Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- 22 Introduction to the human γ-herpesviruses
- 23 Gammaherpesviruses entry and early events during infection
- 24 Gammaherpesvirus maintenance and replication during latency
- 25 Reactivation and lytic replication of EBV
- 26 Reactivation and lytic replication of KSHV
- 27 EBV gene expression and regulation
- 28 KSHV gene expression and regulation
- 29 Effects on apoptosis, cell cycle and transformation, and comparative aspects of EBV with other DNA tumor viruses
- 30 KSHV manipulation of the cell cycle and programmed cell death pathways
- 31 Human gammaherpesvirus immune evasion strategies
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
27 - EBV gene expression and regulation
from Part II - Basic virology and viral gene effects on host cell functions: gammaherpesviruses
Published online by Cambridge University Press: 24 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- 22 Introduction to the human γ-herpesviruses
- 23 Gammaherpesviruses entry and early events during infection
- 24 Gammaherpesvirus maintenance and replication during latency
- 25 Reactivation and lytic replication of EBV
- 26 Reactivation and lytic replication of KSHV
- 27 EBV gene expression and regulation
- 28 KSHV gene expression and regulation
- 29 Effects on apoptosis, cell cycle and transformation, and comparative aspects of EBV with other DNA tumor viruses
- 30 KSHV manipulation of the cell cycle and programmed cell death pathways
- 31 Human gammaherpesvirus immune evasion strategies
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
Summary
Introduction
Epstein–Barr virus (EBV) is an extremely efficient virus infecting the majority of the world's adult population (Rickinson and Kieff, 2001). Following primary infection, EBV persists in the infected host as a lifelong asymptomatic infection. Early in the course of primary infection, EBV infects B-lymphocytes, although it is not known where B-lymphocytes are infected and whether this involves epithelial cells of the upper respiratory tract. To achieve long-term persistence in vivo, EBV colonizes the memory B-cell pool where it establishes latent infection, which is characterized by the expression of a limited subset of virus genes, known as the “latent” genes (Thorley-Lawson, 2001). There are several well-described forms of EBV latency, each of which is utilized by the virus at different stages of the virus life cycle and which are also reflected in the patterns of latency observed in the various EBV-associated malignancies (Rickinson and Kieff, 2001; Young and Murray, 2003). Furthermore, during its life cycle EBV must periodically enter the replicative cycle in order to generate infectious virus for transmission to other susceptible hosts, although it is also not clear whether this occurs in B-lymphocytes or in other cell types of the oropharynx (Rickinson and Kieff, 2001).
This chapter describes the EBV latency and replicative programs utilized by the virus as a means to understand how the virus infects and then establishes persistence in the host.
- Type
- Chapter
- Information
- Human HerpesvirusesBiology, Therapy, and Immunoprophylaxis, pp. 461 - 489Publisher: Cambridge University PressPrint publication year: 2007
References
- 37
- Cited by