Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- 50 Clinical and pathological aspects of EBV And KSHV infection
- 51 EBV: Immunobiology and host response
- 52 Immunobiology and host response to KSHV infection
- 53 The epidemiology of EBV and its association with malignant disease
- 54 The epidemiology of KSHV and its association with malignant disease
- 55 EBV-induced oncogenesis
- 56 KSHV-induced oncogenesis
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
52 - Immunobiology and host response to KSHV infection
from Part III - Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
Published online by Cambridge University Press: 24 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- 50 Clinical and pathological aspects of EBV And KSHV infection
- 51 EBV: Immunobiology and host response
- 52 Immunobiology and host response to KSHV infection
- 53 The epidemiology of EBV and its association with malignant disease
- 54 The epidemiology of KSHV and its association with malignant disease
- 55 EBV-induced oncogenesis
- 56 KSHV-induced oncogenesis
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
Summary
Introduction
The interplay between malignancy, infection and immunity is best illustrated by the neoplasms related to KSHV (Boshoff and Weiss, 2002): Kaposi sarcoma (KS) is approximately 100 times more common during immunosuppression and can be resolved when iatrogenic immunosuppression is stopped (Euvrard et al., 2003) and during highly active antiretroviral treatment (HAART) of HIV-1 infected individuals (Boshoff and Weiss, 2002). Primary effusion lymphoma (PEL) and plasmablastic multicentric Castleman's disease (MCD) also occur predominantly during immunosuppression. Like other gammaherpesviruses, KSHV persists as a latent episome in B-lymphocytes (Ambroziak et al., 1995; Cesarman et al., 1995; Renne et al., 1996), without provoking host responses that would eliminate infected cells. KSHV acquired a fascinating repertoire of decoys to trick the host immune response enabling establishment of lifelong infection in humans with very few clinical manifestations. When the balance between viral infection and host immunity is disturbed, some of the molecular pathways employed by KSHV to evade host immune responses are directly involved in driving oncogenesis (Moore and Chang, 2003). KSHV is an excellent model to study the coevolution of pathogen attack and mechanisms of host counter attack.
KS is most aggressive in the immunosuppressed and resolves with partial restoration of the immune system (Gill et al., 2002). Since the introduction of HAART, there has also been a dramatic fall in the incidence of KS (Jacobson et al., 1999).
- Type
- Chapter
- Information
- Human HerpesvirusesBiology, Therapy, and Immunoprophylaxis, pp. 915 - 928Publisher: Cambridge University PressPrint publication year: 2007
References
- 6
- Cited by