Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T20:19:17.028Z Has data issue: false hasContentIssue false

13 - Hemoglobinopathies in pregnancy

Published online by Cambridge University Press:  01 February 2010

Adeboye H. Adewoye M.D.
Affiliation:
Assistant Professor of Medicine
Martin H. Steinberg M.D.
Affiliation:
Professor of Medicine Pediatrics, Pathology and Laboratory Medicine
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Introduction

All human hemoglobin is composed of two α-globin-like chains and two non-α-globin chains that combine to form a tetramer. Normal adults have three hemoglobin types, HbA (α2β2; ∼ 96%), HbF (α2γ2; ∼ 1%), and HbA2 (α2δ2; ∼ 3%). The amino acid sequence, or primary structure of each globin chain differs; dissimilarities between α- and non-α-globin chains are greater than the variations among the globins of the β-like gene cluster, e.g. γ-, δ-, and β-globin. Despite these differences among globins their similarities are even greater as all have alike secondary and tertiary structure and function similarly. Human hemoglobin is ideally suited for its tasks – primarily oxygen uptake in lungs and delivery in tissues. A sigmoidal shaped curve, so critical for this oxygen transport, is a result of the interactions among the individual globin subunits of the tetramer. As for hemoglobin function, the sigmoidal shape of the oxygen dissociation curve of hemoglobin shows that totally deoxygenated hemoglobin is slow to become oxygenated, but as oxygenation proceeds, the reaction of heme with oxygen accelerates; the reverse is also true. Hemoglobin has other functions in CO2 exchange and control of vascular tone by nitric oxide (NO) and can modulate oxygen delivery by shifts in its oxygen-hemoglobin dissociation curve caused by temperature, pH, and organic phosphates.

Different classes of mutations can alter the structure, function, and synthesis of hemoglobin. More than 1,000 structurally abnormal hemoglobins have been characterized and the number of thalassemia-causing mutations exceeds 200.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Steinberg, M. H.Management of sickle cell disease. N. Engl. J. Med., 1999; 340(13): 1021–30.CrossRefGoogle ScholarPubMed
Embury, S. H. H. R., Mohandas, N., Steinberg, M. H.Sickle Cell Disease: Basic Principles and Clinical Practice, 1st edn. New York, NY: Raven Press; 1994.Google Scholar
Brugnara, C. Red cell membrane in sickle cell disease. In Steinberg, M. H. F. D., Nagel, R. L., eds., Disorders of Hemoglobin: Genetics, Pathophysiology and Clinical Management, Cambridge: Cambridge University Press; 2001 pp. 550–76.Google Scholar
Frempong, K. S. M. Clinical aspects of sickle cell anemia in adults and children. In Steinberg, M. H. F. D., Nagel, R. L., eds., Disorders of Hemoglobin: Genetics, Pathophysiology and Clinical management, Cambridge: Cambridge University Press; 2001 pp. 611–710.Google Scholar
Fabry, M. E., Nagel, R. L.The effect of deoxygenation on red cell density: significance for the pathophysiology of sickle cell anemia. Blood, 1982; 60(6): 1370–7.Google ScholarPubMed
Kaul, D. K., Fabry, M. E., Nagel, R. L., The pathophysiology of vascular obstruction in the sickle syndromes. Blood Rev., 1996; 10(1): 29–44.CrossRefGoogle ScholarPubMed
