Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:55:01.223Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 January 2025

Kenneth J. Malmberg
Affiliation:
University of South Florida
Get access
Type
Chapter
Information
Human Memory
The General Theory and Its Various Models
, pp. 234 - 257
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual diversity, not word frequency, determines word-naming and lexical decision times. Psychological Science, 17(9), 814823. https://doi.org/10.1111/j.1467-9280.2006.01787.x.CrossRefGoogle Scholar
Anderson, J. R. (1974). Retrieval of propositional information from long-term memory. Cognitive Psychology, 6(4), 451474.CrossRefGoogle Scholar
Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior, 22, 261295. https://doi.org/10.1016/S0022-5371(83)90201-3.CrossRefGoogle Scholar
Anderson, J. R. (2000). Learning and memory: An integrated approach (2nd ed.). New York: John Wiley.Google Scholar
Anderson, J. R. (2013). The architecture of cognition. New York: Psychology Press.CrossRefGoogle Scholar
Anderson, J. R. (2020). Cognitive psychology and its implications (9th ed.). Duffield, NY: Worth Publishers.Google Scholar
Anderson, J. R., & Bower, G. H. (1972). Recognition and retrieval processes in free recall. Psychological Review, 79(2), 97123. https://doi.org/10.1037/h0033773.CrossRefGoogle Scholar
Anderson, M. C. (2003). Rethinking interference theory: Executive control and the mechanisms of forgetting. Journal of Memory and Language, 49(4), 415445.CrossRefGoogle Scholar
Anderson, R. C., & Pichert, J. W. (1978). Recall of previously unrecallable information following a shift in perspective. Journal of Verbal Learning & Verbal Behavior, 17(1), 112. https://doi.org/10.1016/S0022-5371(78)90485-1.CrossRefGoogle Scholar
Anderson, M. C., & Spellman, B. A. (1995). On the status of inhibitory mechanisms in cognition: Memory retrieval as a model case. Psychological Review, 102(1), 68100. https://doi.org/10.1037/0033-295X.102.1.68.CrossRefGoogle ScholarPubMed
Annis, J., & Malmberg, K. J. (2013). A model of positive sequential dependencies in judgments of frequency. Journal of Mathematical Psychology, 57(5), 225236. https://doi.org/10.1016/j.jmp.2013.06.006.CrossRefGoogle Scholar
Annis, J., Dubé, C., & Malmberg, K. J. (2018). A Bayesian approach to discriminating between biased responding and sequential dependencies in binary choice data. Decision, 5(1), 1641. https://doi.org/10.1037/dec0000060.CrossRefGoogle Scholar
Annis, J., Lenes, J. G., Westfall, H. A., Criss, A. H., & Malmberg, K. J. (2015). The list-length effect does not discriminate between models of recognition memory. Journal of Memory and Language, 85, 2741. https://doi.org/10.1016/j.jml.2015.06.001.CrossRefGoogle Scholar
Aslan, A., Bäuml, K.-H., & Grundgeiger, T. (2007). The role of inhibitory processes in part-list cuing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(2), 335341. https://doi.org/10.1037/0278-7393.33.2.335.Google ScholarPubMed
Atkinson, R. C. (1966). Some two-process models for memory. In Proceedings of the XVIII International Congress of Psychology. Moscow.Google Scholar
Atkinson, R. C. (1975). Mnemotechnics in second-language learning. American Psychologist, 30(8), 821828. https://doi.org/10.1037/h0077029.CrossRefGoogle Scholar
Atkinson, R. C., & Crothers, E. J. (1964). A comparison of paired-associate learning models having different acquisition and retention axioms. Journal of Mathematical Psychology, 1(2), 285315. https://doi.org/10.1016/0022-2496(64)90005-7.CrossRefGoogle Scholar
Atkinson, R. C., & Shiffrin, R. M. (1965). Mathematical models for memory and learning (Tech. Rep. 79). Stanford, CA: Stanford University, Institute for Mathematical Studies in the Social Sciences. (Also published in D. P. Kimble (Ed.) (1969). Readiness to remember: Proceedings of the Third Conference on Learning, Remembering and Forgetting. New York: Gordon and Breach, Science Publishers, Inc.)Google Scholar
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Spence, K. W. & Spence, J. T. (Eds.), The psychology of learning and motivation (vol. 2, pp. 89–195). Cambridge, MA: Academic Press. https://doi.org/10.1016/S0079-7421(08)60422-3.Google Scholar
Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225(2), 8290. https://doi.org/10.1038/scientificamerican0871-82.CrossRefGoogle ScholarPubMed
Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition memory. In Krantz, D. H., Atkinson, R. C., Luce, R. D., & Suppes, P. (Eds.), Contemporary developments in mathematical psychology: Learning, memory and thinking (vol. 1, pp. 243293). San Francisco, CA: Freeman.Google Scholar
Atkinson, R. C., & Raugh, M. R. (1975). An application of the mnemonic keyword method to the acquisition of a Russian vocabulary. Journal of Experimental Psychology: Human Learning and Memory, 1(2), 126133. https://doi.org/10.1037/0278-7393.1.2.126.Google Scholar
Atkinson, R. C., & Wescourt, K. T. (1975). Some remarks on a theory of memory. In Rabbit, P. M. A. & Dornic, S. (Eds.), Attention and performance (vol. 5, pp. 485498). Cambridge, MA: Academic Press.Google Scholar
Atkinson, R. C., Brelsford, J. W., & Shiffrin, R. M. (1967). Multiprocess models for memory with applications to a continuous presentation task. Journal of Mathematical Psychology, 4(2), 277300. https://doi.org/10.1016/0022-2496(67)90053-3.CrossRefGoogle Scholar
Atkinson, R. C., Hermann, D. J., & Wescourt, K. T. (1974). Search processes in recognition memory. In Solso, R. L. (Ed.), Theories in cognitive psychology: The Loyola Symposium (pp. 101–146). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Averbach, E. (1963). The span of apprehension as a function of exposure duration. Journal of Verbal Learning and Verbal Behavior, 2(1), 6064. https://doi.org/10.1016/S0022-5371(63)80068-7.CrossRefGoogle Scholar
Bacon, F. (1620/1898). Novum Organum or true suggestions for the interpretation of nature. London.Google Scholar
Baddeley, A. D., & Warrington, E. K. (1970). Amnesia and the distinction between long- and short-term memory. Journal of Verbal Learning & Verbal Behavior, 9(2), 176189. https://doi.org/10.1016/S0022-5371(70)80048-2.CrossRefGoogle Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 4789. http://dx.doi.org/10.1016/S0079-7421(08)60452-1.CrossRefGoogle Scholar
Baddeley, A. (1986). Working memory. Oxford, UK: Oxford University Press.Google ScholarPubMed
Baddeley, A. D., Hitch, G. J., & Allen, R. J. (2019). From short-term store to multicomponent working memory: The role of the modal model. Memory Cognition, 47(4), 575588. https://doi.org/10.3758/s13421-018-0878-5.CrossRefGoogle ScholarPubMed
Bahrick, H. P. (1984). Semantic memory content in permastore: Fifty years of memory for Spanish learned in school. Journal of Experimental Psychology: General, 113(1), 129. https://doi.org/10.1037/0096-3445.113.1.1.CrossRefGoogle ScholarPubMed
Barnes, J. M., & Underwood, B. J. (1959). “Fate” of first-list associations in transfer theory. Journal of Experimental Psychology, 58(2), 97105. https://doi.org/10.1037/h0047507.CrossRefGoogle ScholarPubMed
Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press.Google Scholar
Bartlett, J. C., & Santrock, J. W. (1979). Affect-dependent episodic memory in young children. Child Development, 50(2), 513518. https://doi.org/10.2307/1129430.CrossRefGoogle Scholar
Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6(1), 5786.CrossRefGoogle ScholarPubMed
Bayen, U. J., Murnane, K., & Erdfelder, E. (1996). Source discrimination, item detection, and multinomial models of source monitoring. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(1), 197215. https://doi.org/10.1037/0278-7393.22.1.197.Google Scholar
Berntsen, D., & Rubin, D. C. (2004). Cultural life scripts structure recall from autobiographical memory. Memory & Cognition, 32(3), 427442. https://doi.org/10.3758/BF03195836.CrossRefGoogle ScholarPubMed
Birnbaum, I. M. (1966). Unlearning in two directions. Journal of Experimental Psychology, 72(1), 6167. https://doi.org/10.1037/h0023336.CrossRefGoogle ScholarPubMed
Bjork, R. A. (1970). Positive forgetting: The noninterference of items intentionally forgotten. Journal of Verbal Learning & Verbal Behavior, 9(3), 255268. https://doi.org/10.1016/S0022-5371(70)80059-7.CrossRefGoogle Scholar
Bjork, R. A., & Whitten, W. B. (1974). Recency-sensitive retrieval processes in long-term free recall. Cognitive Psychology, 6, 173189. https://doi.org/10.1016/0010-0285(74)90009-7.CrossRefGoogle Scholar
Bjork, R. A., Laberge, D., & Legrand, R. (1968). The modification of short-term memory through instructions to forget. Psychonomic Science, 10(2), 5556. https://doi.org/10.3758/BF03331404.CrossRefGoogle Scholar
Bousfield, W. A., & Puff, C. R. (1964). Clustering as a function of response dominance. Journal of Experimental Psychology, 67(1), 7679. https://doi.org/10.1037/h0040012.CrossRefGoogle ScholarPubMed
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114(1), 8099. https://doi.org/10.1037/0033-2909.114.1.80.CrossRefGoogle ScholarPubMed
