbulence: a physicist approach. Phys. Rep., 362, 1.CrossRefGoogle Scholar
Takabe, H. 2004. A historical perspective of developments in hydrodynamic instabilities, integrated codes and laboratory astrophysics. Nucl. Fusion, 44, S149.CrossRefGoogle Scholar
Takabe, H., Mima, K., Montierth, L., and Morse, R.L. 1985. Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 28, 3676.CrossRefGoogle Scholar
Tandberg-Hanssen, E. 2013. The Nature of Solar Prominences. Springer Science & Business Media. Dordrecht, Netherlands.Google Scholar
Tang, J., Zhang, F., Luo, X., and Zhai, Z. 2021a. Effect of Atwood number on convergent Richtmyer– Meshkov instability. Acta Mech. Sin., 37, 434.CrossRefGoogle Scholar
Tang, K., Mostert, W., Fuster, D., and Deike, L. 2021b. Effects of surface tension on the Richtmyer–Meshkov instability in fully compressible and inviscid fluids. Phys. Rev. Fluids, 6, 113901.CrossRefGoogle Scholar
Tao, J.J., He, X.T., Ye, W.H., and Busse, F.H. 2013. Nonlinear Rayleigh–Taylor instability of rotating inviscid fluids. Phys. Rev. E, 87, 013001.CrossRefGoogle ScholarPubMed
Tapinou, K.C., Wheatley, V., Bond, D., and Jahn, I. 2022. The Richtmyer–Meshkov instability of thermal, isotope and species interfaces in a five-moment multi-fluid plasma. J. Fluid Mech., 951, A11.CrossRefGoogle Scholar
Tapinou, K.C., Wheatley, V., Bond, D., and Jahn, I. 2023. The effect of collisions on the multi-fluid plasma Richtmyer–Meshkov instability. Phys. Plasmas, 30, 022707.CrossRefGoogle Scholar
Tassart, J. 2004. Overview of inertial fusion and high-intensity laser plasma research in Europe. Nucl. Fusion, 44, S134.CrossRefGoogle Scholar
Tavares, H.S., Biferale, L., Sbragaglia, M., and Mailybaev, A.A. 2021a. Immiscible Rayleigh–Taylor turbulence using mesoscopic lattice Boltzmann algorithms. Phys. Rev. Fluids, 6, 054606.CrossRefGoogle Scholar
Tavares, H.S., Biferale, L., Sbragaglia, M., and Mailybaev, A.A. 2021b. Validation and application of the lattice Boltzmann algorithm for a turbulent immiscible Rayleigh–Taylor system. Philos. Trans. R. Soc. A, 379, 20200396.CrossRefGoogle ScholarPubMed
Taylor, G.I. 1935. Sir Horace Lamb, FRS. Nature, 135, 255.Google Scholar
Taylor, G.I. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. London. A, 201, 192.Google Scholar
Taylor, G.I. 1974. The interaction between experiment and theory in fluid mechanics. Annu. Rev. Fluid Mech., 6, 1.CrossRefGoogle Scholar
Temporal, M., Jaouen, S., Masse, L., and Canaud, B. 2006. Hydrodynamic instabilities in ablative tamped flows. Phys. Plasmas, 13, 122701.CrossRefGoogle Scholar
Tennekes, H., and Lumley, J.L. 1972. A First Course in Turbulence. MIT Press, Cambridge, MA.CrossRefGoogle Scholar
Terrones, G., and Carrara, M.D. 2015. Rayleigh–Taylor instability at spherical interfaces between viscous fluids: fluid/vacuum interface. Phys. Fluids, 27, 054105.CrossRefGoogle Scholar
Theofanous, T.G. 2011. Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech., 43, 661.CrossRefGoogle Scholar
Thomas, G., Bambrey, R., and Brown, C. 2001. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction. Combust. Theory Model., 5, 573.CrossRefGoogle Scholar
Thompson, S.P. 1907. Lord Kelvin. Nature, 77, 175.CrossRefGoogle Scholar
Thompson, T.A., Burrows, A., and Pinto, P.A. 2003. Shock breakout in core-collapse supernovae and its neutrino signature. Astrophys. J., 592, 434.CrossRefGoogle Scholar
Thomson, J. 1855. XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. The London, Edinburgh, and Dublin Philos. Mag. J. Sci., 10, 330.Google Scholar
Thomson, W. 1887a. On the propagation of laminar motion through a turbulently moving inviscid liquid. The London, Edinburgh, Dublin Philos. Mag. J. Sci., 24, 342.CrossRefGoogle Scholar
Thomson, W. 1887b. Stability of motion (continued from the May, June, and August Numbers).– Broad river flowing down an inclined plane bed. The London, Edinburgh, Dublin Philos. Mag. J. Sci., 24, 272.Google Scholar
Thornber, B. 2016. Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer–Meshkov instability. Phys. Fluids, 28, 045106.CrossRefGoogle Scholar
Thornber, B., and Zhou, Y. 2012. Energy transfer in the Richtmyer–Meshkov instability. Phys. Rev. E, 86, 056302.CrossRefGoogle ScholarPubMed
Thornber, B., and Zhou, Y. 2015. Numerical simulations of the two-dimensional multimode Richtmyer–Meshkov instability. Phys. Plasmas, 22, 032309.CrossRefGoogle Scholar
Thornber, B., Drikakis, D., Youngs, D.L., and Williams, R.J.R. 2010. The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability. J. Fluid Mech., 654, 99.CrossRefGoogle Scholar
Thornber, B., Drikakis, D., Youngs, D.L., and Williams, R.J.R. 2011. Growth of a Richtmyer–Meshkov turbulent layer after reshock. Phys. Fluids, 23, 095107.CrossRefGoogle Scholar
Thornber, B., Drikakis, D., Youngs, D.L., and Williams, R.J.R. 2012. Physics of the single-shocked and reshocked Richtmyer–Meshkov instability. J. Turbul., 13, N10.CrossRefGoogle Scholar
Thornber, B., Griffond, J., Poujade, O., et al. 2017. Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: the θ-group collaboration. Phys. Fluids, 29, 105107.CrossRefGoogle Scholar
Thornber, B., Griffond, J., Bigdelou, P., Boureima, I., Ramaprabhu, P., Schilling, O., and Williams, R.J.R. 2019. Turbulent transport and mixing in the multimode narrowband Richtmyer–Meshkov instability. Phys. Fluids, 31, 096105.CrossRefGoogle Scholar
Tian, B., Fu, D., and Ma, Y. 2006. Numerical investigation of Richtmyer–Meshkov instability driven by cylindrical shocks. Acta Mech. Sin., 22, 9.CrossRefGoogle Scholar
Tian, B.L., Zhang, X.T., Qi, J., and Wang, S.H. 2011. Effects of a Premixed Layer on the Richtmyer– Meshkov Instability. Chin. Phys. Lett., 28, 114701.CrossRefGoogle Scholar
Ticknor, C., Kress, J.D., Collins, L.A., Clérouin, J., Arnault, P., and Decoster, A. 2016. Transport properties of an asymmetric mixture in the dense plasma regime. Phys. Rev. E, 93, 063208.CrossRefGoogle ScholarPubMed
Tomkins, C.D., Balakumar, B.J., Orlicz, G., Prestridge, K.P., and Ristorcelli, J.R. 2013. Evolution of the density self-correlation in developing Richtmyer–Meshkov turbulence. J. Fluid Mech., 735, 288.CrossRefGoogle Scholar
Tommasini, R., Field, J.E., Hammel, B.A., et al. 2015. Tent-induced perturbations on areal density of implosions at the National Ignition Facility. Phys. Plasmas, 22, 056315.CrossRefGoogle Scholar
Tonks, L. 1937. Theory and phenomena of high current densities in low pressure arcs. Trans. Electrochem. Soc., 72, 167.CrossRefGoogle Scholar
Townsend, A.A.R. 1980. The Structure of Turbulent Shear Flow. University Press, Cambridge, UK.Google Scholar
Trimble, V. 1968. Motions and structure of the filamentary envelope of the Crab Nebula. Astron. J., 73, 535.CrossRefGoogle Scholar
Tritschler, V.K., Hu, X.Y., Hickel, S., and Adams, N.A. 2013. Numerical simulation of a Richtmyer– Meshkov instability with an adaptive central-upwind sixth-order WENO scheme. Phys. Scr., T155, 014016.CrossRefGoogle Scholar