Nagel, R.The origin of the hemoglobin S gene: Clinical, genetic and anthropological consequences. Einstein Q Journal Biol. Med., 1984; 2: 53–62.Google Scholar
Steinberg, M. H., Pathophysiology of sickle cell disease. Baillieres Clin. Haematol., 1998; 11(1): 163–84.CrossRefGoogle ScholarPubMed
Conrad, K. P., Benyo, D. F., Westerhausen-Larsen, A., et al. Expression of erythropoietin by the human placenta. Faseb J., 1996; 10(7): 760–8.CrossRefGoogle ScholarPubMed
Perelman, N., Selvaraj, S. K., Batra, S., et al. Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood, 2003; 102(4): 1506–14.CrossRefGoogle ScholarPubMed
Anyaegbunam, A., Mikhail, M., Axioitis, C., et al. Placental histology and placental/fetal weight ratios in pregnant women with sickle cell disease: relationship to pregnancy outcome. J. Assoc. Acad. Minor Phys., 1994; 5(3): 123–5.Google ScholarPubMed
Decastel, M., Leborgne-Samuel, Y., Alexandre., L, et al. Morphological features of the human umbilical vein in normal, sickle cell trait, and sickle cell disease pregnancies. Hum. Pathol., 1999; 30(1): 13–20.CrossRefGoogle ScholarPubMed
Kucukcelebi, A., Barmatoski, S. P., Barnhart, M. I.Interactions between vessel wall and perfused sickled erythrocytes: preliminary observations. Scan. Electron Microsc., 1980; 3: 243–8.Google Scholar
Granger, J. P., Alexander, B. T., Llinas, M. T., et al. Pathophysiology of preeclampsia: linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation, 2002; 9(3): 147–60.CrossRefGoogle ScholarPubMed
Alleyne, S. I., Rauseo, R. D., Serjeant, G. R.Sexual development and fertility of Jamaican female patients with homozygous sickle cell disease. Arch. Intern. Med., 1981; 141(10): 1295–7.CrossRefGoogle ScholarPubMed
Steinberg, M. H.Sickle cell anemia and iron deficiency. JAMA, 1982; 248(17): 2112–3.CrossRefGoogle ScholarPubMed
Steinberg, M. H.The interactions of alpha-thalassemia with hemoglobinopathies. Hematol. Oncol. Clin. North Am., 1991; 5(3): 453–73.CrossRefGoogle ScholarPubMed
Steinberg, M. H.Modulation of the phenotypic diversity of sickle cell anemia. Hemoglobin, 1996; 20(1): 1–19.CrossRefGoogle ScholarPubMed
Howard, R. J., Tuck, S. M., Pearson, T. C.Pregnancy in sickle cell disease in the UK: results of a multicentre survey of the effect of prophylactic blood transfusion on maternal and fetal outcome. Br. J. Obstet. Gynaecol., 1995; 102(12): 947–51.CrossRefGoogle ScholarPubMed
Powars, D. R., Sandhu, M., Niland-Weiss, J., et al. Pregnancy in sickle cell disease. Obstet. Gynecol., 1986; 67(2): 217–28.CrossRefGoogle ScholarPubMed
Koshy, M., Burd, L.Management of pregnancy in sickle cell syndromes. Hematol. Oncol. Clin. North Am., 1991; 5(3): 585–96.CrossRefGoogle ScholarPubMed
Diav-Citrin, O., Hunnisett, L., Sher, G. D., et al. Hydroxyurea use during pregnancy: a case report in sickle cell disease and review of the literature. Am. J. Hematol., 1999; 60(2): 148–50.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Mahomed, K.Prophylactic versus selective blood transfusion for sickle cell anaemia during pregnancy. Cochrane Database Syst. Rev., 2000(2): CD000040.Google ScholarPubMed