Bower, G. H. (1981). Mood and memory. American Psychologist, 36(2), 129148. https://doi.org/10.1037/0003-066X.36.2.129.CrossRefGoogle ScholarPubMed
Broadbent, D. (1958). Perception and communication. London: Pergamon Press.CrossRefGoogle Scholar
Broadbent, D. E. (1967). Word-frequency effect and response bias. Psychological Review, 74(1), 115. https://doi.org/10.1037/h0024206.CrossRefGoogle ScholarPubMed
Brown, J. (1954). The nature of set-to-learn and of intra-material interference in immediate memory. The Quarterly Journal of Experimental Psychology, 6, 141148. https://doi.org/10.1080/17470215408416659.CrossRefGoogle Scholar
Brown, J. (1958). Some tests of the decay theory of immediate memory. The Quarterly Journal of Experimental Psychology, 10, 1221. https://doi.org/10.1080/17470215808416249.CrossRefGoogle Scholar
Brown, R., & McNeill, D. (1966). The “tip of the tongue” phenomenon. Journal of Verbal Learning & Verbal Behavior, 5(4), 325337. https://doi.org/10.1016/S0022-5371(66)80040-3.CrossRefGoogle Scholar
Brown, S. D., Marley, A. A. J., Donkin, C., & Heathcote, A. (2008). An integrated model of choices and response times in absolute identification. Psychological Review, 115(2), 396425. https://doi.org/10.1037/0033-295X.115.2.396.CrossRefGoogle ScholarPubMed
Burianova, H., McIntosh, A. R., & Grady, C. L. (2010). A common functional brain network for autobiographical, episodic, and semantic memory retrieval. Neuroimage, 49(1), 865874. https://doi.org/10.1016/j.neuroimage.2009.08.066.CrossRefGoogle Scholar
Camp, G., Pecher, D., & Schmidt, H. G. (2007). No retrieval-induced forgetting using item-specific independent cues: Evidence against a general inhibitory account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(5), 950958. https://doi.org/10.1037/0278-7393.33.5.950.Google ScholarPubMed
Camp, G., Pecher, D., Schmidt, H. G., & Zeelenberg, R. (2009 [1886]). Are independent probes truly independent? Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(4), 934942. https://doi.org/10.1037/a0015536Cattell.Google ScholarPubMed
Cattell, J. M. (1886). The time it takes to see and name objects. Mind, 11(41), 6365.CrossRefGoogle Scholar
Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 25, 975979. https://doi.org/10.1121/1.1907229.CrossRefGoogle Scholar
Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 109127. https://doi.org/10.1037/0096-1523.21.1.109.Google ScholarPubMed
Claparède, E. (1911). Recognition et moitié. Archives of Psychology Genève, 11, 7990.Google Scholar
Collier, G. (1954a). Intertrial association at the visual threshold as a function of intertribal Interval. Journal of Experimental Psychology, 48, 330334. https://doi.org/10.1037/h0055761.CrossRefGoogle Scholar
Collier, G. (1954b). Probability of response and intertrial association as functions of monocular and binocular stimulation. Journal of Experimental Psychology, 47, 7583. https://doi.org/10.1037/h0058899.CrossRefGoogle ScholarPubMed
Collier, G., & Verplanck, W. S. (1958). Nonindependence of successive responses at threshold as a function of interpolated stimuli. Journal of Experimental Psychology, 55, 429437. https://doi.org/10.1037/h0047574.CrossRefGoogle ScholarPubMed
Conway, A. R. A., & Engle, R. W. (1996). Individual differences in working memory capacity: More evidence for a general capacity theory. Memory, 4(6), 577590. https://doi.org/10.1080/741940997.CrossRefGoogle ScholarPubMed
Cousineau, D., Donkin, C., & Dumesnil, É. (2015). Unitization of features following extended training in a visual search task. In Raaijmakers, J. G. W., Criss, A. H., Goldstone, R. L., Nosofsky, R. M., & Steyvers, M. (Eds.), Cognitive modeling in perception and memory: A festschrift for Richard M. Shiffrin (pp. 315). London: Psychology Press.Google Scholar
Cowan, N. (1998). Attention and memory: An integrated framework. Oxford: Oxford University Press.CrossRefGoogle Scholar
Cowan, N., Wood, N. L., & Borne, D. N. (1994). Reconfirmation of the short-term storage concept. Psychological Science, 5(2), 103106. https://doi.org/10.1111/j.1467-9280.1994.tb00639.x.CrossRefGoogle Scholar
Cox, G. E., & Shiffrin, R. M. (2017). A dynamic approach to recognition memory. Psychological Review, 124(6), 795860. https://doi.org/10.1037/rev0000076.CrossRefGoogle ScholarPubMed
Craig, J. C. (1968). Vibrotactile spatial summation. Perception & Psychophysics, 4, 351354. https://doi.org/10.3758/BF03209532.CrossRefGoogle Scholar
Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671684. https://doi.org/10.1016/S0022-5371(72)80001-X.CrossRefGoogle Scholar
Craik, F. I. M., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104(3), 268294. https://doi.org/10.1037/0096-3445.104.3.268.CrossRefGoogle Scholar
Craik, F. I., & Watkins, M. J. (1973). The role of rehearsal in short-term memory. Journal of Verbal Learning & Verbal Behavior, 12(6), 599607. https://doi.org/10.1016/S0022-5371(73)80039-8.CrossRefGoogle Scholar
Criss, A. H. (2006). The consequences of differentiation in episodic memory: Similarity and the strength based mirror effect. Journal of Memory and Language, 55(4), 461478. https://doi.org/10.1016/j.jml.2006.08.003.CrossRefGoogle Scholar
Criss, A. H., & Malmberg, K. J. (2008). Evidence in favor of the early-phase elevated-attention hypothesis: The effects of letter frequency and object frequency. Journal of Memory and Language, 59(3), 331345. https://doi.org/10.1016/j.jml.2008.05.002.CrossRefGoogle Scholar
Criss, A. H., & McClelland, J. L. (2006). Differentiating the differentiation models: A comparison of the retrieving effectively from memory model (REM) and the subjective likelihood model (SLiM). Journal of Memory and Language, 55(4), 447460.CrossRefGoogle Scholar
Criss, A. H., & Shiffrin, R. M. (2005). List discrimination in associative recognition and implications for representation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(6), 11991212. https://doi.org/10.1037/0278-7393.31.6.1199.Google ScholarPubMed
Criss, A. H., Malmberg, K. J., & Shiffrin, R. M. (2011). Output interference in recognition memory. Journal of Memory and Language, 64(4), 316326. https://doi.org/10.1016/j.jml.2011.02.003.CrossRefGoogle Scholar
Crockett, D. J., Hadjistavropoulos, T., & Hurwitz, T. (1992). Primacy and recency effects in the assessment of memory using the Rey Auditory Verbal Learning Test. Archives of Clinical Neuropsychology, 7(1), 97107. https://doi.org/10.1016/0887-6177(92)90022-F.CrossRefGoogle ScholarPubMed
Crowder, R. G. (1976). Principles of learning and memory. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Crowder, R. G. (1989). Modularity and dissociations in memory systems. In Roediger, H. L. III & Craik, F. I. M. (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 271294). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Czerwinski, M., Lightfoot, N., & Shiffrin, R. M. (1992). Automatization and training in visual search. The American Journal of Psychology, 105(2), 271315. https://doi.org/10.2307/1423030.CrossRefGoogle ScholarPubMed
Darley, C. F., & Glass, A. L. (1975). Effects of rehearsal and serial list position on recall. Journal of Experimental Psychology: Human Learning and Memory, 1(4), 453458. https://doi.org/10.1037/0278-7393.1.4.453.Google Scholar
Darley, C. F., Klatzky, R. L., & Atkinson, R. C. (1972). Effects of memory load on reaction time. Journal of Experimental Psychology, 96(1), 232234. https://doi.org/10.1037/h0033487.CrossRefGoogle ScholarPubMed
Darley, C. F., Tinklenberg, J. R., Roth, W. T., Hollister, L. E., & Atkinson, R. C. (1973). Influence of marihuana on storage and retrieval processes in memory. Memory & Cognition, 1, 196200. https://doi.org/10.3758/BF03198094.CrossRefGoogle ScholarPubMed
Darwin, C. J., Turvey, M. T., & Crowder, R. C. (1972). An auditory analogue of the Sperling partial report procedure: Evidence for brief auditory storage. Cognitive Psychology, 3(2), 255267. https://doi.org/10.1016/0010-0285(72)90007-2.CrossRefGoogle Scholar
Davelaar, E. J., Haarmann, H. J., Goshen-Gottstein, Y., & Usher, M. (2006). Semantic similarity dissociates short- from long-term recency effects: Testing a neurocomputational model of list memory. Memory & Cognition, 34(2), 323334. https://doi.org/10.3758/BF03193410.CrossRefGoogle ScholarPubMed
Detterman, D. K. (1975). The von Restorff effect and induced amnesia: Production by manipulation of sound intensity. Journal of Experimental Psychology: Human Learning and Memory, 1(5), 614628. https://doi.org/10.1037/0278-7393.1.5.614.Google Scholar
Diller, D. E., Nobel, P. A., & Shiffrin, R. M. (2001). An ARC–REM model for accuracy and response time in recognition and recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(2), 414435. https://doi.org/10.1037/0278-7393.27.2.414.Google Scholar
Donaldson, W. (1996). The role of decision processes in remembering and knowing. Memory & Cognition, 24(4), 523533. https://doi.org/10.3758/BF03200940.CrossRefGoogle ScholarPubMed