Tritschler, V.K., Zubel, M., Hickel, S., and Adams, N.A. 2014a. Evolution of length scales and statistics of Richtmyer–Meshkov instability from direct numerical simulations. Phys. Rev. E, 90, 063001.CrossRefGoogle ScholarPubMed
Tritschler, V.K., Olson, B.J., Lele, S.K., Hickel, S., Hu, X.Y., and Adams, N.A. 2014b. On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. J. Fluid Mech., 755, 429.CrossRefGoogle Scholar
Tritton, D.J. 1988. Physical Fluid Dynamics. Clarendon, Oxford, UK.Google Scholar
Tryggvason, G., and Unverdi, S.O. 1990. Computations of three-dimensional Rayleigh–Taylor instability. Phys. Fluids A, 2, 656.CrossRefGoogle Scholar
Tsiklashvili, V., Romero Colio, P.E., Likhachev, O.A., and Jacobs, J.W. 2012. An experimental study of small Atwood number Rayleigh–Taylor instability using the magnetic levitation of paramagnetic fluids. Phys. Fluids, 24, 052106.CrossRefGoogle Scholar
Tubbs, D.L., Barnes, C.W., Beck, J.B., Hoffman, N.M., Oertel, J.A., Watt, R.G., Boehly, T., Bradley, D., Jaanimagi, P., and Knauer, J. 1999. Cylindrical implosion experiments using laser direct drive. Phys. Plasmas, 6, 2095.CrossRefGoogle Scholar
Turner, J.S. 1997. G.I. Taylor in his later years. Annu. Rev. Fluid Mech., 29, 1.CrossRefGoogle Scholar
Turner, M.R., Sazhin, S.S., Healey, J.J., Crua, C., and Martynov, S.B. 2012. A breakup model for transient diesel fuel sprays. Fuel, 97, 288.CrossRefGoogle Scholar
Uchiyama, Y., Aharonian, F.A., Tanaka, T., Takahashi, T., and Maeda, Y. 2007. Extremely fast acceleration of cosmic rays in a supernova remnant. Nature, 449, 576.CrossRefGoogle Scholar
Ukai, S., Balakrishnan, K., and Menon, S. 2011. Growth rate predictions of single-and multi-mode Richtmyer–Meshkov instability with reshock. Shock Waves, 21, 533.CrossRefGoogle Scholar
Vadivukkarasan, M. 2021. Temporal instability characteristics of Rayleigh–Taylor and Kelvin– Helmholtz mechanisms of an inviscid cylindrical interface. Meccanica, 56, 117.CrossRefGoogle Scholar
Vadivukkarasan, M., and Panchagnula, M.V. 2017. Combined Rayleigh–Taylor and Kelvin– Helmholtz instabilities on an annular liquid sheet. J. Fluid Mech., 812, 152.CrossRefGoogle Scholar
Valentine, G.A., and Wohletz, K.H. 1989. Numerical models of Plinian eruption columns and pyroclastic flows. J. Geophys. Res. Solid Earth, 94, 1867.CrossRefGoogle Scholar
van Haren, H. 2015. Instability observations associated with wave breaking in the stable-stratified deep-ocean. Physica D, 292, 62.CrossRefGoogle Scholar
Van Haren, H., and Gostiaux, L. 2010. A deep-ocean Kelvin–Helmholtz billow train. Geophys. Res. Lett., 37, L03605.CrossRefGoogle Scholar
Vandenboomgaerde, M., and Aymard, C. 2011. Analytical theory for planar shock focusing through perfect gas lens and shock tube experiment designs. Phys. Fluids, 23, 016101.CrossRefGoogle Scholar
Vandenboomgaerde, M., Mügler, C., and Gauthier, S. 1998. Impulsive model for the Richtmyer– Meshkov instability. Phys. Rev. E, 58, 1874.CrossRefGoogle Scholar
Vandenboomgaerde, M., Gauthier, S., and Mügler, C. 2002. Nonlinear regime of a multi-mode Richtmyer–Meshkov instability: a simplified perturbation theory. Phys. Fluids, 14, 1111.CrossRefGoogle Scholar
Vandenboomgaerde, M., Bastian, J.and Casner, A., Galmiche, D., Jadaud, J.-P., Laffite, S., Liberatore, S., Malinie, G., and Philippe, F. 2007. Prolate-spheroid (“rugby-shaped”) hohlraum for inertial confinement fusion. Phys. Rev. Lett., 99, 065004.Google Scholar
Vandenboomgaerde, M., Souffland, D., Mariani, C., Biamino, L., Jourdan, G., and Houas, L. 2014. An experimental and numerical investigation of the dependency on the initial conditions of the Richtmyer–Meshkov instability. Phys. Fluids, 26, 024109.CrossRefGoogle Scholar
Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A., and Dolence, J. 2019. A successful 3D core-collapse supernova explosion model. Mon. Not. R. Astron. Soc., 482, 351.CrossRefGoogle Scholar
Velikovich, A.L., and Dimonte, G. 1996. Nonlinear perturbation theory of the incompressible Richtmyer–Meshkov instability. Phys. Rev. Lett., 76, 3112.CrossRefGoogle ScholarPubMed
Velikovich, A.L., Herrmann, M., and Abarzhi, S.I. 2014. Perturbation theory and numerical modelling of weakly and moderately nonlinear dynamics of the incompressible Richtmyer–Meshkov instability. J. Fluid Mech., 751, 432.CrossRefGoogle Scholar
Velikovich, A.L., Schmitt, A.J., Zulick, C., Aglitskiy, Y., Karasik, M., Obenschain, S.P., Wouchuk, J.G., and Cobos Campos, F. 2020. Multi-mode hydrodynamic evolution of perturbations seeded by isolated surface defects. Phys. Plasmas, 27, 102706.CrossRefGoogle Scholar
Venerus, D.C., and Simavilla, D.N. 2015. Tears of wine: new insights on an old phenomenon. Sci. Rep., 5, 16162.CrossRefGoogle Scholar
Veraar, R., Mayer, A., Verreault, J., Stowe, R., Farinaccio, R., and Harris, P. 2009. Proof-of-principle experiment of a shock-induced combustion ramjet. Page 7432 of: 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. American Institute of Aeronautics and Astronautics, Rhode St. Genèse, Belgium.Google Scholar
Versluis, M., Schmitz, B., Von der Heydt, A., and Lohse, D. 2000. How snapping shrimp snap: through cavitating bubbles. Science, 289, 2114.CrossRefGoogle ScholarPubMed
Vetter, M., and Sturtevant, B. 1995. Experiments on the Richtmyer–Meshkov instability of an air/SF6 interface. Shock Waves, 4, 247.CrossRefGoogle Scholar
Villermaux, E., Rehab, H., and Hopfinger, E.J. 1998. Shear instabilities in the near field of coaxial jets. Phys. Fluids, 10, S2.CrossRefGoogle Scholar
Vishniac, E.T. 1983. The dynamic and gravitational instabilities of spherical shocks. Astrophys. J., 274, 152.CrossRefGoogle Scholar
Vladimirova, N., and Chertkov, M. 2009. Self-similarity and universality in Rayleigh–Taylor, Boussinesq turbulence. Phys. Fluids, 21, 015102.CrossRefGoogle Scholar
Vogler, T.J., and Hudspeth, M.C. 2021. Tamped Richtmyer–Meshkov instability experiments to probe high-pressure material strength. J. Dyn. Behavior Mater., 7, 262.CrossRefGoogle Scholar
Vold, E., Yin, L., and Albright, B.J. 2021. Plasma transport simulations of Rayleigh–Taylor instability in near-ICF deceleration regimes. Phys. Plasmas, 28, 092709.CrossRefGoogle Scholar
von Helmholtz, H. 1868. On the discontinuous movements of fluids. Monder Königlichen Preussis-che Akademie der Wissenschaften zu Berlin, 23, 215.Google Scholar
Vreman, A.W. 2004. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids, 16, 3670.CrossRefGoogle Scholar
Vuilleumier, R, Ego, V, Neltner, L, and Cazabat, AM. 1995. Tears of wine: the stationary state. Langmuir, 11, 4117.CrossRefGoogle Scholar
Wadas, M.J., and Johnsen, E. 2020. Interactions of two bubbles along a gaseous interface undergoing the Richtmyer–Meshkov instability in two dimensions. Physica D, 409, 132489.CrossRefGoogle Scholar
Wadas, M.J., Khieu, L.H., Cearley, G.S., LeFevre, H.J., Kuranz, C.C., and Johnsen, E. 2023. Saturation of vortex rings ejected from shock-accelerated interfaces. Phys. Rev. Lett., 130, 194001.CrossRefGoogle ScholarPubMed