El-Shafei, A. M., Kaur Dhaliwal, J., Kaur Sandhu, A., et al. Indications for blood transfusion in pregnancy with sickle cell disease. Aust. N. Z. J. Obstet. Gynaecol., 1995; 35(4): 405–8.CrossRefGoogle ScholarPubMed
Koshy, M., Burd, L., Wallace, D., et al. Prophylactic red-cell transfusions in pregnant patients with sickle cell disease. A randomized cooperative study. N. Engl. J. Med., 1988; 319(22): 1447–52.CrossRefGoogle ScholarPubMed
Vichinsky, E. P., Styles, L. A., Colangelo, L. H., et al. Acute chest syndrome in sickle cell disease: clinical presentation and course. Cooperative Study of Sickle Cell Disease. Blood, 1997; 89(5): 1787–92.Google ScholarPubMed
Ohene-Frempong, K., Weiner, S. J., Sleeper, L. A., et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood, 1998; 91(1): 288–94.Google ScholarPubMed
Markenson, G. R., Yancey, M. K.Parvovirus B19 infections in pregnancy. Semin. Perinatol., 1998; 22(4): 309–17.CrossRefGoogle ScholarPubMed
Fairley, C. K., Smoleniec, J. S., Caul, O. E., et al. Observational study of effect of intrauterine transfusions on outcome of fetal hydrops after parvovirus B19 infection. Lancet, 1995; 346(8986): 1335–7.CrossRefGoogle ScholarPubMed
Selbing, A., Josefsson, A., Dahle, L. O., et al. Parvovirus B19 infection during pregnancy treated with high-dose intravenous gammaglobulin. Lancet, 1995; 345(8950): 660–1.CrossRefGoogle ScholarPubMed
Smith, J. A., Espeland, M., Bellevue, R., et al. Pregnancy in sickle cell disease: experience of the Cooperative Study of Sickle Cell Disease. Obstet. Gynecol., 1996; 87(2): 199–204.CrossRefGoogle ScholarPubMed
Williams, M. A., Farrand, A., Mittendorf, R., et al. Maternal second trimester serum tumor necrosis factor-alpha-soluble receptor p55 (sTNFp55) and subsequent risk of preeclampsia. Am. J. Epidemiol., 1999; 149(4): 323–9.CrossRefGoogle ScholarPubMed
Namiki, A., Hirata, Y., Fukazawa, M., et al. Granulocyte-colony stimulating factor stimulates immunoreactive endothelin-1 release from cultured bovine endothelial cells. Eur. J. Pharmacol., 1992; 227(3): 339–41.Google ScholarPubMed
Luckas, M., Hawe., J., Meekins, J, et al. Second trimester serum free beta human chorionic gonadotrophin levels as a predictor of pre-eclampsia. Acta Obstet. Gynecol. Scand., 1998; 77(4): 381–4.CrossRefGoogle ScholarPubMed
Huang, S. C., Hsieh, C. Y., Hwang, J. L., et al. Free alpha subunit of human chorionic gonadotropin in women with non-trophoblastic tumors. Taiwan Yi Xue Hui Za Zhi 1989; 88(3): 218–25.Google ScholarPubMed
Polliotti, B. M., Fry, A. G., Saller, D. N., et al. Second-trimester maternal serum placental growth factor and vascular endothelial growth factor for predicting severe, early-onset preeclampsia. Obstet. Gynecol., 2003; 101(6): 1266–74.Google ScholarPubMed
Serjeant, G. R., Sickle haemoglobin and pregnancy. BMJ, (Clin. Res. Ed.), 1983; 287(6393): 628–30.CrossRefGoogle Scholar
Eaton, J. W., Mucha, J. I.Increased fertility in males with the sickle cell trait? Nature, 1971; 231(5303): 456–7.CrossRefGoogle ScholarPubMed
Blattner, P., Dar, H., Nitowsky, H. M.Pregnancy outcome in women with sickle cell trait. JAMA, 1977; 238(13): 1392–4.CrossRefGoogle ScholarPubMed
Sears, D. A.The morbidity of sickle cell trait: a review of the literature. Am. J. Med., 1978; 64(6): 1021–36.CrossRefGoogle ScholarPubMed