Dosher, B. A. (1984). Degree of learning and retrieval speed: Study time and multiple exposures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(4), 541574. https://doi.org/10.1037/0278-7393.10.4.541.Google Scholar
Dunn, J. C. (2004). Remember-know: A matter of confidence. Psychological Review, 111(2), 524542. https://doi.org/10.1037/0033-295X.111.2.524.CrossRefGoogle ScholarPubMed
Ebbinghaus, H. (1964). Memory: A contribution to experimental psychology. Mineola, NY: Dover.Google Scholar
Egan, J. P. (1958). Recognition memory and the operating characteristic (No. AFCRC-TN-58-51). Bloomington, IN: Indiana University Hearing and Communications Laboratory.Google Scholar
Eich, E., & Metcalfe, J. (1989). Mood dependent memory for internal versus external events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(3), 443455. https://doi.org/10.1037/0278-7393.15.3.443.Google Scholar
Eich, J. E., Weingartner, H., Stillman, R. C., & Gillin, J. C. (1975). State-dependent accessibility of retrieval cues in the retention of a categorized list. Journal of Verbal Learning & Verbal Behavior, 14(4), 408417. https://doi.org/10.1016/S0022-5371(75)80020-X.CrossRefGoogle Scholar
Elmes, D. G., Adams, C., & Roediger, H. L. (1970). Cued forgetting in short-term memory: Response selection. Journal of Experimental Psychology, 86(1), 103107. https://doi.org/10.1037/h0029989.CrossRefGoogle Scholar
Eriksen, C. W., & Spencer, T. (1969). Rate of information processing in visual perception: Some results and methodological considerations. Journal of Experimental Psychology, 79(2, Pt. 2), 116. https://doi.org/10.1037/h0026873.CrossRefGoogle ScholarPubMed
Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57(2), 94107. https://doi.org/10.1037/h0058559.CrossRefGoogle Scholar
Estes, W. K. (1955). Statistical theory of distributional phenomena in learning. Psychological Review, 62(5), 369377. https://doi.org/10.1037/h0046888.CrossRefGoogle ScholarPubMed
Estes, W. K. (1975). Some targets for mathematical psychology. Journal of Mathematical Psychology, 12(3), 263282. https://doi.org/10.1016/0022-2496(75)90025-5.CrossRefGoogle Scholar
Estes, W. K., & Burke, C. J. (1953). A theory of stimulus variability in learning. Psychological Review, 60(4), 276286. https://doi.org/10.1037/h0055775.CrossRefGoogle ScholarPubMed
Estes, W. K., & Maddox, W. T. (1995). Interactions of stimulus attributes, base rates, and feedback in recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(5), 10751095. https://doi.org/10.1037/0278-7393.21.5.1075.Google ScholarPubMed
Estes, W. K., & Taylor, H. A. (1964). A detection method and probabilistic models for assessing information processing from brief visual displays. Proceedings of the National Academy Science, 52(2), 446454. https://doi.org/10.1073/pnas.52.2.446.CrossRefGoogle Scholar
Estes, W. K., & Taylor, H. A. (1966). Visual detection in relation to display size and redundancy of critical elements. Perception & Psychophysics, 1(1), 916. https://doi.org/10.3758/BF03207814.CrossRefGoogle Scholar
Fabiani, M., & Donchin, E. (1995). Encoding processes and memory organization: A model of the von Restorff effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(1), 224240. https://doi.org/10.1037/0278-7393.21.1.224.Google Scholar
Farrell, S., & Lewandowsky, S. (2008). Empirical and theoretical limits on lag recency in free recall. Psychonomic Bulletin & Review, 15, 12361250. https://doi.org/10.3758/PBR.15.6.1236.CrossRefGoogle ScholarPubMed
Fechner, G. T. (1987 [1882]). Some thoughts on the psychophysical representation of memories. Trans. Gustav Theodor Fechner. Psychological Research, 49(4), 209–12. https://doi.org/10.1007/bf00309028.CrossRefGoogle Scholar
Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive Affective Behavioral Neuroscience, 1(2), 137160. https://doi.org/10.3758/cabn.1.2.137.CrossRefGoogle ScholarPubMed
Freunberger, R., Fellinger, R., Sauseng, W. G., & Klimesch, W. (2009). Dissociation between phase-locked and nonphase-locked alpha oscillations in a working memory task. Human Brain Mapping, 30(10), 34173425. https://doi.org/10.1002/hbm.20766.CrossRefGoogle Scholar
Freund, R. D., Brelsford, J. W., Jr., & Atkinson, R. C. (1969). Recognition vs. recall: Storage or retrieval differences? The Quarterly Journal of Experimental Psychology, 21(3), 214224. https://doi.org/10.1080/14640746908400216.CrossRefGoogle Scholar
Freund, R. D., Loftus, G. R., & Atkinson, R. C. (1969). Applications of multiprocess models for memory to continuous recognition tasks. Journal of Mathematical Psychology, 6(3), 576594. https://doi.org/10.1016/0022-2496(69)90024-8.CrossRefGoogle Scholar
Gardiner, J. M., Thompson, C. P., & Maskarinec, A. S. (1974). Negative recency in initial free recall. Journal of Experimental Psychology, 103(1), 7178. https://doi.org/10.1037/h0036829.CrossRefGoogle Scholar
Gardner, G. T. (1970). Spatial processing characteristics in the perception of brief visual arrays (Tech. Rep. No. 23). Ann Arbor, MI: The University of Michigan Human Performance Center.Google Scholar
Gazzinaga, M. (2000). Cover matter. In Tulving, E. & Craik, F. I. M (Eds.), The Oxford handbook of memory. Oxford: Oxford University Press.Google Scholar
Geiselman, R. E., Bjork, R. A., & Fishman, D. L. (1983). Disrupted retrieval in directed forgetting: A link with posthypnotic amnesia. Journal of Experimental Psychology: General, 112(1), 5872. https://doi.org/10.1037/0096-3445.112.1.58.CrossRefGoogle ScholarPubMed
Gibson, E. J. (1940). A systematic application of the concepts of generalization and differentiation to verbal learning. Psychological Review, 47(3), 196229. http://dx.doi.org/10.1037/h0060582.CrossRefGoogle Scholar
Gibson, J. J., & Gibson, E. J. (1955). Perceptual learning: Differentiation or enrichment? Psychological Review, 62(1), 3241. http://dx.doi.org/10.1037/h0048826.CrossRefGoogle ScholarPubMed
Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15(1), 138. https://doi.org/10.1016/0010-0285(83)90002-6.CrossRefGoogle Scholar
Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91(1), 167. https://doi.org/10.1037/0033-295X.91.1.1.CrossRefGoogle ScholarPubMed
Glanzer, M., & Cunitz, A. R. (1966). Two storage mechanisms in free recall. Journal of Verbal Learning and Verbal Behavior, 5(4), 351360. https://doi.org/10.1016/S0022-5371(66)80044-0.CrossRefGoogle Scholar
Glanzer, M., Adams, J. K., Iverson, G. J., & Kim, K. (1993). The regularities of recognition memory. Psychological Review, 100(3), 546567. https://doi.org/10.1037/0033-295X.100.3.546.CrossRefGoogle ScholarPubMed
Glenberg, A. M. (1976). Monotonic and nonmonotonic lag effects in paired-associate and recognition memory paradigms. Journal of Verbal Learning & Verbal Behavior, 15(1), 116. https://doi.org/10.1016/S0022-5371(76)90002-5.CrossRefGoogle Scholar
Glenberg, A. M. (1984). A retrieval account of the long-term modality effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 1631. https://doi.org/10.1037/0278-7393.10.1.16.Google ScholarPubMed
Glenberg, A., Smith, S. M., & Green, C. (1977). Type I rehearsal: Maintenance and more. Journal of Verbal Learning & Verbal Behavior, 16(3), 339352. https://doi.org/10.1016/S0022-5371(77)80055-8.CrossRefGoogle Scholar
Godden, D. R., & Baddeley, A. D. (1975). Context-dependent memory in two natural environments: On land and underwater. British Journal of Psychology, 66, 325331. https://doi.org/10.1111/j.2044-8295.1975.tb01468.x.CrossRefGoogle Scholar
Goldman-Rakic, P. S. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137156. https://doi.org/10.1146/annurev.ne.11.030188.001033.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1992). Working memory and the mind. Scientific American, 267(3), 110117. www.jstor.org/stable/24939217.CrossRefGoogle ScholarPubMed
Goteti, U. S., Cybart, S. A., & Dynes, R. C. (2023). Collective neural network behavior in a dynamically driven disordered system of superconducting loops. arXiv preprint arXiv:2310.19279.Google Scholar
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 2025.CrossRefGoogle ScholarPubMed
Goodwin, D. W., Powell, B., Bremer, D., Hoine, H, & Stern, J. (1969). Alcohol and recall: State-dependent effects in man. Science, 163(3873), 13581360. https://doi.org/10.1126/science.163.3873.1358.CrossRefGoogle ScholarPubMed
Grant, D. A., Hunter, H. G., & Patel, A. S. (1958) Spontaneous recovery of the conditioned eyelid response. Journal of General Psychology, 59, 135141. 10.1080/00221309.1958.9710180.CrossRefGoogle ScholarPubMed
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: John Wiley.Google Scholar
Green, D. M., Birdsall, T. G., & Tanner, W. P., Jr. (1957). Signal detection as a function of signal intensity and duration. Journal of the Acoustical Society of America, 29, 523531. https://doi.org/10.1121/1.1908951.CrossRefGoogle Scholar
Grider, R. C., & Malmberg, K. J. (2008). Discriminating between changes in bias and changes in accuracy for recognition memory of emotional stimuli. Memory & Cognition, 36(5), 933946. https://doi.org/10.3758/MC.36.5.933.CrossRefGoogle ScholarPubMed