Waddell, J.T., Niederhaus, C.E., and Jacobs, J.W. 2001. Experimental study of Rayleigh–Taylor instability: low Atwood number liquid systems with single-mode initial perturbations. Phys. Fluids, 13, 1263.CrossRefGoogle Scholar
Wade, N.J. 1994. Hermann von Helmholtz (1821–1894). Perception, 23, 981.CrossRefGoogle Scholar
Waitz, I., Marble, F., and Zukoski, E. 1993. Investigation of a contoured wall injector for hypervelocity mixing augmentation. AIAA J., 31, 1014.CrossRefGoogle Scholar
Walchli, B., and Thornber, B. 2017. Reynolds number effects on the single-mode Richtmyer– Meshkov instability. Phys. Rev. E, 95, 013104.CrossRefGoogle ScholarPubMed
Wallace, J.M., Murphy, T.J., Delamater, N.D., et al. 1999. Inertial confinement fusion with tetrahedral hohlraums at OMEGA. Phys. Rev. Lett., 82, 3807.CrossRefGoogle Scholar
Walsh, C.A. 2022. Magnetized ablative Rayleigh–Taylor instability in three dimensions. Phys. Rev. E, 105, 025206.CrossRefGoogle ScholarPubMed
Walsh, C.A., and Clark, D.S. 2023. Nonlinear ablative Rayleigh–Taylor instability: increased growth due to self-generated magnetic fields. Phys. Rev. E, 107, L013201.CrossRefGoogle ScholarPubMed
Walsh, C.A., Chittenden, J.P., McGlinchey, K., Niasse, N.P.L., and Appelbe, B.D. 2017. Self-generated magnetic fields in the stagnation phase of indirect-drive implosions on the National Ignition Facility. Phys. Rev. Lett., 118, 155001.CrossRefGoogle ScholarPubMed
Wan, W.C., Malamud, G., Shimony, A., Di Stefano, C.A., Trantham, M.R., Klein, S.R., Shvarts, D., Kuranz, C.C., and Drake, R.P. 2015. Observation of single-mode, Kelvin–Helmholtz instability in a supersonic flow. Phys. Rev. Lett., 115, 145001.CrossRefGoogle Scholar
Wan, W.C., Malamud, G., Shimony, A., Di Stefano, C.A., Trantham, M.R., Klein, S.R., Shvarts, D., Drake, R.P., and Kuranz, C.C. 2017. Observation of dual-mode, Kelvin–Helmholtz instability vortex merger in a compressible flow. Phys. Plasmas, 24, 055705.CrossRefGoogle Scholar
Wang, G., Zhai, W., Yang, H., et al. 2013a. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun., 4, 1860.CrossRefGoogle ScholarPubMed
Wang, H., Cao, Q., Chen, C., Zhai, Z., and Luo, X. 2022a. Experimental study on a light–heavy interface evolution induced by two successive shock waves. J. Fluid Mech., 953, A15.CrossRefGoogle Scholar
Wang, H., Wang, H., Zhai, Z., and Luo, X. 2023a. High-amplitude effect on single-mode Richtmyer– Meshkov instability of a light–heavy interface. Phys. Fluids, 35, 016106.CrossRefGoogle Scholar
Wang, H., Wang, H., Zhai, Z., and Luo, X. 2023b. High-amplitude effect on Richtmyer–Meshkov instability at a single-mode heavy-light interface. Phys. Fluids, 35, 126107.CrossRefGoogle Scholar
Wang, L., and Li, J. 2005. Fluid mixing due to Rayleigh–Taylor instability in a time-dependent acceleration field. Commun. Nonlinear. Sci. Numer. Simul., 10, 571.CrossRefGoogle Scholar
Wang, L., Li, J., and Xie, Z. 2002. Large-eddy-simulation of 3-dimensional Rayleigh–Taylor instability in incompressible fluids. Sci. China Math., 45, 95.CrossRefGoogle Scholar
Wang, L.F., Ye, W.H., and Li, Y.J. 2010. Combined effect of the density and velocity gradients in the combination of Kelvin–Helmholtz and Rayleigh–Taylor instabilities. Phys. Plasmas, 17, 042103.CrossRefGoogle Scholar
Wang, L.F., Ye, W.H., He, X.T., Zhang, W.Y., Sheng, Z.M., and Yu, M.Y. 2012. Formation of jet-like spikes from the ablative Rayleigh–Taylor instability. Phys. Plasmas, 19, 100701.CrossRefGoogle Scholar
Wang, L.F., Wu, J.F., Ye, W.H., Zhang, W.Y., and He, X.T. 2013b. Weakly nonlinear incompressible Rayleigh–Taylor instability growth at cylindrically convergent interfaces. Phys. Plasmas, 20, 042708.CrossRefGoogle Scholar
Wang, L.F., Wu, J.F., Guo, H.Y., Ye, W.H., Liu, J., Zhang, W.Y., and He, X.T. 2015a. Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder. Phys. Plasmas, 22, 082702.CrossRefGoogle Scholar
Wang, M., Si, T., and Luo, X. 2013c. Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study. Exp. Fluids, 54, 1.CrossRefGoogle Scholar
Wang, P., Zhou, Y., MacLaren, S.A., Huntington, C.M., Raman, K.S., Doss, F.W., and Flippo, K.A. 2015b. Three-and two-dimensional simulations of counter-propagating shear experiments at high energy densities at the National Ignition Facility. Phys. Plasmas, 22, 112701.CrossRefGoogle Scholar
Wang, R., Song, Y., Ma, Z., Ma, D., Wang, L., and Wang, P. 2022b. The transition to turbulence in rarefaction-driven Rayleigh–Taylor mixing: effects of diffuse interface. Phys. Fluids, 34, 015125.CrossRefGoogle Scholar
Wang, R., Song, Y., Ma, Z., Zhang, Y., Wang, J., Xu, Y., Wang, L., and Wang, P. 2023c. Scale-to-scale energy transfer in rarefaction-driven Rayleigh–Taylor instability induced transitional mixing. Phys. Fluids, 35, 025136.CrossRefGoogle Scholar
Wang, T, Tao, G, Bai, JS, Li, P, and Wang, B. 2015c. Numerical comparative analysis of Richtmyer– Meshkov instability simulated by different SGS models. Can. J. Phys., 93, 519.CrossRefGoogle Scholar
Wang, T, Bai, JS, Li, P, Wang, B, Du, L, and Tao, G. 2016. Large-eddy simulations of the multi-mode Richtmyer–Meshkov instability and turbulent mixing under reshock. High Energy Density Phys., 19, 65.CrossRefGoogle Scholar
Wang, X., Yang, D., Wu, J., and Luo, X. 2015d. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids, 27, 064104.CrossRefGoogle Scholar
Wang, X.-G., Sun, S.K., Xiao, D.L., Wang, G.Q., Zhang, Y., Zhou, S.T., Ren, X.D., Xu, Q., Huang, X.B., Ding, N., and Shu, X.J. 2019a. Numerical study on magneto-Rayleigh–Taylor instabilities for thin liner implosions on the primary test stand facility. Chin. Phys. B, 28, 035201.CrossRefGoogle Scholar
Wang, X.-X. 2019b. Research at Tsinghua University on electrical explosions of wires. Matter Radiat. Extremes, 4, 017201.CrossRefGoogle Scholar
Wang, Y., and Dong, G. 2020. Interface evolutions and growth predictions of mixing zone on premixed flame interface during RM instability. Chin. J. Theor. Appl. Mech., 52, 1655.Google Scholar
Wang, Y., Bao, B., Yang, C., and Zhang, L. 2018. The impact of different interstellar medium structures on the dynamical evolution of supernova remnants. Mon. Not. R. Astron. Soc., 478, 2948.CrossRefGoogle Scholar
Wang, Z., Wang, T., Bai, J., and Xiao, J. 2019. Numerical study of the Richtmyer–Meshkov instability induced by non-planar shock wave in non-uniform flows. J. Turbul., 20, 481.Google Scholar
Wang, Z., Xue, K., and Han, P. 2021. Bell–Plesset effects on Rayleigh–Taylor instability at cylindrically divergent interfaces between viscous fluids. Phys. Fluids, 33, 034118.CrossRefGoogle Scholar
Warhaft, Z. 1997. An Introduction to Thermal-Fluid Engineering: The Engine and the Atmosphere. Cambridge University Press, Cambridge, UK.Google Scholar
Weber, C., Haehn, N., Oakley, J., Anderson, M., and Bonazza, R. 2012. Richtmyer–Meshkov instability on a low Atwood number interface after reshock. Shock Waves, 22, 317.CrossRefGoogle Scholar
Weber, C.R., Cook, A.W., and Bonazza, R. 2013. Growth rate of a shocked mixing layer with known initial perturbations. J. Fluid Mech., 725, 372.CrossRefGoogle Scholar