Larrabee, K. D., Monga, M.Women with sickle cell trait are at increased risk for preeclampsia. Am. J. Obstet. Gynecol., 1997; 177(2): 425–8.CrossRefGoogle ScholarPubMed
Hoff, C., Wertelecki, W., Dutt, J., et al. Sickle cell trait, maternal age and pregnancy outcome in primiparous women. Hum. Biol., 1983; 55(4): 763–70.Google ScholarPubMed
Kramer, M. S., Rooks, Y., Pearson, H. A.Growth and development in children with sickle-cell trait. A prospective study of matched pairs. N. Engl. J. Med., 1978; 299(13): 686–9.CrossRefGoogle ScholarPubMed
Rimer, B. A.Sickle-cell trait and pregnancy: A review of a community hospital experience. Am. J. Obstet. Gynecol., 1975; 123(1): 6–11.CrossRefGoogle ScholarPubMed
Koshy, M., Chisum, D., Burd, L., et al. Management of sickle cell anemia and pregnancy. J. Clin. Apheresis, 1991; 6(4): 230–3.CrossRefGoogle Scholar
Ong, H. C.Maternal and fetal outcome associated with hemoglobin E trait and hemoglobin E disease. Obstet. Gynecol., 1975; 45(6): 672–4.CrossRefGoogle ScholarPubMed
Charache, S., Catalano, P., Burns, S., et al. Pregnancy in carriers of high-affinity hemoglobins. Blood, 1985; 65(3): 713–18.Google ScholarPubMed
Bard, H., Rosenberg, A., Huisman, T. H.Hemoglobinopathies affecting maternal–fetal oxygen gradient during pregnancy: molecular, biochemical and clinical studies. Am. J. Perinatol., 1998; 15(6): 389–93.CrossRefGoogle ScholarPubMed
Kaeda, J. S., Prasad, K., Howard, R. J., et al. Management of pregnancy when maternal blood has a very high level of fetal haemoglobin. Br. J. Haematol., 1994; 88(2): 432–4.CrossRefGoogle Scholar
Dozy, A. M., Kan, Y. W., Embury, S. H., et al. Alpha-globin gene organisation in blacks precludes the severe form of alpha-thalassaemia. Nature, 1979; 280(5723): 605–7.CrossRefGoogle ScholarPubMed
Weatherall, D. J., Clegg, J. B.Inherited haemoglobin disorders: an increasing global health problem. Bull. World Health Organ., 2001; 79(8): 704–12.Google Scholar
Russell, J., Liebhaber, S. A. Advances in Genome Biology, In Verma, R., ed., Greenwich, CT: JAI Press Inc; 1992.Google Scholar
Chan, L. C., So, J. C., Chui, D. H.Comparison of haemoglobin H inclusion bodies with embryonic zeta globin in screening for alpha thalassaemia. J. Clin. Pathol., 1995; 48(9): 861–4.CrossRefGoogle ScholarPubMed
Chan, A. Y., So, C. K., Chan, L. C.Comparison of the HbH inclusion test and a PCR test in routine screening for alpha thalassaemia in Hong Kong. J. Clin. Pathol., 1996; 49(5): 411–13.CrossRefGoogle Scholar
Galanello, R., Aru, B., Dessi, C., et al. HbH disease in Sardinia: molecular, hematological and clinical aspects. Acta Haematol., 1992; 88(1): 1–6.CrossRefGoogle ScholarPubMed
Ong, H. C., White, J. C., Sinnathuray, T. A.Haemoglobin H disease and pregnancy in a Malaysian woman. Acta Haematol., 1977; 58(4): 229–33.CrossRefGoogle Scholar
Steinberg, M. H. F. D., Nagel, R. L. Clinical and laboratory features of the alpha thalassemia syndromes. In Steinberg, M. H. F. D., Nagel, R. L., eds., Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge: Cambridge University Press; 2001: pp. 431–69.Google Scholar
Chui, D. H., Waye, J. S.Hydrops fetalis caused by alpha-thalassemia: an emerging health care problem. Blood, 1998; 91(7): 2213–22.Google ScholarPubMed