Gronlund, S. D., & Ratcliff, R. (1989). Time course of item and associative information: Implications for global memory models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(5), 846858. https://doi.org/10.1037/0278-7393.15.5.846.Google ScholarPubMed
Gruppuso, V., Lindsay, D. S., & Kelley, C. M. (1997). The process-dissociation procedure and similarity: Defining and estimating recollection and familiarity in recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(2), 259278. https://doi.org/10.1037/0278-7393.23.2.259.Google Scholar
Gusnard, D., & Raichle, M. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Review Neuroscience, 2, 685694. https://doi.org/10.1038/35094500.CrossRefGoogle ScholarPubMed
Harbison, J. I., Dougherty, M. R., Davelaar, E. J., & Fayyad, B. (2009). On the lawfulness of the decision to terminate memory search. Cognition, 111(3), 416421. https://doi.org/10.1016/j.cognition.2009.03.002.CrossRefGoogle ScholarPubMed
Hinton, G., Osindero, S., & Teh, Y. (2006) A fast learning algorithm for deep belief nets. Neural Computation, 18, 15271554. http://dx.doi.org/10.1162/neco.2006.18.7.1527.CrossRefGoogle ScholarPubMed
Hintzman, D. L. (1988). Judgments of frequency and recognition memory in a multiple-trace memory model. Psychological Review, 95(4), 528551. https://doi.org/10.1037/0033-295X.95.4.528.CrossRefGoogle Scholar
Hintzman, D. L., Curran, T., & Oppy, B. (1992). Effects of similarity and repetition on memory: Registration without learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(4), 667680. https://doi.org/10.1037/0278-7393.18.4.667.Google ScholarPubMed
Hirshman, E., Passannante, A., & Arndt, J. (2001). Midazolam amnesia and conceptual processing in implicit memory. Journal of Experimental Psychology: General, 130(3), 453465. https://doi.org/10.1037/0096-3445.130.3.453.CrossRefGoogle ScholarPubMed
Hockley, W. E., & Murdock, B. B. (1987). A decision model for accuracy and response latency in recognition memory. Psychological Review, 94(3), 341358. https://doi.org/10.1037/0033-295X.94.3.341.CrossRefGoogle Scholar
Hockley, W. E., Hemsworth, D. H., & Consoli, A. (1999). Shades of the mirror effect: Recognition of faces with and without sunglasses. Memory & Cognition, 27(1), 128138.CrossRefGoogle ScholarPubMed
Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1989). Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.Google Scholar
Holland, K., & Lockhead, G. R. (1968). Sequential effects in absolute judgments of loudness. Perception & Psychophysics, 3, 409414. https://doi.org/10.3758/BF03205747.CrossRefGoogle Scholar
Howard, M. W., & Kahana, M. J. (1999). Contextual variability and serial position effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 923941. https://10.1037//0278-7393.25.4.923.Google ScholarPubMed
Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46(3), 269299.CrossRefGoogle Scholar
Howes, D. H., & Solomon, R. L. (1951). Visual duration threshold as a function of word-probability. Journal of Experimental Psychology, 41(6), 401410. https://doi.org/10.1037/h0056020.CrossRefGoogle ScholarPubMed
Huber, D. E., Shiffrin, R. M., Lyle, K. B., & Ruys, K. I. (2001). Perception and preference in short-term word priming. Psychological Review, 108(1), 149182. https://doi.org/10.1037/0033-295X.108.1.149.CrossRefGoogle ScholarPubMed
Huber, D. E., Tomlinson, T. D., Jang, Y., & Hopper, W. J. (2015). The Search of Associative Memory with Recovery Interference (SAM-RI) memory model and its application to retrieval practice paradigms. In Raaijmakers, J. G. W., Criss, A. H., Goldstone, R. L., Nosofsky, R. M., & Steyvers, M. (Eds.), Cognitive modeling in perception and memory: A festschrift for Richard M. Shiffrin (pp. 8198). London: Psychology Press.Google Scholar
Humphreys, M. S. (1976). Relational information and the context effect in recognition memory. Memory & Cognition, 4, 221232. https://doi.org/10.3758/BF03213167.CrossRefGoogle ScholarPubMed
Humphreys, M. S. (1978). Item and relational information: A case for context independent retrieval. Journal of Verbal Learning and Verbal Behavior, 17(2), 175187. https://doi.org/10.1016/S0022-5371(78)90137-8.CrossRefGoogle Scholar
Humphreys, M. S., Bain, J. D., & Pike, R. (1989). Different ways to cue a coherent memory system: A theory for episodic, semantic, and procedural tasks. Psychological Review, 96(2), 208233. https://doi.org/10.1037/0033-295X.96.2.208.CrossRefGoogle Scholar
Hyde, T. S., & Jenkins, J. J. (1969). Differential effects of incidental tasks on the organization of recall of a list of highly associated words. Journal of Experimental Psychology, 82(3), 472481. https://doi.org/10.1037/h0028372.CrossRefGoogle Scholar
Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30(5), 513541. https://doi.org/10.1016/0749-596X(91)90025-F.CrossRefGoogle Scholar
Jakab, E., & Raaijmakers, J. G. W. (2009). The role of item strength in retrieval-induced forgetting. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(3), 607617. https://doi.org/10.1037/a0015264.Google ScholarPubMed
James, W. (1890). The principles of psychology, vol. 1. New York: Henry Holt and Co. https://doi.org/10.1037/10538-000.Google Scholar
Janssen, S. M. J., Chessa, A. G., & Murre, J. M. J. (2005). The reminiscence bump in autobiographical memory: Effects of age, gender, education, and culture. Memory, 13(6), 658668. https://doi.org/10.1080/09658210444000322.CrossRefGoogle ScholarPubMed
Jevons, W. (1871). The power of numerical discrimination. Nature, 3, 281282. https://doi.org/10.1038/003281a0.CrossRefGoogle Scholar
Johnston, J. C. (1978). A test of the sophisticated guessing theory of word perception. Cognitive Psychology, 10, 123153. https://doi.org/10.1016/0010-0285(78)90011-7.CrossRefGoogle ScholarPubMed
Jonides, J., Smith, E., Koeppe, R. et al. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623625. https://doi.org/10.1038/363623a0.CrossRefGoogle ScholarPubMed
Jonides, J., Schumacher, E. H., Smith, E. E. et al. (1998). The role of parietal cortex in verbal working memory. Journal of Neuroscience, 18(13), 50265034. https://doi.org/10.1523/JNEUROSCI.18-13-05026.1998.CrossRefGoogle ScholarPubMed
Joordens, S., & Hockley, W. E. (2000). Recollection and familiarity through the looking glass: When old does not mirror new. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 15341555. https://doi.org/10.1037/0278-7393.26.6.1534.Google Scholar
Juola, J. F., Fischler, I., Wood, C. T., & Atkinson, R. C. (1971). Recognition time for information stored in long-term memory. Perception & Psychophysics, 10(1), 814. https://doi.org/10.3758/BF03205757.CrossRefGoogle Scholar
Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory & Cognition, 24(1), 103109. https://doi.org/10.3758/BF03197276.CrossRefGoogle ScholarPubMed
Kanwisher, N. G. (1987). Repetition blindness: Type recognition without token individuation. Cognition, 27(2), 117143. https://doi.org/10.1016/0010-0277(87)90016-3.CrossRefGoogle ScholarPubMed
Keppel, G. (1964). Facilitation in short- and long-term retention of paired associates following distribution practice in learning. Journal of Verbal Learning & Verbal Behavior, 3(2), 91111. https://doi.org/10.1016/S0022-5371(64)80027-X.CrossRefGoogle Scholar
Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in short-term retention of single items. Journal of Verbal Learning & Verbal Behavior, 1(3), 153161. https://doi.org/10.1016/S0022-5371(62)80023-1.CrossRefGoogle Scholar
Kesner, R. P., & Novak, J. M. (1982). Serial position curve in rats: Role of the dorsal hippocampus. Science, 218, 173175. https://doi.org/10.1126/science.7123228.CrossRefGoogle ScholarPubMed
Kılıç, A., Criss, A. H., Malmberg, K. J., & Shiffrin, R. M. (2017). Models that allow us to perceive the world more accurately also allow us to remember past events more accurately via differentiation. Cognitive Psychology, 92, 6586. https://doi.org/10.1016/j.cogpsych.2016.11.005.CrossRefGoogle ScholarPubMed
Klatzky, R. L., & Atkinson, R. C. (1971). Specialization of the cerebral hemispheres in scanning for information in short-term memory. Perception & Psychophysics, 10(5), 335338. https://doi.org/10.3758/BF03207454.CrossRefGoogle Scholar
Koppell, S. (1977). Decision latencies in recognition memory: A signal detection theory analysis. Journal of Experimental Psychology: Human Learning and Memory, 3(4), 445457. https://doi.org/10.1037/0278-7393.3.4.445.Google Scholar
Koppenaal, R. J. (1963). Spontaneous recovery? Journal of Verbal Learning & Verbal Behavior, 2(4), 310319. https://doi.org/10.1016/S0022-5371(63)80099-7.CrossRefGoogle Scholar
Koop, G. J., Criss, A. H., & Malmberg, K. J. (2015). The role of mnemonic processes in pure-target and pure-foil recognition memory. Psychonomic Bulletin & Review, 22(2), 509516. https://doi.org/10.3758/s13423-014-0703-5.CrossRefGoogle ScholarPubMed
Krantz, D. H., Atkinson, R. C., Luce, R., & Suppes, P. (1974a). Contemporary developments in mathematical psychology: I. Learning, memory and thinking. Oxford: W. H. Freeman.Google Scholar