Weber, C.R., Haehn, N.S., Oakley, J.G., Rothamer, D.A., and Bonazza, R. 2014a. An experimental investigation of the turbulent mixing transition in the Richtmyer–Meshkov instability. J. Fluid Mech., 748, 457.CrossRefGoogle Scholar
Weber, C.R., Clark, D.S., Cook, A.W., Busby, L.E., and Robey, H.F. 2014b. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation. Phys. Rev. E, 89, 053106.CrossRefGoogle ScholarPubMed
Weber, C.R., Clark, D.S., Cook, A.W., et al. 2015. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion. Phys. Plasmas, 22, 032702.CrossRefGoogle Scholar
Weber, C.R., Döppner, T., Casey, D.T., et al. 2016. First measurements of fuel-ablator interface instability growth in inertial confinement fusion implosions on the National Ignition Facility. Phys. Rev. Lett., 117, 075002.CrossRefGoogle ScholarPubMed
Weber, C.R., Casey, D.T., Clark, D.S., et al. 2017. Improving ICF implosion performance with alternative capsule supports. Phys. Plasmas, 24, 056302.CrossRefGoogle Scholar
Weber, C.R., Clark, D.S., Pak, A., et al. 2020. Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube. Phys. Plasmas, 27, 032703.CrossRefGoogle Scholar
Wei, T., and Livescu, D. 2012. Late-time quadratic growth in single-mode Rayleigh–Taylor instability. Phys. Rev. E, 86, 046405.CrossRefGoogle ScholarPubMed
Wei, Y., Li, Yu., Wang, Z., Yang, H., Zhu, Z., Qian, Y.H., and Luo, K.H. 2022. Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh–Taylor instability. Phys. Rev. E, 105, 015103.Google Scholar
Weir, S.T., Chandler, E.A., and Goodwin, B.T. 1998. Rayleigh–Taylor instability experiments examining feedthrough growth in an incompressible, convergent geometry. Phys. Rev. Lett., 80, 3763.CrossRefGoogle Scholar
Weis, M.R., Zhang, P., Lau, Y.Y., Schmit, P.F., Peterson, K.J., Hess, M., and Gilgenbach, R.M. 2015. Coupling of sausage, kink, and magneto-Rayleigh–Taylor instabilities in a cylindrical liner. Phys. Plasmas, 22, 032706.CrossRefGoogle Scholar
Weizsäcker, C.F. v. 1948. Das spektrum der turbulenz bei grossen Reynoldsschen zahlen. Zeitschrift für Physik, 124, 614.CrossRefGoogle Scholar
Wells, F. 2014. The Heart of Leonardo. Springer Science & Business Media, London.Google Scholar
Welser-Sherrill, L., Mancini, R.C., Haynes, D.A., et al. 2007. Development of two mix model post-processors for the investigation of shell mix in indirect drive implosion cores. Phys. Plasmas, 14, 072705.CrossRefGoogle Scholar
Welser-Sherrill, L., Fincke, J., Doss, F., Loomis, E., Flippo, K., Offermann, D., Keiter, P., Haines, B., and Grinstein, F. 2013. Two laser-driven mix experiments to study reshock and shear. High Energy Density Phys., 9, 496.CrossRefGoogle Scholar
Wheatley, V., Pullin, D.I., and Samtaney, R. 2005a. Regular shock refraction at an oblique planar density interface in magnetohydrodynamics. J. Fluid Mech., 522, 179.CrossRefGoogle Scholar
Wheatley, V., Pullin, D.I., and Samtaney, R. 2005b. Stability of an impulsively accelerated density interface in magnetohydrodynamics. Phys. Rev. Lett., 95, 125002.CrossRefGoogle ScholarPubMed
Wheatley, V., Gehre, R.M., Samtaney, R., and Pullin, D.I. 2013. The magnetohydrodynamic Richtmyer–Meshkov instability: the oblique field case. In: Bonazza, R., Ranjan, D. (eds), 29th International Symposium on Shock Waves 2. ISSW 2013. Springer, Cham, Switzerland.Google Scholar
Wheeler, J.C., Harkness, R.P., Khokhlov, A.M., and Höflich, P. 1995. Stirling’s supernovae: a survey of the field. Phys. Rep., 256, 211.CrossRefGoogle Scholar
Wheeler, J.C., Meier, D.L., and Wilson, J.R. 2002. Asymmetric supernovae from magnetocentrifugal jets. Astrophys. J., 568, 807.CrossRefGoogle Scholar
White, D.A. 2009. Siqueiros: Biography of a Revolutionary Artist. BookSurge, Charleston, SC.Google Scholar
White, F.M. 1994. Fluid Mechanics. 3rd edn. McGraw-Hill, New York.Google Scholar
White, J., Oakley, J., Anderson, M., and Bonazza, R. 2010. Experimental measurements of the nonlinear Rayleigh–Taylor instability using a magnetorheological fluid. Phys. Re. E, 81, 026303.CrossRefGoogle ScholarPubMed
Whitney, K.G. 1999. Momentum and heat conduction in highly ionizable plasmas. Phys. Plasmas, 6, 816.CrossRefGoogle Scholar
Wieland, S.A., Hamlington, P.E., Reckinger, S.J., and Livescu, D. 2019. Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh–Taylor instability. Phys. Rev. Fluids, 4, 093905.CrossRefGoogle Scholar
Wilcox, D.C. 1998. Turbulence Modeling for CFD. DCW Industries, La Canada, CA.Google Scholar
Wilkinson, J.P., and Jacobs, J.W. 2007. Experimental study of the single-mode three-dimensional Rayleigh–Taylor instability. Phys. Fluids, 19, 124102.CrossRefGoogle Scholar
Willey, T.M., Champley, K., Hodgin, R., Lauderbach, L., Bagge-Hansen, M., May, C., Sanchez, N., Jensen, B.J., Iverson, A., and Van Buuren, T. 2016. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers. J. Appl. Phys., 119, 235901.CrossRefGoogle Scholar
Williams, R.J.R. 2016. The late time structure of high density contrast, single mode Richtmyer– Meshkov flow. Phys. Fluids, 28, 074108.CrossRefGoogle Scholar
Williams, R.J.R. 2018. Ejecta sources and scalings. AIP Conf. Proc., 1979, 080015.CrossRefGoogle Scholar
Williams, R.J.R., and Grapes, C.C. 2017. Simulation of double-shock ejecta production. J. Dynam. Behav. Mater., 3, 291.CrossRefGoogle Scholar
Wilson, D.B. (ed). 1990. The Correspondence between Sir George Gabriel Stokes and Sir William Thomson, Baron Kelvin of Largs, 2 vols. Cambridge University Press, Cambridge, UK.Google Scholar
Wilson, D.C., Bradley, P.A., Goldman, S.R., Hoffman, N.M., Margevicius, R.W., Stephens, R.B., and Olson, R.E. 2000. Developments in NIF beryllium capsule design. Fusion Techno., 38, 16.CrossRefGoogle Scholar
Wilson, J.R. 1985. Supernovae and post-collapse behavior. In: Centrella, J.M., LeBlanc, J.M., Bowers, R.L. and Wheeler, J.A. (eds), Numerical astrophysics, Jones and Bartlett Publ., Boston, MA.Google Scholar
Wolfshtein, M. 1970. Length-scale-of-turbulence equation. Israel J. Tech., 8, 87.Google Scholar
Woltjer, L. 1972. Supernova remnants. Annu. Rev. Astron. Astrophys., 10, 129.CrossRefGoogle Scholar
Wong, M.L., Livescu, D., and Lele, S.K. 2019. High-resolution Navier–Stokes simulations of Richtmyer–Meshkov instability with reshock. Phys. Rev. Fluids, 4, 104609.CrossRefGoogle Scholar
Wong, M.L., Baltzer, J.R., Livescu, D., and Lele, S.K. 2022. Analysis of second moments and their budgets for Richtmyer–Meshkov instability and variable-density turbulence induced by reshock. Phys. Rev. Fluids, 7, 044602.CrossRefGoogle Scholar
Wongwathanarat, A., Mueller, E., and Janka, H.-Th. 2015. Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout. Astron. Astrophys., 577, A48.CrossRefGoogle Scholar
Wood, B.D., He, X., and Apte, S.V. 2020. Modeling turbulent flows in porous media. Annu. Rev. Fluid Mech., 52, 171.CrossRefGoogle Scholar
Woodman, R.F., and La Hoz, C. 1976. Radar observations of F region equatorial irregularities. J. Geophys. Res., 81, 5447.CrossRefGoogle Scholar