Chui, D. H., Fucharoen, S., Chan, V.Hemoglobin H disease: not necessarily a benign disorder. Blood, 2003; 101(3): 791–800.CrossRefGoogle ScholarPubMed
Higgs, D. R., Wood, W. G., Jarman, A. P., et al. A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev., 1990; 4(9): 1588–601.CrossRefGoogle Scholar
Vyas, P., Vickers, M. A., Simmons, D. L., et al. Cis-acting sequences regulating expression of the human alpha-globin cluster lie within constitutively open chromatin. Cell, 1992; 69(5): 781–93.CrossRefGoogle ScholarPubMed
Higgs, D. R.Alpha-thalassaemia. Baillieres Clin. Haematol., 1993; 6(1): 117–50.CrossRefGoogle ScholarPubMed
Monzon, C. M., Fairbanks, V. F., Burgert, E. O. Jr., et al. Hematologic genetic disorders among Southeast Asian refugees. Am. J. Hematol., 1985; 19(1): 27–36.CrossRefGoogle ScholarPubMed
Hofgartner, W. T., West Keefe, S. F., Tait, J. F.Frequency of deletional alpha-thalassemia genotypes in a predominantly Asian-American population. Am. J. Clin Pathol., 1997; 107(5): 576–81.CrossRefGoogle Scholar
Fischel-Ghodsian, N., Vickers, M. A., Seip, M., et al. Characterization of two deletions that remove the entire human zeta-alpha globin gene complex (- -THAI and - -FIL). Br. J. Haematol., 1988; 70(2): 233–8.CrossRefGoogle Scholar
Waye, J. S., Eng, B., Chui, D. H.Identification of an extensive zeta-alpha globin gene deletion in a Chinese individual. Br. J. Haematol., 1992; 80(3): 378–80.CrossRefGoogle Scholar
Sophocleous, T., Higgs, D. R., Aldridge, B., et al. The molecular basis for the haemoglobin Bart's hydrops fetalis syndrome in Cyprus. Br. J. Haematol., 1981; 47(1): 153–6.CrossRefGoogle ScholarPubMed
Nicholls, R. D., Higgs, D. R., Clegg, J. B., et al. Alpha zero-thalassemia due to recombination between the alpha 1-globin gene and an AluI repeat. Blood, 1985; 65(6): 1434–8.Google ScholarPubMed
Weatherall, D. J. The thalassemias. In Stamatoyannopoulos, G. M. P., Varmus, H., eds., The Molecular Basis of Blood Diseases, Toronto: Saunders; 1994.Google Scholar
Chitayat, D., Silver, M. M., O'Brien, K., et al. Limb defects in homozygous alpha-thalassemia: report of three cases. Am. J. Med. Genet., 1997; 68(2): 162–7.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Abuelo, D. N., Forman, E. N., Rubin, L. P.Limb defects and congenital anomalies of the genitalia in an infant with homozygous alpha-thalassemia. Am. J. Med. Genet., 1997; 68(2): 158–61.3.0.CO;2-L>CrossRefGoogle Scholar
Liang, S. T., Wong, V. C., So, W. W., et al. Homozygous alpha-thalassaemia: clinical presentation, diagnosis and management. A review of 46 cases. Br. J. Obstet. Gynaecol., 1985; 92(7): 680–4.CrossRefGoogle ScholarPubMed
Ghosh, A., Tang, M. H., Lam, Y. H., et al. Ultrasound measurement of placental thickness to detect pregnancies affected by homozygous alpha-thalassaemia-1. Lancet, 1994; 344(8928): 988–9.CrossRefGoogle ScholarPubMed
Mehr, D. S., Rector, J. T., Ngo, K. Y.Pathological case of the month. Hydrops fetalis secondary to homozygous alpha-thalassemia-1 (Bart's hemoglobinopathy). Arch. Pediatr. Adolesc. Med., 1994; 148(12): 1313–14.CrossRefGoogle Scholar
Cheung, M. C., Goldberg, J. D., Kan, Y. W.Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat. Genet., 1996; 14(3): 264–8.CrossRefGoogle ScholarPubMed