Krantz, D. H., Atkinson, R. C., Luce, R., & Suppes, P. (1974b). Contemporary developments in mathematical psychology: II. Measurement, psychophysics, and neural information processing. Oxford: W. H. Freeman.Google Scholar
Krueger, W. C. F. (1929). The effect of overlearning on retention. Journal of Experimental Psychology, 12(1), 7178. https://doi.org/10.1037/h0072036.CrossRefGoogle Scholar
Krumhansl, C. L., Mohs, R. C., & Atkinson, R. C. (1976). Sequential search processes in long-term memory. Memory & Cognition, 4, 401408. https://doi.org/10.3758/BF03213196.CrossRefGoogle ScholarPubMed
Kucera, H., & Francis, W. N. (1967). Computational analysis of present-day American English. Providence, RI: Brown University Press.Google Scholar
Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general intelligence. Artificial Intelligence, 33(1), 164. https://doi.org/10.1016/0004-3702(87)90050-6.CrossRefGoogle Scholar
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2&3), 259284.CrossRefGoogle Scholar
Lehman, M., & Malmberg, K. J. (2009). A global theory of remembering and forgetting from multiple lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(4), 970988. https://doi.org/10.1037/a0015728.Google ScholarPubMed
Lehman, M., & Malmberg, K. J. (2011). Overcoming the effects of intentional forgetting. Memory & Cognition, 39(2), 335347. https://doi.org/10.3758/s13421-010-0025-4.CrossRefGoogle ScholarPubMed
Lehman, M., & Malmberg, K. J. (2013). A buffer model of memory encoding and temporal correlations in retrieval. Psychological Review, 120(1), 155189. https://doi.org/10.1037/a0030851.CrossRefGoogle ScholarPubMed
Lightfoot, N., & Shiffrin, R. M. (1992). On the unitization of novel, complex visual stimuli. In Press, Psychology (Ed.), Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society (pp. 277–282). Hillsdale, NJ: Erlbaum.Google Scholar
Liu, I. M., Wu, J. T., & Chou, T. L. (1996). Encoding operation and transcoding as the major loci of the frequency effect. Cognition, 59(2), 149168.CrossRefGoogle Scholar
Lockhead, G. R. (1984). Sequential predictors of choice in psychophysical tasks. In Kornblum, S. & Requin, J. (Eds.), Preparatory states and processes (pp. 2747). Hillsdale, NJ: Erlbaum.Google Scholar
Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. New York: Cambridge University Press.Google Scholar
Maddox, W. T., & Estes, W. K. (1997). Direct and indirect stimulus-frequency effects in recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(3), 539559. https://doi.org/10.1037/0278-7393.23.3.539.Google ScholarPubMed
Malmberg, K. J. (2002). On the form of ROCs constructed from confidence ratings. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(2), 380387. https://doi.org/10.1037/0278-7393.28.2.380.Google ScholarPubMed
Malmberg, K. J. (2008). Recognition memory: A review of the critical findings and an integrated theory for relating them. Cognitive Psychology, 57(4), 335384. https://doi.org/10.1016/j.cogpsych.2008.02.004.CrossRefGoogle Scholar
Malmberg, K. J., & Annis, J. (2012). On the relationship between memory and perception: Sequential dependencies in recognition memory testing. Journal of Experimental Psychology: General, 141(2), 233259. https://doi.org/10.1037/a0025277.CrossRefGoogle ScholarPubMed
Malmberg, K. J., & Nelson, T. O. (2003). The word frequency effect for recognition memory and the elevated-attention hypothesis. Memory & Cognition, 31, 3543. https://doi.org/10.3758/BF03196080.CrossRefGoogle ScholarPubMed
Malmberg, K. J., & Shiffrin, R. M. (2005). The “one-shot” hypothesis for context storage. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(2), 322336. https://doi.org/10.1037/0278-7393.31.2.322.Google Scholar
Malmberg, K. J., & Xu, J. (2007). On the flexibility and the fallibility of associative memory. Memory & Cognition, 35(3), 545556. https://doi.org/10.3758/BF03193293,CrossRefGoogle ScholarPubMed
Malmberg, K. J., Holden, J. E., & Shiffren, R. M. (2004). Modeling the effects of repetitions, similarity, and normative word frequency on old-new recognition and judgments of frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 319331. https://doi.org/10.1037/0278-7393.30.2.319.Google ScholarPubMed
Malmberg, K. J., Raaijmakers, J. G. W., & Shiffrin, R. M. (2019). 50 years of research sparked by Atkinson and Shiffrin (1968). Memory & Cognition, 47, 561574. https://doi.org/10.3758/s13421-019-00896-7.CrossRefGoogle ScholarPubMed
Malmberg, K. J., Zeelenberg, R., & Shiffrin, R. M. (2004). Turning up the noise or turning down the volume? On the nature of the impairment of episodic recognition memory by midazolam. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 540549. https://doi.org/10.1037/0278-7393.30.2.540.Google ScholarPubMed
Malmberg, K. J., Criss, A. H., Gangwani, T. H., & Shiffrin, R. M. (2012). Overcoming the negative consequences of interference from recognition memory testing. Psychological Science, 23(2), 115119. https://doi.org/10.1177/0956797611430692.CrossRefGoogle ScholarPubMed
Malmberg, K. J., Steyvers, M., Stephens, J. D., & Shiffrin, R. M. (2002). Feature frequency effects in recognition memory. Memory & Cognition, 30(4), 607613. https://doi.org/10.3758/BF03194962.CrossRefGoogle ScholarPubMed
Mandler, G., Pearlstone, Z., & Koopmans, H. S. (1969). Effects of organization and semantic similarity on recall and recognition. Journal of Verbal Learning & Verbal Behavior, 8(3), 410423. https://doi.org/10.1016/S0022-5371(69)80134-9.CrossRefGoogle Scholar
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco, CA: W. H. Freeman.Google Scholar
Marshall, P. H., & Werder, P. R. (1972). The effects of the elimination of rehearsal on primacy and recency. Journal of Verbal Learning & Verbal Behavior, 11(5), 649653. https://doi.org/10.1016/S0022-5371(72)80049-5.CrossRefGoogle Scholar
Maxcey, A. M., Shiffrin, R. M., Cousineau, D. et al. (2022). Two case studies of very long-term retention. Psychonomic Bulletin & Review, 29, 563567. https://doi.org/10.3758/s13423-021-02002-y.CrossRefGoogle ScholarPubMed
Mazoyer, B., Zago, L., Mellet, E. et al. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin, 54(3), 287298. https://doi.org/10.1016/S0361-9230(00)00437-8.CrossRefGoogle ScholarPubMed
McClelland, J. L., McNaughton, B. L., & O’Reilly, , , R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419457. https://doi.org/10.1037/0033-295X.102.3.419.CrossRefGoogle ScholarPubMed
McDougall, W. (1904). The variation of the intensity of visual sensation with the duration of the stimulus. British Journal of Psychology, 1, 151189.Google Scholar
McElree, B., Dolan, P. O., & Jacoby, L. L. (1999). Isolating the contributions of familiarity and source information to item recognition: A time course analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(3), 563582. https://doi.org/10.1037/0278-7393.25.3.563.Google ScholarPubMed
McGeoch, J. A. (1942). The psychology of human learning: An introduction. London: Longmans.Google Scholar
McLaughlin, J. P. (1968). Recall and recognition measures of the von Restorff effect in serial learning. Journal of Experimental Psychology, 78(1), 99102. https://doi.org/10.1037/h0026156.CrossRefGoogle Scholar
Melton, A. W. (1963). Implications of short-term memory for a general theory of memory, Journal of Verbal Learning and Verbal Behavior, 2(1), 121. https://doi.org/10.1016/S0022-5371(63)80063-8.CrossRefGoogle Scholar
Melton, A. W., & Irwin, J. M. (1940). The influence of degree of interpolated learning on retroactive inhibition and the overt transfer of specific responses. The American Journal of Psychology, 53, 173203. https://doi.org/10.2307/1417415.CrossRefGoogle Scholar
Melton, A. W., & von Lackum, W. J. (1941). Retroactive and proactive inhibition in retention: Evidence for a two-factor theory of retroactive inhibition. The American Journal of Psychology, 54(2), 157173.CrossRefGoogle Scholar
Mensink, G.-J., & Raaijmakers, J. G. (1988). A model for interference and forgetting. Psychological Review, 95(4), 434455. https://doi.org/10.1037/0033-295X.95.4.434.CrossRefGoogle Scholar
Mensink, G.-J. M., & Raaijmakers, J. G. (1989). A model for contextual fluctuation. Journal of Mathematical Psychology, 33(2), 172186. https://doi.org/10.1016/0022-2496(89)90029-1.CrossRefGoogle Scholar
Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227234. https://doi.org/10.1037/h0031564.CrossRefGoogle ScholarPubMed
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 8197. https://doi.org/10.1037/h0043158.CrossRefGoogle ScholarPubMed
Milner, B. (1998). Brenda Milner. In Squire (Ed.), L. R., The history of neuroscience in autobiography (vol. 2, pp. 276–305). Cambridge, MA: Academic Press.Google Scholar
Milner, B., Corkin, S., & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6, 215234.CrossRefGoogle Scholar
Mohs, R. C., Wescourt, K. T., & Atkinson, R. C. (1973). Effects of short-term memory contents on short- and long-term memory searches. Memory & Cognition, 1(4), 443448. https://doi.org/10.3758/BF03208906.CrossRefGoogle Scholar
Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning & Verbal Behavior, 16(5), 519533. https://doi.org/10.1016/S0022-5371(77)80016-9.CrossRefGoogle Scholar
Muller, G. E. (1913). Zur Analyse der Gedichtnistitigkeitund des Vorstellungsverlaufes. III. Teil. Zeitschrift fiir Psychologie, Erganzungsband, 8.Google Scholar
Mulligan, N. W., & Hirshman, E. (1997). Measuring the bases of recognition memory: An investigation of the process-dissociation framework. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(2), 280304. https://doi.org/10.1037/0278-7393.23.2.280.Google Scholar
Murdock, B. B. Jr. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64(5), 482488. https://doi.org/10.1037/h0045106.CrossRefGoogle Scholar
Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89(6), 609626. https://doi.org/10.1037/0033-295X.89.6.609.CrossRefGoogle Scholar
Murnane, K., & Shiffrin, R. M. (1991). Interference and the representation of events in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(5), 855874. https://doi.org/10.1037/0278-7393.17.5.855.Google ScholarPubMed
Murnane, K., & Shiffrin, R. M. (1992). Composition, distribution and interference in memory. In Hockley, W. E. & Lewandowsky, S. (Eds.), Relating theory and data: Essays in honor of Bennet B. Murdock (pp. 345360). London: Psychology Press.Google Scholar
Murnane, K., Phelps, M. P., & Malmberg, K. (1999). Context-dependent recognition memory: The ICE theory. Journal of Experimental Psychology: General, 128(4), 403415. https://doi.org/10.1037/0096-3445.128.4.403.CrossRefGoogle ScholarPubMed
Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18(3), 251269. https://doi.org/10.3758/BF03213879.CrossRefGoogle ScholarPubMed
Nelson, T. O. (1977). Repetition and depth of processing. Journal of Verbal Learning & Verbal Behavior, 16(2), 151171. https://doi.org/10.1016/S0022-5371(77)80044-3.CrossRefGoogle Scholar
Nelson, A. B., & Shiffrin, R. M. (2013). The co-evolution of knowledge and event memory. Psychological Review, 120(2), 356394. https://doi.org/10.1037/a0032020.CrossRefGoogle ScholarPubMed
Newell, A. (2018 [1973]). You can’t play 20 questions with nature and win: Projective comments on the papers of this symposium. Carnegie Mellon University. Journal contribution. https://doi.org/10.1184/R1/6612977.v1.CrossRefGoogle Scholar
Nobel, P. A., & Shiffrin, R. M. (2001). Retrieval processes in recognition and cued recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(2), 384413. https://doi.org/10.1037/0278-7393.27.2.384.Google ScholarPubMed
Norman, D. A., & Waugh, N. C. (1968). Stimulus and response interference in recognition-memory experiments. Journal of Experimental Psychology, 78(4, Pt. 1), 551559. https://doi.org/10.1037/h0026637.CrossRefGoogle Scholar
Nyberg, L., McIntosh, A. R., & Tulving, E. (1998). Functional brain imaging of episodic and semantic memory with positron emission tomography. Journal of Molecular Medicine, 76(1), 4853. https://doi.org/10.1007/s001090050189.CrossRefGoogle ScholarPubMed
Olivers, C. N. L., & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological Review, 115(4), 836863. https://doi.org/10.1037/a0013395.CrossRefGoogle ScholarPubMed
O’Keefe, J., & Nadel, L. (1979). Précis of O’Keefe and Nadel’s The hippocampus as a cognitive map. Behavioral and Brain Sciences, 2(4), 487533. https://doi.org/10.1017/S0140525X00063949.CrossRefGoogle Scholar
O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283328. https://doi.org/10.1162/089976606775093909.CrossRefGoogle Scholar
Osgood, C. E. (1949). The similarity paradox in human learning: A resolution. Psychological Review, 56(3), 132143. https://doi.org/10.1037/h0057488.CrossRefGoogle Scholar
Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Oxford: Oxford University Press.Google Scholar
Payne, L., Guillory, S., & Sekuler, R. (2013). Attention-modulated alpha-band oscillations protect against intrusion of irrelevant information. Journal of Cognitive Neuroscience, 25(9), 14631476. https://doi.org/10.1162/jocn_a_00395.CrossRefGoogle ScholarPubMed
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Cambridge, MA: Morgan Kaufmann.Google Scholar
Perfect, T. J., Stark, L.-J., Tree, J. J. et al. (2004). Transfer appropriate forgetting: The cue-dependent nature of retrieval-induced forgetting. Journal of Memory and Language, 51(3), 399417. https://doi.org/10.1016/j.jml.2004.06.003.CrossRefGoogle Scholar
Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58(3), 193198. https://doi.org/10.1037/h0049234.CrossRefGoogle ScholarPubMed
Petrov, A. A., & Anderson, J. R. (2005). The dynamics of scaling: A memory-based anchor model of category rating and absolute identification. Psychological Review, 112(2), 383416. https://doi.org/10.1037/0033-295X.112.2.383.CrossRefGoogle Scholar
Phillips, J. L., Shiffrin, R. M., & Atkinson, R. C. (1967). The effects of list length on short-term memory. Journal of Verbal Learning and Verbal Behavior, 6(3), 303311. https://doi.org/10.1016/S0022-5371(67)80117-8.CrossRefGoogle Scholar
Plessner, H., & Betsch, T. (2001). Sequential effects in important referee decisions: The case of penalties in soccer. Journal of Sport and Exercise Psychology, 23, 254259. https://doi.org/10.1123/jsep.23.3.254.CrossRefGoogle Scholar
Polster, M. R., McCarthy, R. A., O’Sullivan, G., Gray, P. A., & Park, G. R. (1993). Midazolam-induced amnesia: Implications for the implicit/explicit memory distinction. Brain and Cognition, 22(2), 244265. https://doi.org/10.1006/brcg.1993.1037.CrossRefGoogle ScholarPubMed
Popper, K. R. (1959). The logic of scientific discovery. New York: Basic Books.Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. https://doi.org/10.1146/annurev.ne.13.030190.000325.CrossRefGoogle ScholarPubMed
Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society London, 298(1089), 187198. https://doi.org/10.1098/rstb.1982.0081.Google ScholarPubMed
Postman, L., & Underwood, B. J. (1973). Critical issues in interference theory. Memory & Cognition, 1(1), 1940. https://doi.org/10.3758/BF03198064.CrossRefGoogle ScholarPubMed
Postman, L., Stark, K., & Fraser, J. (1968). Temporal changes in interference. Journal of Verbal Learning & Verbal Behavior, 7(3), 672694. https://doi.org/10.1016/S0022-5371(68)80124-0.CrossRefGoogle Scholar
Raaijmakers, J. G. (1993). The story of the two-store model of memory: Past criticisms, current status, and future directions. Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience, 467488.CrossRefGoogle Scholar
Raaijmakers, J. G. W., & Jakab, E. (2013). Is forgetting caused by inhibition? Current Directions in Psychological Science, 22(3), 205209. https://doi.org/10.1177/0963721412473472.CrossRefGoogle Scholar
Raaijmakers, J. G. W., & Shiffrin, R. M. (1980). SAM: A theory of probabilistic search of associative memory. In Bower, G. (Ed.), The psychology of learning and motivation (vol. 14, pp. 207262). Cambridge, MA: Academic Press.Google Scholar
Raaijmakers, J. G., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88(2), 93134. https://doi.org/10.1037/0033-295X.88.2.93.CrossRefGoogle Scholar
Raichle, M. E., MacLeod, A. M., Snyder, A. Z. et al. (2001). A default model of brain function. Proceedings of the National Academy of Science, 98(2), 676683. https://doi.org/10.1073/pnas.98.2.676.CrossRefGoogle ScholarPubMed
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59108. https://doi.org/10.1037/0033-295X.85.2.59.CrossRefGoogle Scholar
Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive Psychology, 53(3), 195237. https://doi.org/10.1016/j.cogpsych.2005.10.002.CrossRefGoogle ScholarPubMed
Ratcliff, R., & McKoon, G. (1988). A retrieval theory of priming in memory. Psychological Review, 95(3), 385.CrossRefGoogle ScholarPubMed
Ratcliff, R., & McKoon, G. (1992). Using ROC data and priming results to test global memory models. In Hockley, W. E. & Lewandowsky, S. (Eds.), Relating theory and data: Essays in honor of Bennet B. Murdock (pp. 293310). London: Psychology Press.Google Scholar
Ratcliff, R., & McKoon, G. (1997). A counter model for implicit priming in perceptual word identification. Psychological Review, 104(2), 319343. https://doi.org/10.1037/0033-295X.104.2.319.CrossRefGoogle ScholarPubMed
Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in recognition memory. Psychological Review, 83(3), 190214. https://doi.org/10.1037/0033-295X.83.3.190.CrossRefGoogle Scholar
Ratcliff, R., Clark, S. E., & Shiffrin, R. M. (1990). List-strength effect: I. Data and discussion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(2), 163178. https://doi.org/10.1037/0278-7393.16.2.163.Google ScholarPubMed
Ratcliff, R., McKoon, G., & Tindall, M. (1994). Empirical generality of data from recognition memory receiver-operating characteristic functions and implications for the global memory models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(4), 763785. https://doi.org/10.1037/0278-7393.20.4.763.Google ScholarPubMed