Woods, A.W. 1995. The dynamics of explosive volcanic eruptions. Rev. Geophys., 33, 495.CrossRefGoogle Scholar
Woods, J.D. 1968. Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 32, 791.CrossRefGoogle Scholar
Woolstrum, J.M., Yager-Elorriaga, D.A., Campbell, P.C., Jordan, N.M., Seyler, C.E., and McBride, R.D. 2020. Extended magnetohydrodynamics simulations of thin-foil Z-pinch implosions with comparison to experiments. Phys. Plasmas, 27, 092705.CrossRefGoogle Scholar
Woosley, S.E., Wunsch, S., and Kuhlen, M. 2004. Carbon ignition in type Ia supernovae: an analytic model. Astrophys. J., 607, 921.CrossRefGoogle Scholar
Wouchuk, J.G., and Nishihara, K. 1996. Linear perturbation growth at a shocked interface. Phys. Plasmas, 3, 3761.CrossRefGoogle Scholar
Wouchuk, J.G., and Nishihara, K. 1997. Asymptotic growth in the linear Richtmyer–Meshkov instability. Phys. Plasmas, 4, 1028.CrossRefGoogle Scholar
Wouchuk, JG, and Sano, T. 2015. Normal velocity freeze-out of the Richtmyer–Meshkov instability when a rarefaction is reflected. Phys. Rev. E, 91, 023005.CrossRefGoogle Scholar
Wu, C.C. 1987. On MHD intermediate shocks. Geophys. Res. Lett., 14, 668.CrossRefGoogle Scholar
Wu, C.C. 1990. Formation, structure, and stability of MHD intermediate shocks. J. Geophys. Res. Space Phys., 95, 8149.CrossRefGoogle Scholar
Wu, J., Lu, Y., Sun, F., Jiang, X., Wang, Z., Zhang, D., Li, X., and Qiu, A. 2019. Researches on preconditioned wire array Z pinches in Xi’an Jiaotong University. Matter Radiat. Extremes, 4, 036201.CrossRefGoogle Scholar
Wu, J., Liu, H., and Xiao, Z. 2021. Refined modelling of the single-mode cylindrical Richtmyer– Meshkov instability. J. Fluid Mech., 908.CrossRefGoogle Scholar
Wu, Z., Huang, S., Ding, J., Wang, W., and Luo, X. 2018. Molecular dynamics simulation of cylindrical Richtmyer–Meshkov instability. Sci. China Phys. Mech. Astron., 61, 114712.CrossRefGoogle Scholar
Wu-Wang, H., Liu, C., and Xiao, Z. 2024. Parametric effects on Richtmyer–Meshkov instability of a V-shaped gaseous interface within linear stage. Phys. Fluids, 36, 024114.CrossRefGoogle Scholar
Wykes, M.S.D., Hughes, G.O., and Dalziel, S. 2015. On the meaning of mixing efficiency for buoyancy driven mixing in stratified turbulent flows. J. Fluid Mech., 781, 261.CrossRefGoogle Scholar
Xia, C., and Keppens, R. 2016. Internal dynamics of a twin-layer solar prominence. Astrophys. J. Lett., 825, L29.CrossRefGoogle Scholar
Xiao, J.X., Bai, J.S., and Wang, T. 2016. Numerical study of initial perturbation effects on Richtmyer–Meshkov instability in nonuniform flows. Phys. Rev. E, 94, 013112.CrossRefGoogle ScholarPubMed
Xiao, M., Zhang, Y., and Tian, B. 2020a. Modeling of turbulent mixing with an improved K–L model. Phys. Fluids, 32, 092104.CrossRefGoogle Scholar
Xiao, M., Zhang, Y., and Tian, B. 2020b. Unified prediction of reshocked Richtmyer–Meshkov mixing with KL model. Phys. Fluids, 32, 032107.CrossRefGoogle Scholar
Xiao, M., Zhang, Y., and Tian, B. 2021. A K–L model with improved realizability for turbulent mixing. Phys. Fluids, 33, 022104.CrossRefGoogle Scholar
Xie, C., Tao, J., and Li, J. 2017a. Viscous Rayleigh–Taylor instability with and without diffusion effect. Appl. Math. Mech., 38, 263.CrossRefGoogle Scholar
Xie, C.Y., Tao, J.J., Sun, Z.L., and Li, J. 2017b. Retarding viscous Rayleigh–Taylor mixing by an optimized additional mode. Phys. Rev. E, 95, 023109.CrossRefGoogle ScholarPubMed
Xie, H., Xiao, M., and Zhang, Y. 2021a. Predicting different turbulent mixing problems with the same K − E model and model coefficients. AIP Adv., 11, 075213.CrossRefGoogle Scholar
Xie, H., Xiao, M., and Zhang, Y. 2021b. Unified prediction of turbulent mixing induced by interfacial instabilities via Besnard-Harlow-Rauenzahn-2 model. Phys. Fluids, 33, 105123.CrossRefGoogle Scholar
Xie, H., Zhao, Y., and Zhang, Y. 2023. Data-driven nonlinear K-L turbulent mixing model via gene expression programming method. Acta Mech. Sin., 39, 322315.CrossRefGoogle Scholar
Xin, J., Yan, R., Wan, Z.-H., Sun, D.-J., Zheng, J., Zhang, H., Aluie, H., and Betti, R. 2019. Two mode coupling of the ablative Rayleigh–Taylor instabilities. Phys. Plasmas, 26, 032703.CrossRefGoogle Scholar
Xu, Z.W., Wu, J., and Wu, Z.S. 2004. A survey of ionospheric effects on space-based radar. Waves Random Complex Media, 14, S189.Google Scholar
Yabe, T., Hoshino, H., and Tsuchiya, T. 1991. Two-and three-dimensional behavior of Rayleigh– Taylor and Kelvin–Helmholtz instabilities. Phys. Rev. A, 44, 2756.CrossRefGoogle ScholarPubMed
Yager-Elorriaga, D.A., Zhang, P., Steiner, A.M., Jordan, N.M., Campbell, P.C., Lau, Y.Y., and Gilgen-bach, R.M. 2016. Discrete helical modes in imploding and exploding cylindrical, magnetized liners. Phys. Plasmas, 23, 124502.CrossRefGoogle Scholar
Yager-Elorriaga, D.A., Gomez, M.R., Ruiz, D.E., et al. 2022. An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories. Nucl. Fusion, 62, 042015.CrossRefGoogle Scholar
Yakovenko, S.N. 2014. The effects of density difference and surface tension on the development of Rayleigh–Taylor instability of an interface between fluid media. Fluid Dyn., 49, 748.CrossRefGoogle Scholar
Yamanaka, C., Kato, Y., Izawa, Y., Yoshida, K., Yamanaka, T., Sasaki, T., Nakatsuka, M., Mochizuki, T., Kuroda, J., and Nakai, S. 1981. Nd-doped phosphate glass laser systems for laser-fusion research. IEEE J. Quantum Electron., 17, 1639.CrossRefGoogle Scholar
Yan, R., Betti, R., Sanz, J., Aluie, H., Liu, B., and Frank, A. 2016. Three-dimensional single-mode nonlinear ablative Rayleigh–Taylor instability. Phys. Plasmas, 23, 022701.CrossRefGoogle Scholar
Yan, Z., Fu, Y., Wang, L., Yu, C., and Li, X. 2022. Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. J. Fluid Mech., 941, A55.CrossRefGoogle Scholar
Yang, H., and Radulescu, M.I. 2021. Dynamics of cellular flame deformation after a head-on interaction with a shock wave: reactive Richtmyer–Meshkov instability. J. Fluid Mech., 923, A36.CrossRefGoogle Scholar
Yang, J., Kubota, T., and Zukoski, E.E. 1993. Applications of shock-induced mixing to supersonic combustion. AIAA J., 31, 854.CrossRefGoogle Scholar
Yang, J., Kubota, T., and Zukoski, E.E. 1994a. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech., 258, 217.CrossRefGoogle Scholar
Yang, Q., Chang, J., and Bao, W. 2014. Richtmyer–Meshkov instability induced mixing enhancement in the scramjet combustor with a central strut. Adv. Mech. Eng., 6, 614189.CrossRefGoogle Scholar
Yang, X.C., and Cao, Y.G. 2021. Effects of head loss, surface tension, viscosity and density ratio on the Kelvin–Helmholtz instability in different types of pipelines. Physica D, 424, 132950.CrossRefGoogle Scholar
Yang, Y., Zhang, Q., and Sharp, D.H. 1994b. Small amplitude theory of Richtmyer–Meshkov instability. Phys. Fluids, 6, 1856.CrossRefGoogle Scholar
