Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- 22 Introduction to the human γ-herpesviruses
- 23 Gammaherpesviruses entry and early events during infection
- 24 Gammaherpesvirus maintenance and replication during latency
- 25 Reactivation and lytic replication of EBV
- 26 Reactivation and lytic replication of KSHV
- 27 EBV gene expression and regulation
- 28 KSHV gene expression and regulation
- 29 Effects on apoptosis, cell cycle and transformation, and comparative aspects of EBV with other DNA tumor viruses
- 30 KSHV manipulation of the cell cycle and programmed cell death pathways
- 31 Human gammaherpesvirus immune evasion strategies
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
28 - KSHV gene expression and regulation
from Part II - Basic virology and viral gene effects on host cell functions: gammaherpesviruses
Published online by Cambridge University Press: 24 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- 22 Introduction to the human γ-herpesviruses
- 23 Gammaherpesviruses entry and early events during infection
- 24 Gammaherpesvirus maintenance and replication during latency
- 25 Reactivation and lytic replication of EBV
- 26 Reactivation and lytic replication of KSHV
- 27 EBV gene expression and regulation
- 28 KSHV gene expression and regulation
- 29 Effects on apoptosis, cell cycle and transformation, and comparative aspects of EBV with other DNA tumor viruses
- 30 KSHV manipulation of the cell cycle and programmed cell death pathways
- 31 Human gammaherpesvirus immune evasion strategies
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
Summary
Introduction
In this chapter, both in vivo and in vitro KSHV viral gene expression patterns are described. Observations in both systems have been critical for the identification of viral proteins contributing to the pathogenic properties of this virus and for our appreciation of how this virus persists and replicates in the course of naturally occurring infections, the vast majority of which are asymptomatic (see Epidemiology). In contrast to other human herpesviruses, cell-free infection with KSHV in vitro is still inefficient and only a few studies have investigated viral gene expression following de novo infection. However, informative studies using in situ hybridization (ISH), immunohistochemistry (IHC), and various methods of transcript analysis have been carried out with stably infected, primary effusion lymphoma (PEL)-derived cell lines and, to a lesser extent, biopsy samples. Gradually, a picture on viral gene expression patterns and their regulation in different cell types is beginning to emerge.
Viral gene expression patterns in culture
PEL derived cell lines
PEL cell lines remain the most tractable system for examining KSHV viral gene expression. The vast majority of cells are infected latently and express a restricted repertoire of genes, while a small percentage (this varies from cell line to cell line, usually in the order of 1%–5%) of cells spontaneously switch into the lytic replication cycle. Lytic reactivation can be enhanced (up to 20% in some cell lines) in this system by chemical treatment with butyrate or phorbol esters.
- Type
- Chapter
- Information
- Human HerpesvirusesBiology, Therapy, and Immunoprophylaxis, pp. 490 - 513Publisher: Cambridge University PressPrint publication year: 2007
References
- 2
- Cited by