Ratcliff, R., Sheu, C.-F., & Gronlund, S. D. (1992). Testing global memory models using ROC curves. Psychological Review, 99(3), 518535. https://doi.org/10.1037/0033-295X.99.3.518.CrossRefGoogle ScholarPubMed
Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849860. https://doi.org/10.1037/0096-1523.18.3.849.Google Scholar
Reder, L. M., Angstadt, P., Cary, M., Erickson, M. A., & Ayers, M. S. (2002). A reexamination of stimulus-frequency effects in recognition: Two mirrors for low- and high-frequency pseudowords. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 138152. https://doi.org/10.1037/0278-7393.28.1.138.Google ScholarPubMed
Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of stimulus material. Journal of Experimental Psychology, 81(2), 275280. https://doi.org/10.1037/h0027768.CrossRefGoogle Scholar
Roediger, H. L. (1973). Inhibition in recall from cueing with recall targets. Journal of Verbal Learning & Verbal Behavior, 12(6), 644657. https://doi.org/10.1016/S0022-5371(73)80044-1.CrossRefGoogle Scholar
Roediger, H. L., & Challis, B. H. (1992). Effects of exact repetition and conceptual repetition on free recall and primed word-fragment completion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(1), 314. https://doi.org/10.1037/0278-7393.18.1.3.Google ScholarPubMed
Rotello, C. M., Macmillan, N. A., & Reeder, J. A. (2004). Sum-difference theory of remembering and knowing: A two-dimensional signal-detection model. Psychological Review, 111(3), 588616. https://doi.org/10.1037/0033-295X.111.3.588.CrossRefGoogle ScholarPubMed
Rumelhart, D. E. (1970). A multicomponent theory of the perception of briefly exposed visual displays. Journal of Mathematical Psychology, 7, 191218. https://doi.org/10.1016/0022-2496(70)90044-1.CrossRefGoogle Scholar
Rundus, D. (1971). Analysis of rehearsal processes in free recall. Journal of Experimental Psychology, 89(1), 6377. https://doi.org/10.1037/h0031185.CrossRefGoogle Scholar
Sahakyan, L., & Kelley, C. M. (2002). A contextual change account of the directed forgetting effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(6), 10641072. https://doi.org/10.1037/0278-7393.28.6.1064.Google ScholarPubMed
Sahakyan, L., & Malmberg, K. J. (2018). Divided attention during encoding causes separate memory traces to be encoded for repeated events. Journal of Memory and Language, 101, 153161. https://doi.org/10.1016/j.jml.2018.04.004.CrossRefGoogle Scholar
Sanborn, A. N., Malmberg, K. J., & Shiffrin, R. M. (2004). High-level effects of masking on perceptual identification. Vision Research, 44(12), 14271436. https://doi.org/10.1016/j.visres.2004.01.004.CrossRefGoogle ScholarPubMed
Saunders, J., & MacLeod, M. D. (2006). Can inhibition resolve retrieval competition through the control of spreading activation? Memory & Cognition, 34, 307322. https://doi.org/10.3758/BF03193409.CrossRefGoogle ScholarPubMed
Schacter, D. L., & Worling, J. R. (1985). Attribute information and the feeling-of-knowing. Canadian Journal of Psychology, 39(3), 467475. https://doi.org/10.1037/h0080074.CrossRefGoogle Scholar
Schneider, G. E. (1969). Two visual systems. Science, 163(3870), 895902. https://doi.org/10.1126/science.163.3870.895.CrossRefGoogle ScholarPubMed
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 166. https://doi.org/10.1037/0033-295X.84.1.1.CrossRefGoogle Scholar
Schnorr, J. A., & Atkinson, R. C. (1969). Repetition versus imagery instructions in the short- and long-term retention of paired-associates. Psychonomic Science, 15(4), 183184. https://doi.org/10.3758/BF03336271.CrossRefGoogle Scholar
Schooler, L. J., Shiffrin, R. M., & Raaijmakers, J. G. W. (2001). A Bayesian model for implicit effects in perceptual identification. Psychological Review, 108(1), 257272. https://doi.org/10.1037/0033-295X.108.1.257.CrossRefGoogle ScholarPubMed
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20, 1121. https://doi.org/10.1136/jnnp.20.1.11.CrossRefGoogle ScholarPubMed
Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. Journal of Verbal Learning & Verbal Behavior, 6(1), 156163. https://doi.org/10.1016/S0022-5371(67)80067-7.CrossRefGoogle Scholar
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701703. https://doi.org/10.1126/science.171.3972.701.CrossRefGoogle ScholarPubMed
Sheremata, S. L., Somers, D. C., & Shomstein, S. (2018). Visual short-term memory activity in parietal lobe reflects cognitive processes beyond attentional selection. Journal of Neuroscience, 38(6), 15111519. https://doi.org/10.1523/jneurosci.1716-17.2017.CrossRefGoogle ScholarPubMed
Shiffrin, R. M. (1970). Forgetting: Trace erosion or retrieval failure? Science, 168(3939), 16011603. https://doi.org/10.1126/science.168.3939.1601.CrossRefGoogle ScholarPubMed
Shiffrin, R. M. (1973). Information persistence in short-term memory. Journal of Experimental Psychology, 100(1), 3949. https://doi.org/10.1037/h0035512.CrossRefGoogle Scholar
Shiffrin, R. M., & Atkinson, R. C. (1969). Storage and retrieval processes in long-term memory. Psychological Review, 76(2), 179193. https://doi.org/10.1037/h0027277.CrossRefGoogle Scholar
Shiffrin, R. M., & Gardner, G. T. (1972). Visual processing capacity and attentional control. Journal of Experimental Psychology, 93(1), 7282. https://doi.org/10.1037/h0032453.CrossRefGoogle ScholarPubMed
Shiffrin, R. M., & Lightfoot, N. (1997). Perceptual learning of alphanumeric-like characters. In Goldstone, R. L., Medin, D. L., & Schyns, P. G. (Eds.), Perceptual learning (pp. 4581). Cambridge, MA: Academic Press.Google Scholar
Shiffrin, R. M., & Nobel, P. A. (1997). The art of model development and testing. Behavior Research Methods, Instruments & Computers, 29(1), 614. https://doi.org/10.3758/BF03200560.CrossRefGoogle Scholar
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127190. https://doi.org/10.1037/0033-295X.84.2.127.CrossRefGoogle Scholar
Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM – retrieving effectively from memory. Psychonomic Bulletin & Review, 4(2), 145166. https://doi.org/10.3758/BF03209391.CrossRefGoogle Scholar
Shiffrin, R. M. & Steyvers, M. (1998). The effectiveness of retrieval from memory. In Oaksford, M. & Chater, N. (Eds.), Rational models of cognition (pp. 7395). London: Oxford University Press.Google Scholar
Shiffrin, R. M., Craig, J. C., & Cohen, E. (1973). On the degree of attention and capacity limitation in tactile processing. Perception & Psychophysics, 13, 328336. https://doi.org/10.3758/BF03214148.CrossRefGoogle Scholar
Shiffrin, R. M., Gardner, G. T., & Allmeyer, D. H. (1973). On the degree of attention and capacity limitations in visual processing. Perception & Psychophysics, 14, 231236. https://doi.org/10.3758/BF03212382.CrossRefGoogle Scholar
Shiffrin, R. M., Ratcliff, R., & Clark, S. E. (1990). List-strength effect: II. Theoretical mechanisms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(2), 179195. https://doi.org/10.1037/0278-7393.16.2.179.Google ScholarPubMed
Shulman, G. L., Corbetta, M., Buckner, R. L. et al. (1997). Common blood flow changes across visual tasks: I. Increases in subcortical structures and cerebellum but not in nonvisual cortex. Journal of Cognitive Neuroscience, 9(5), 624647. https://doi.org/10.1162/jocn.1997.9.5.624.CrossRefGoogle ScholarPubMed
Smith, A. D. (1971). Output interference and organized recall from long-term memory. Journal of Verbal Learning & Verbal Behavior, 10(4), 400408. https://doi.org/10.1016/S0022-5371(71)80039-7.CrossRefGoogle Scholar
Smith, E. E., & Jonides, J. (1995). Working memory in humans: Neuropsychological evidence. In Gazzaniga, M. S. (Ed.), The cognitive neurosciences (pp. 10091020).Cambridge, MA: MIT Press.Google Scholar
Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: A featural model for semantic decisions. Psychological Review, 81(3), 214241. https://doi.org/10.1037/h0036351.CrossRefGoogle Scholar
Smith, S. M. (1979). Remembering in and out of context. Journal of Experimental Psychology: Human Learning and Memory, 5(5), 460471. https://doi.org/10.1037/0278-7393.5.5.460.Google Scholar
Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 174215. https://doi.org/10.1037/0278-7393.6.2.174.Google ScholarPubMed
Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74(11), 129. https://doi.org/10.1037/h0093759.CrossRefGoogle Scholar
Sperling, G. (1963). A model for visual memory tasks. Human Factors, 5, 1931. https://doi.org/10.1177/001872086300500103.CrossRefGoogle Scholar
Squire, L. R. (1989). On the course of forgetting in very long-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(2), 241245. https://doi.org/10.1037/0278-7393.15.2.241.Google ScholarPubMed
Squire, L. R. (2009). The legacy of patient H.M. for neuroscience. Neuroview, 61(1), 69. https://doi.org/10.1016/j.neuron.2008.12.023.Google ScholarPubMed
Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652654. https://doi.org/10.1126/science.153.3736.652.CrossRefGoogle ScholarPubMed
Stewart, N., Brown, G. D. A., & Chater, N. (2005). Absolute identification by relative judgment. Psychological Review, 112(4), 881911. https://doi.org/10.1037/0033-295X.112.4.881.CrossRefGoogle ScholarPubMed