Yanilkin, Yu V, Nikiforov, VV, Bondarenko, Yu A, Gubkov, EV, Zharova, GV, Statsenko, VP, and Tarasov, VI. 1995. Two-parameter model and method for computations of turbulent mixing in 2D compressible flows. In: Young, R., Glimm, J. & Boston, B. (eds), Proceedings of 5th International Workshop on the Physics of Compressible Turbulent Mixing. World Scientific, Singapore.Google Scholar
Ye, W.H., Wang, L.F., and He, X.T. 2010. Spike deceleration and bubble acceleration in the ablative Rayleigh–Taylor instability. Phys. Plasmas, 17, 122704.CrossRefGoogle Scholar
Ye, W.H., Wang, L.F., Xue, C., Fan, Z.F., and He, X.T. 2011. Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles. Phys. Plasmas, 18, 022704.CrossRefGoogle Scholar
Yeung, P.K., and Zhou, Y. 1997. Universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev. E, 56, 1746.CrossRefGoogle Scholar
Yih, C.-S. 1960. A transformation for non-homentropic flows, with an application to large-amplitude motion in the atmosphere. J. Fluid Mech., 9, 68.CrossRefGoogle Scholar
Yilmaz, I. 2020. Analysis of Rayleigh–Taylor instability at high Atwood numbers using fully implicit, non-dissipative, energy-conserving large eddy simulation algorithm. Phys. Fluids, 32, 054101.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Vold, E.L., Nystrom, W.D., Bird, R.F., and Bowers, K.J. 2019. Plasma kinetic effects on interfacial mix and burn rates in multispatial dimensions. Phys. Plasmas, 26, 062302.CrossRefGoogle Scholar
Yosef-Hai, A., Sadot, O., Kartoon, D., Oron, D., Levin, L.A., Sarid, E., Elbaz, Y., Ben-Dor, G., and Shvarts, D. 2003. Late-time growth of the Richtmyer–Meshkov instability for different Atwood numbers and different dimensionalities. Laser Part. Beams, 21, 363.CrossRefGoogle Scholar
Young, R.M.B., and Read, P.L. 2017. Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nat. Phys., 13, 1135.CrossRefGoogle Scholar
Young, T. 1805. III. An essay on the cohesion of fluids. Phil. Trans. R. Soc. London, 95, 65.Google Scholar
Young, Y.-N., and Ham, F.E. 2006. Surface tension in incompressible Rayleigh–Taylor mixing flow. J. Turbul., 7, N71.CrossRefGoogle Scholar
Youngs, D.L. 1984. Numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Physica D, 12, 32.CrossRefGoogle Scholar
Youngs, D.L. 1989. Modelling turbulent mixing by Rayleigh–Taylor instability. Physica D, 37, 270.CrossRefGoogle Scholar
Youngs, D.L. 1991. Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Phys. Fluids A, 3, 1312.CrossRefGoogle Scholar
Youngs, D.L. 1994. Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Laser Part. Beams, 12, 725.CrossRefGoogle Scholar
Youngs, D.L. 2004. Effect of initial conditions on self-similar turbulent mixing. In: Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, UK.Google Scholar
Youngs, D.L. 2013. The density ratio dependence of self-similar Rayleigh–Taylor mixing. Phil. Trans. R. Soc. Lond., 371, 20120173.Google ScholarPubMed
Youngs, D.L. 2017. Rayleigh–Taylor mixing: direct numerical simulation and implicit large eddy simulation. Phys. Scr., 92, 074006.CrossRefGoogle Scholar
Youngs, D.L., and Thornber, B. 2020a. Buoyancy-Drag modelling of bubble and spike distances for single-shock Richtmyer–Meshkov mixing. Physica D, 410, 132517.CrossRefGoogle Scholar
Youngs, D.L., and Thornber, B. 2020b. Early time modifications to the Buoyancy-Drag model for Richtmyer–Meshkov mixing. J. Fluids Eng., 142, 121107.CrossRefGoogle Scholar
Youngs, D.L., and Williams, R.J.R. 2008. Turbulent mixing in spherical implosions. Int. J. Numer. Methods Fluids, 56, 1597.CrossRefGoogle Scholar
Yu, B., He, M., Zhang, B., and Liu, H. 2020. Two-stage growth mode for lift-off mechanism in oblique shock-wave/jet interaction. Phys. Fluids, 32, 116105.CrossRefGoogle Scholar
Yu, E.P., Awe, T.J., Cochrane, K.R., Peterson, K.J., Yates, K.C., Hutchinson, T.M., Hatch, M.W., Bauer, B.S., Tomlinson, K., and Sinars, D.B. 2023a. Seeding the Electrothermal Instability through a Three-Dimensional, Nonlinear Perturbation. Phys. Rev. Lett., 130, 255101.CrossRefGoogle ScholarPubMed
Yu, E.P., Awe, T.J., Cochrane, K.R., Peterson, K.J., Yates, K.C., Hutchinson, T.M., Hatch, M.W., Bauer, B.S., Tomlinson, K., and Sinars, D.B. 2023b. Three-dimensional feedback processes in current-driven metal. Phys. Rev. E, 107, 065209.CrossRefGoogle ScholarPubMed
Yu, H., and Livescu, D. 2008. Rayleigh–Taylor instability in cylindrical geometry with compressible fluids. Phys. Fluids, 20, 104103.CrossRefGoogle Scholar
Yuan, D., Shen, Y., Liu, Y., Li, H., Feng, X., and Keppens, R. 2019. Multilayered Kelvin–Helmholtz instability in the solar corona. Astrophy. J. Lett., 884, L51.CrossRefGoogle Scholar
Zabusky, N.J. 1999. Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments. Annu. Rev. Fluid Mech., 31, 495.CrossRefGoogle Scholar
Zanella, R., Tegze, G., Le Tellier, R., and Henry, H. 2020. Two-and three-dimensional simulations of Rayleigh–Taylor instabilities using a coupled Cahn–Hilliard/Navier–Stokes model. Phys. Fluids, 32, 124115.CrossRefGoogle Scholar
Zaytsev, S.G., Krivets, V.V., Mazilin, I.M., Titov, S.N., Chebotareva, E.I., Nikishin, V.V., Tishkin, V.F., Bouquet, S., and Haas, J.F. 2003. Evolution of the Rayleigh–Taylor instability in the mixing zone between gases of different densities in a field of variable acceleration. Laser Part. Beams, 21, 393.CrossRefGoogle Scholar
Zel’dovich, Ya B., and Raizer, Yu P. 1966. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, I & II. Academic Press, New York.Google Scholar
Zelina, J., Shouse, D.T., and Hancock, R.D. 2004. Ultra-compact combustors for advanced gas turbine engines. Pages 53–62 of: ASME Turbo Expo 2004: Power for Land, Sea, and Air. American Society of Mechanical Engineers, Vienna, Austria.Google Scholar
Zeng, R.H., Tao, J.J., and Sun, Y.B. 2020. Three-dimensional viscous Rayleigh–Taylor instability at the cylindrical interface. Phys. Rev. E, 102, 023112.CrossRefGoogle ScholarPubMed
Zeng, W., Pan, J., Ren, Y., and Sun, Y. 2018a. Numerical study on the turbulent mixing of planar shock-accelerated triangular heavy gases interface. Acta Mech. Sin., 34, 855.CrossRefGoogle Scholar
Zeng, W., Pan, J., Sun, Y., and Ren, Y. 2018b. Turbulent mixing and energy transfer of reshocked heavy gas curtain. Phys. Fluids, 30, 064106.CrossRefGoogle Scholar
Zenit, R. 2019. Some fluid mechanical aspects of artistic painting. Phys. Rev. Fluids, 4, 110507.CrossRefGoogle Scholar
Zetina, S., Godínez, F.A., and Zenit, R. 2015. A hydrodynamic instability is used to create aesthetically appealing patterns in painting. PloS One, 10, e0126135.CrossRefGoogle ScholarPubMed
Zeytounian, R.K. 2003. Joseph Boussinesq and his approximation: a contemporary view. Comptes Rendus Mecanique, 331, 575.CrossRefGoogle Scholar
Zhai, Z., Si, T., Luo, X., and Yang, J. 2011. On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids, 23, 084104.CrossRefGoogle Scholar
Zhai, Z., Wang, M., Si, T., and Luo, X. 2014. On the interaction of a planar shock with a light polygonal interface. J. Fluid Mech., 757, 800.CrossRefGoogle Scholar
Zhai, Z., Dong, P., Si, T., and Luo, X. 2016. The Richtmyer–Meshkov instability of a “V” shaped air/helium interface subjected to a weak shock. Phys. Fluids, 28, 082104.CrossRefGoogle Scholar
