Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T09:40:51.628Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

18 - How to read a proof

from III - Definitions, theorems and proofs

Kevin Houston
Affiliation:
University of Leeds
Get access

Summary

Nullius in verba.

Translation: Take nobody's word for it. Latin proverb

As we have stated, proof is central to mathematics; without proof mathematics loses its power. In this section we show how to approach a proof and break it down to manageable, understandable pieces. Important clues and helpful hints as to why a theorem is true are often removed in the final written version of a proof. The construction lines are erased, and, unfortunately, it is up to the reader to reconstruct them. Think of the proof as being a tight bundle you have to unpack.

You may need some more experience to get the full benefit from the following advice; a lot of it should make sense straight away but rereading at a later date could be useful.

A simple theorem and its proof

The following theorem is easy to understand. It has similarities with Theorem 1 in the previous chapter but is different. The subsequent proof will be the primary example in this chapter.

Theorem 18.1

Let m and n be natural numbers. The product mn is odd if and only if m and n are odd.

Does this theorem seem reasonable? Why is it different to Theorem 1 of the previous chapter? Apply the ideas of that chapter to this new statement.

Type
Chapter
Information
How to Think Like a Mathematician
A Companion to Undergraduate Mathematics
, pp. 119 - 125
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • How to read a proof
  • Kevin Houston, University of Leeds
  • Book: How to Think Like a Mathematician
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511808258.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • How to read a proof
  • Kevin Houston, University of Leeds
  • Book: How to Think Like a Mathematician
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511808258.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • How to read a proof
  • Kevin Houston, University of Leeds
  • Book: How to Think Like a Mathematician
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511808258.019
Available formats
×