Stretch, V., & Wixted, J. T. (1998a). On the difference between strength-based and frequency-based mirror effects in recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(6), 13791396. https://doi.org/10.1037/0278-7393.24.6.1379.Google ScholarPubMed
Stretch, V., & Wixted, J. T. (1998b). Decision rules for recognition memory confidence judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(6), 13971410. https://doi.org/10.1037/0278-7393.24.6.1397.Google ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643662. https://doi.org/10.1037/h0054651.CrossRefGoogle Scholar
Tan, L., & Ward, G. (2000). A recency-based account of the primacy effect in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 15891625. https://doi.org/10.1037/0278-7393.26.6.1589.Google ScholarPubMed
Tanner, T. A., Jr., Rauk, J. A., & Atkinson, R. C. (1970). Signal recognition as influenced by information feedback. Journal of Mathematical Psychology, 7(2), 259274. https://doi.org/10.1016/0022-2496(70)90048-9.CrossRefGoogle Scholar
Thucydides, (1919). History of the Peloponnesian War, Volume 1, translated by C. F. Smith. Cambridge, MA: Harvard University Press.Google Scholar
Tomlinson, T. D., Huber, D. E., Rieth, C. A., & Davelaar, E. J. (2009). An interference account of cue-independent forgetting in the no-think paradigm. Proceedings of the National Academy of Sciences, 106(37), 1558815593.CrossRefGoogle ScholarPubMed
Townsend, J. T., & Ashby, F. G. (1984). Measurement scales and statistics: The misconception misconceived. Psychological Bulletin, 96(2), 394401. https://doi.org/10.1037/0033-2909.96.2.394.CrossRefGoogle Scholar
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97136. https://doi.org/10.1016/0010-0285(80)90005-5.CrossRefGoogle ScholarPubMed
Treisman, A., & Schmidt, H. (1982). Illusory conjunctions in the perception of objects. Cognitive Psychology, 14(1), 107141. https://doi.org/10.1016/0010-0285(82)90006-8.CrossRefGoogle ScholarPubMed
Tulving, E. (1983). Elements of episodic memory. Oxford: Oxford University Press.Google Scholar
Tulving, E., & Pearlstone, Z. (1966). Availability versus accessibility of information in memory for words. Journal of Verbal Learning & Verbal Behavior, 5(4), 381391. https://doi.org/10.1016/S0022-5371(66)80048-8.CrossRefGoogle Scholar
Tulving, E., & Psotka, J. (1971). Retroactive inhibition in free recall: Inaccessibility of information available in the memory store. Journal of Experimental Psychology, 87(1), 18. https://doi.org/10.1037/h0030185.CrossRefGoogle Scholar
Underwood, B. J. (1948). Retroactive and proactive inhibition after five and forty-eight hours. Journal of Experimental Psychology, 38(1), 2938. https://doi.org/10.1037/h0062470.CrossRefGoogle Scholar
Verplanck, W. S., Collier, G. H., & Cotton, J. W. (1952). Nonindependence of successive responses in measurements of the visual threshold. Journal of Experimental Psychology, 44(4), 273282. https://doi.org/10.1037/h0054948.CrossRefGoogle ScholarPubMed
von Restorff, H. (1933). Über die Wirkung von Bereichsbildungen im Spurenfeld. Psychologische Forschung, 18, 299342. https://doi.org/10.1007/BF02409636.CrossRefGoogle Scholar
Wagenmakers, E. J. M., Zeelenberg, R., & Raaijmakers, J. G. W. (2000). Testing the counter model for perceptual identification: Effects of repetition priming and word frequency. Psychonomic Bulletin & Review, 7, 662667. https://doi.org/10.3758/BF03213004.CrossRefGoogle ScholarPubMed
Wagenmakers, E. J., Steyvers, M., Raaijmakers, J. G. et al. (2004). A model for evidence accumulation in the lexical decision task. Cognitive Psychology, 48(3), 332367. https://doi.org/10.1016/j.cogpsych.2003.08.001.CrossRefGoogle Scholar
Ward, G., & Tan, L. (2004). The effect of the length of to-be-remembered lists and intervening lists on free recall: A reexamination using overt rehearsal. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(6), 11961210. https://doi.org/10.1037/0278-7393.30.6.1196.Google ScholarPubMed
Ward, G., Tan, L., & Grenfell-Essam, R. (2010). Examining the relationship between free recall and immediate serial recall: The effects of list length and output order. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(5), 12071241. https://doi.org/10.1037/a0020122.Google ScholarPubMed
Watkins, O. C., & Watkins, M. J. (1975). Buildup of proactive inhibition as a cue-overload effect. Journal of Experimental Psychology: Human Learning and Memory, 1(4), 442452. https://doi.org/10.1037/0278-7393.1.4.442.Google Scholar
Weidemann, C. T., Huber, D. E., & Shiffrin, R. M. (2005). Confusion and compensation in visual perception: Effects of spatiotemporal proximity and selective attention. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 4061. https://doi.org/10.1037/0096-1523.31.1.40.Google ScholarPubMed
Whipple, G. M. (1910). The effect of practice upon the range of visual attention and of visual apprehension. Journal of Educational Psychology, 1(5), 249262. https://doi.org/10.1037/h0075300.CrossRefGoogle Scholar
Whitten, W. B. (1978). Initial-retrieval “depth” and the negative recency effect. Memory & Cognition, 6(6), 590598. https://doi.org/10.3758/BF03198248.CrossRefGoogle Scholar
Wickens, D. D. (1970). Encoding categories of words: An empirical approach to meaning. Psychological Review, 77(1), 115. https://doi.org/10.1037/h0028569.CrossRefGoogle Scholar
Wickens, D. D., Born, D. G., & Allen, C. K. (1963). Proactive inhibition and item similarity in short-term memory. Journal of Verbal Learning & Verbal Behavior, 2(5–6), 440445. https://doi.org/10.1016/S0022-5371(63)80045-6.CrossRefGoogle Scholar
Williams, C. C., & Zacks, R. T. (2001). Is retrieval-induced forgetting an inhibitory process? The American Journal of Psychology, 114(3), 329354. https://doi.org/10.2307/1423685.CrossRefGoogle ScholarPubMed
Williams, M. D., & Hollan, J. D. (1981). The process of retrieval from very long‐term memory. Cognitive Science, 5(2), 87119. https://doi.org/10.1207/s15516709cog0502_1.CrossRefGoogle Scholar
Winograd, E. (1968). List differentiation, recall, and category similarity. Journal of Experimental Psychology, 78(3, Pt. 1), 510515. https://doi.org/10.1037/h0026463.CrossRefGoogle Scholar
Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. Psychological Review, 114(1), 152176. https://doi.org/10.1037/0033-295X.114.1.152.CrossRefGoogle ScholarPubMed
Wixted, J. T., & McDowell, J. J. (1989). Contributions to the functional analysis of single-trial free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(4), 685697. https://doi.org/10.1037/0278-7393.15.4.685.Google Scholar
Wixted, J. T., & Stretch, V. (2004). In defense of the signal detection interpretation of remember/know judgments. Psychonomic Bulletin & Review, 11(4), 616641. https://doi.org/10.3758/BF03196616.CrossRefGoogle ScholarPubMed
Wolfe, J. M., Drew, T., & Boettcher, S. E. P. (2015). Hybrid search: Picking up a thread from Schneider and Shiffrin (1977). In Raaijmakers, J. G. W., Criss, A. H., Goldstone, R. L., Nosofsky, R. M., & Steyvers, M. (Eds.), Cognitive modeling in perception and memory: A festschrift for Richard M. Shiffrin (pp. 6377). London: Psychology Press.Google Scholar
Woodworth, R. S., & Schlosberg, H. (1954). Experimental psychology (Rev. ed.). New York: Holt.Google Scholar
Xu, J., & Malmberg, K. J. (2007). Modeling the effects of verbal and nonverbal pair strength on associative recognition. Memory & Cognition, 35(3), 526544. https://doi.org/10.3758/BF03193292.CrossRefGoogle ScholarPubMed
Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition memory: Evidence for a dual-process model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(6), 13411354. https://doi.org/10.1037/0278-7393.20.6.1341.Google ScholarPubMed
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441517. https://doi.org/10.1006/jmla.2002.2864.CrossRefGoogle Scholar
Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition memory: Evidence for a dual-process model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(6), 1341.Google ScholarPubMed
Yonelinas, A. P., Otten, L. J., Shaw, K. N., & Rugg, M. D. (2005). Separating the brain regions involved in recollection and familiarity in recognition memory. Journal of Neuroscience, 25(11), 30023008. https://doi.org/10.1523/jneurosci.5295-04.2005.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kenneth J. Malmberg, University of South Florida
  • Book: Human Memory
  • Online publication: 17 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781009440370.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kenneth J. Malmberg, University of South Florida
  • Book: Human Memory
  • Online publication: 17 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781009440370.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kenneth J. Malmberg, University of South Florida
  • Book: Human Memory
  • Online publication: 17 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781009440370.012
Available formats
×