Zhai, Z., Liang, Y., Liu, L., Ding, J., Luo, X., and Zou, L. 2018. Interaction of rippled shock wave with flat fast-slow interface. Phys. Fluids, 30, 046104.CrossRefGoogle Scholar
Zhai, Z., Ou, J., and Ding, J. 2019. Coupling effect on shocked double-gas cylinder evolution. Phys. Fluids, 31, 096104.CrossRefGoogle Scholar
Zhai, Z., Guo, X., and Si, T. 2020. Experimental study on bubble competition of shock-accelerated saw-tooth interface. Acta Aerodynamica Sin., 38, 339.Google Scholar
Zhakhovskii, V.V., Zybin, S.V., Abarzhi, S.I., and Nishihara, K. 2006. Atomistic dynamics of the Richtmyer–Meshkov instability in cylindrical and planar geometries. AIP Conf. Proc., 845, 433.Google Scholar
Zhang, C., Gao, C., Yu, C., Xu, X., Fan, Z., and Wang, P. 2023a. Numerical study of the high-intensity heat conduction effect on turbulence induced by the ablative Rayleigh–Taylor instability. Phys. Fluids, 35, 054106.Google Scholar
Zhang, D., Ding, J., Si, T., and Luo, X. 2023b. Divergent Richtmyer–Meshkov instability on a heavy gas layer. J. Fluid Mech., 959, A37.CrossRefGoogle Scholar
Zhang, H., Kaman, T., She, D., Cheng, B., Glimm, J., and Sharp, D.H. 2018a. V&V for turbulent mixing in the intermediate asymptotic regime. Pure Appl. Math. Q., 14, 193.CrossRefGoogle Scholar
Zhang, H., Betti, R., Yan, R., and Aluie, H. 2020a. Nonlinear bubble competition of the multi-mode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion. Phys. Plasmas, 27, 122701.CrossRefGoogle Scholar
Zhang, J., Wang, L.F., Ye, W.H., Wu, J.F., Guo, H.Y., Zhang, W.Y., and He, X.T. 2017. Weakly nonlinear incompressible Rayleigh–Taylor instability in spherical geometry. Phys. Plasmas, 24, 062703.CrossRefGoogle Scholar
Zhang, J.A., Katsaros, K.B., Black, P.G., Lehner, S., French, J.R., and Drennan, W.M. 2008. Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Bound. Layer Meteorol., 128, 173.CrossRefGoogle Scholar
Zhang, L., Ding, Y., Jiang, S., et al. 2015. Reducing wall plasma expansion with gold foam irradiated by laser. Phys. Plasmas, 22, 110703.CrossRefGoogle Scholar
Zhang, L., Ding, Y., Lin, Z., et al. 2016a. Demonstration of enhancement of x-ray flux with foam gold compared to solid gold. Nucl. Fusion, 56, 036006.CrossRefGoogle Scholar
Zhang, Q. 1998. Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett., 81, 3391.CrossRefGoogle Scholar
Zhang, Q., and Graham, M.J. 1997. Scaling laws for unstable interfaces driven by strong shocks in cylindrical geometry. Phys. Rev. Lett., 79, 2674.CrossRefGoogle Scholar
Zhang, Q., and Graham, M.J. 1998. A numerical study of Richtmyer–Meshkov instability driven by cylindrical shocks. Phys. Fluids, 10, 974.CrossRefGoogle Scholar
Zhang, Q., and Guo, W. 2016. Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J. Fluid Mech., 786, 47.CrossRefGoogle Scholar
Zhang, Q., and Guo, W. 2022. Quantitative theory for spikes and bubbles in the Richtmyer–Meshkov instability at arbitrary density ratios. Phys. Rev. Fluids, 7, 093904.CrossRefGoogle Scholar
Zhang, Q., and Sohn, S.-I. 1996. An analytical nonlinear theory of Richtmyer–Meshkov instability. Phys. Lett. A, 212, 149.CrossRefGoogle Scholar
Zhang, Q., and Sohn, S.-I. 1997. Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids, 9, 1106.CrossRefGoogle Scholar
Zhang, Q., and Sohn, S.-I. 1999. Quantitative theory of Richtmyer–Meshkov instability in three dimensions. Zeitschrift für angewandte Mathematik und Physik ZAMP, 50, 1.CrossRefGoogle Scholar
Zhang, Q., Deng, S., and Guo, W. 2018b. Quantitative theory for the growth rate and amplitude of the compressible Richtmyer–Meshkov instability at all density ratios. Phys. Rev. Lett., 121, 174502.CrossRefGoogle ScholarPubMed
Zhang, W., Wu, Q., Zou, L., Zheng, X., Li, X., Luo, X., and Ding, J. 2018c. Mach number effect on the instability of a planar interface subjected to a rippled shock. Phys. Rev. E, 98, 043105.CrossRefGoogle Scholar
Zhang, X. 2013. Single-mode bubble evolution simulations of Rayleigh Taylor instability with spectral element method and a viscous model. Comput. Fluids, 88, 813821.CrossRefGoogle Scholar
Zhang, X., Zheng, W., Wei, X., et al. 2005. Preliminary experimental results of Shenguang III technical integration experiment line. Page 6 of: High-Power Lasers and Applications III. Vol. 5627. International Society for Optics and Photonics, Bellingham, WA.Google Scholar
Zhang, X., Zhang, S., Yan, Z., Duan, H., Ding, Y., and Kang, W. 2024. Mode-coupled perturbation growth on the interfaces of cylindrical implosion: A comparison between theory and experiment. Phys. Rev. E, 109, 035203.CrossRefGoogle ScholarPubMed
Zhang, Y., He, Z., Gao, F., Li, X., and Tian, B. 2016b. Evolution of mixing width induced by general Rayleigh–Taylor instability. Phys. Rev. E, 93, 063102.CrossRefGoogle ScholarPubMed
Zhang, Y., He, Z., Xie, H., Xiao, M., and Tian, B. 2020b. Methodology for determining coefficients of turbulent mixing model. J. Fluid Mech., 905, A26.CrossRefGoogle Scholar
Zhang, Y., Ruan, Y., Xie, H., and Tian, B. 2020c. Mixed mass of classical Rayleigh–Taylor mixing at arbitrary density ratios. Phys. Fluids, 32, 011702.CrossRefGoogle Scholar
Zhang, Y., Ni, W., Ruan, Y., and Xie, H. 2020d. Quantifying mixing of Rayleigh–Taylor turbulence. Phys. Rev. Fluids, 5, 104501.CrossRefGoogle Scholar
Zhang, Y.-T., Shi, J., Shu, C.-W., and Zhou, Y. 2003. Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers. Phys. Rev. E, 68, 046709.CrossRefGoogle ScholarPubMed
Zhang, Y.-T., Shu, C.-W., and Zhou, Y. 2006. Effects of shock waves on Rayleigh–Taylor instability. Phys. Plasmas, 13, 062705.CrossRefGoogle Scholar
Zhao, D., and Aluie, H. 2018. Inviscid criterion for decomposing scales. Phys. Rev. Fluids, 3, 054603. Zhao, D., Betti, R., and Aluie, H. 2022. Scale interactions and anisotropy in Rayleigh–Taylor turbulence. J. Fluid Mech., 930, A29.Google Scholar
Zhao, K., Dalton, P., Yang, G.C., and Scherer, P.W. 2006. Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chem. Senses, 31, 107.CrossRefGoogle ScholarPubMed
Zhao, Y., Xia, M., and Cao, Y. 2020a. A study of bubble growth in the compressible Rayleigh–Taylor and Richtmyer–Meshkov instabilities. AIP Adv., 10, 015056.CrossRefGoogle Scholar
Zhao, Z., Wang, P., Liu, N.-S., and Lu, X. 2020b. Analytical model of nonlinear evolution of single-mode Rayleigh–Taylor instability in cylindrical geometry. J. Fluid Mech., 904, A24.Google Scholar
Zhao, Z., Liu, N.-S., and Lu, X.-Y. 2020c. Kinetic energy and enstrophy transfer in compressible Rayleigh–Taylor turbulence. J. Fluid Mech., 904, A37.CrossRefGoogle Scholar
Zhao, Z., Wang, P., Liu, N.-S., and Lu, X. 2021. Scaling law of mixing layer in cylindrical Rayleigh– Taylor turbulence. Phys. Rev. E, 104, 055104.CrossRefGoogle ScholarPubMed
Zheng, J.G., Lee, T.S., and Winoto, S.H. 2008a. Numerical simulation of Richtmyer–Meshkov instability driven by imploding shocks. Math. Comput. Simul., 79, 749.CrossRefGoogle Scholar
Zheng, W., Zhang, X., Wei, X., et al. 2008b. Status of the SG-III solid-state laser facility. J. Phys. Conf. Ser., 112, 032009.Google Scholar
Zhou, Y. 1993a. Degrees of locality of energy transfer in the inertial range. Phys. Fluids A, 5, 1092.CrossRefGoogle Scholar
Zhou, Y. 1993b. Interacting scales and energy transfer in isotropic turbulence. Phys. Fluids A, 5, 2511.CrossRefGoogle Scholar
Zhou, Y. 1995. A phenomenological treatment of rotating turbulence. Phys. Fluids, 7, 2092.CrossRefGoogle Scholar
Zhou, Y. 2001. A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer– Meshkov instabilities. Phys. Fluids, 13, 538.CrossRefGoogle Scholar
Zhou, Y. 2007. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations. Phys. Plasmas, 14, 082701.CrossRefGoogle Scholar
Zhou, Y. 2010. Renormalization group theory for fluid and plasma turbulence. Phys. Rep., 488, 1.CrossRefGoogle Scholar
Zhou, Y. 2017a. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep., 720–722, 1.Google Scholar
Zhou, Y. 2017b. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep., 723–725, 1.Google Scholar
Zhou, Y. 2021. Turbulence theories and statistical closure approaches. Phys. Rep., 935, 1.CrossRefGoogle Scholar
Zhou, Y., and Cabot, W.H. 2019. Time-dependent study of anisotropy in Rayleigh–Taylor instability induced turbulent flows with a variety of density ratios. Phys. Fluids, 31, 084106.CrossRefGoogle Scholar
Zhou, Y., and Matthaeus, W.H. 1990. Models of inertial range spectra of interplanetary magnetohy-drodynamic turbulence. J. Geophys. Res. Space Phys., 95, 14881.CrossRefGoogle Scholar
Zhou, Y., and Oughton, S. 2011. Nonlocality and the critical Reynolds numbers of the minimum state magnetohydrodynamic turbulence. Phys. Plasmas, 18, 072304.CrossRefGoogle Scholar
Zhou, Y., and Speziale, C.G. 1998. Advances in the fundamental aspects of turbulence: energy transfer, interacting scales, and self-preservation in isotropic decay. Appl. Mech. Rev., 51, 267.CrossRefGoogle Scholar
Zhou, Y., and Thornber, B. 2016. A comparison of three approaches to compute the effective Reynolds number of the implicit large-eddy simulations. J. Fluids Eng., 138, 70905.CrossRefGoogle Scholar
Zhou, Y., Vahala, G., and Thangam, S. 1994. Development of a turbulence model based on recursion renormalization group theory. Phys. Rev. E, 49, 5195.CrossRefGoogle ScholarPubMed
Zhou, Y., Zimmerman, G.B., and Burke, E.W. 2002. Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E, 65, 056303.CrossRefGoogle ScholarPubMed
Zhou, Y., Robey, H.F., and Buckingham, A.C. 2003a. Onset of turbulence in accelerated high-Reynolds-number flow. Phys. Rev. E, 67, 056305.CrossRefGoogle ScholarPubMed
Zhou, Y., Remington, B.A., Robey, H.F., Cook, A.W., Glendinning, S.G., Dimits, A., Buckingham, A.C., Zimmerman, G.B., Burke, E.W., Peyser, T.A., Cabot, W., and Eliason, D. 2003b. Progress in understanding turbulent mixing induced by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Plasmas, 10, 1883.CrossRefGoogle Scholar
Zhou, Y., Matthaeus, W.H., and Dmitruk, P. 2004. Colloquium: magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas. Rev. Mod. Phys., 76, 1015.CrossRefGoogle Scholar
Zhou, Y., Grinstein, F.F., Wachtor, A.J., and Haines, B.M. 2014. Estimating the effective Reynolds number in implicit large-eddy simulation. Phys. Rev. E, 89, 013303.CrossRefGoogle ScholarPubMed
Zhou, Y., Cabot, W.H., and Thornber, B. 2016. Asymptotic behavior of the mixed mass in Rayleigh– Taylor and Richtmyer–Meshkov instability induced flows. Phys. Plasmas, 23, 052712.CrossRefGoogle Scholar
Zhou, Y., Clark, T.T, Clark, D.S., Glendinning, S.G., Skinner, M.A., Huntington, C.M., Hurricane, O.A., Dimits, A.M., and Remington, B.A. 2019. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas, 26, 080901.CrossRefGoogle Scholar
Zhou, Y., Groom, M., and Thornber, B. 2020a. Dependence of enstrophy transport and mixed mass on dimensionality and initial conditions in the Richtmyer–Meshkov instability induced flows. J. Fluids Eng., 142, 121104.CrossRefGoogle Scholar
Zhou, Y., Williams, R.J.R., Ramaprabhu, P., Groom, M., Thornber, B., Hillier, A., Mostert, W., Rollin, B., Balachandar, S., Powell, P.D., Mahalov, A., and Attal, N. 2021. Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D, 423, 132838.CrossRefGoogle Scholar
Zhou, Y., Sadler, J.D., and Hurricane, O.A. 2025. Instabilities and mixing in inertial confinement fusion, Annu. Rev. Fluid Mech., 57, https://doi.org/10.1146/annurev-fluid-022824-110008.CrossRefGoogle Scholar
Zhou, Y., Zou, S., Pu, Y., Xue, Q., and Liu, H. 2022. Terminal velocities and vortex dynamics of weakly compressible Rayleigh–Taylor instability. AIP Adv., 12, 015325.CrossRefGoogle Scholar
Zhou, Z., Zhang, Y., and Tian, B. 2018. Dynamic evolution of Rayleigh–Taylor bubbles from sinusoidal, W-shaped, and random perturbations. Phys. Rev. E, 97, 033108.CrossRefGoogle ScholarPubMed
Zhou, Z., Ding, J., Zhai, Z., Cheng, W., and Luo, X. 2020b. Mode coupling in converging Richtmyer– Meshkov instability of dual-mode interface. Acta Mech. Sin., 36, 356.CrossRefGoogle Scholar
Zhou, Z., Ding, J., Cheng, W., and Luo, X. 2023. Scaling law of structure function of Richtmyer– Meshkov turbulence. J. Fluid Mech., 972, A18.CrossRefGoogle Scholar
Zou, L., Liu, J., Liao, S., Zheng, X., Zhai, Z., and Luo, X. 2017. Richtmyer–Meshkov instability of a flat interface subjected to a rippled shock wave. Phys. Rev. E, 95, 013107.CrossRefGoogle ScholarPubMed
Zufiria, J.A. 1988. Bubble competition in Rayleigh–Taylor instability. Phys. Fluids, 31, 440. Zulick, C., Aglitskiy, Y., Karasik, M., Schmitt, A.J., Velikovich, A.L., and Obenschain, S.P. 2020a. Isolated defect evolution in laser accelerated targets. Phys. Plasmas, 27, 072706.Google Scholar
Zulick, C., Aglitskiy, Y., Karasik, M., Schmitt, A.J., Velikovich, A.L., and Obenschain, S.P. 2020b. Multimode hydrodynamic instability growth of preimposed isolated defects in ablatively driven foils. Phys. Rev. Lett., 125, 055001.CrossRefGoogle ScholarPubMed
Zwiebach, B. 2004. A First Course in String Theory. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Zylstra, A. B., Kritcher, A. L., Hurricane, O. A., et al. 2022. Experimental achievement and signatures of ignition at the National Ignition Facility. Phys. Rev. E, 106, 025202.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ye Zhou, Lawrence Livermore National Laboratory, California
  • Book: Hydrodynamic Instabilities and Turbulence
  • Online publication: 27 June 2024
  • Chapter DOI: https://doi.org/10.1017/9781108779135.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ye Zhou, Lawrence Livermore National Laboratory, California
  • Book: Hydrodynamic Instabilities and Turbulence
  • Online publication: 27 June 2024
  • Chapter DOI: https://doi.org/10.1017/9781108779135.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ye Zhou, Lawrence Livermore National Laboratory, California
  • Book: Hydrodynamic Instabilities and Turbulence
  • Online publication: 27 June 2024
  • Chapter DOI: https://doi.org/10.1017/9781108779135.029
Available formats
×