Williamson, B.Towards non-invasive prenatal diagnosis. Nat. Genet., 1996; 14(3): 239–40.CrossRefGoogle ScholarPubMed
Rachmilewitz, E. A. S. S. Pathophysiology of beta thalassemia. In Steinberg, M. H. F. D., Nagel, R. L., eds., Disorders of Hemoglobin: Genetics, Pathophysiology and Clinical Management, Cambridge: Cambridge University Press; 2001: pp. 233–51.Google Scholar
Seracchioli, R., Porcu, E., Colombi, C., et al. Transfusion-dependent homozygous beta-thalassaemia major: successful twin pregnancy following in-vitro fertilization and tubal embryo transfer. Hum. Reprod., 1994; 9(10): 1964–5.CrossRefGoogle ScholarPubMed
Tampakoudis, P., Tsatalas, C., Mamopoulos, M., et al. Transfusion-dependent homozygous beta-thalassaemia major: successful pregnancy in five cases. Eur. J. Obstet. Gynecol. Reprod. Biol., 1997; 74(2): 127–31.CrossRefGoogle ScholarPubMed
Cunningham, M. J. M. E., Muraca, G., Neufeld, E. J. Successful pregnancy in thalassemia major women in the thalassemia clinical research network. In American Society of Hematology; 2003: San-Diego, CA.Google Scholar
Perniola, R., Magliari, F., Rosatelli, M. C., et al. High-risk pregnancy in beta-thalassemia major women. Report of three cases. Gynecol. Obstet. Invest., 2000; 49(2): 137–9.CrossRefGoogle ScholarPubMed
Wood, J. C. G. N., Carson, S., Tyszka, J., et al. Predictors of abnormal myocardial function and T2* in children and young adults with thalassemia major. Session type: Poster session 64-I. In American Society of Hematology; 2003; San Diego, CA.Google Scholar
Palagiano, A., Pace, L., Pregnancy in women with thalassaemia. Minerva Ginecol., 2001; 53(3): 203–7.Google ScholarPubMed
Singer, S. T., Vichinsky, E. P.Deferoxamine treatment during pregnancy: is it harmful? Am. J. Hematol., 1999; 60(1): 24–6.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Adamkiewicz, T. V., Berkovitch, M., Krishnan, C., et al. Infection due to Yersinia enterocolitica in a series of patients with beta-thalassemia: incidence and predisposing factors. Clin. Infect. Dis., 1998; 27(6): 1362–6.CrossRefGoogle Scholar
Cao, A. R. M., Eckman, J. R. Prenatal diagnosis and screening for thalassemia and sickle cell disease. In Steinberg, M. H. F. D., Nagel, R. L., eds., Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management, Cambridge: Cambridge University Press; 2001: pp. 958–78.Google Scholar
Agarwal, S., Gupta, A., Gupta, U. R., et al. Prenatal diagnosis in beta-thalassemia: an Indian experience. Fetal Diagn. Ther., 2003; 18(5): 328–32.CrossRefGoogle ScholarPubMed
Wu, G., Hua, L., Zhu, J., et al. Rapid, accurate genotyping of beta-thalassaemia mutations using a novel multiplex primer extension/denaturing high-performance liquid chromatography assay. Br. J. Haematol., 2003; 122(2): 311–16.CrossRefGoogle ScholarPubMed
Chen, X., Livak, K. J., Kwok, P. Y.A homogeneous, ligase-mediated DNA diagnostic test. Genome Res., 1998; 8(5): 549–56.CrossRefGoogle ScholarPubMed
Chang, J. G., Chen, P. H., Chiou, S. S., et al. Rapid diagnosis of beta-thalassemia mutations in Chinese by naturally and amplified created restriction sites. Blood, 1992; 80(8): 2092–6.Google ScholarPubMed
Powell, S. M.Direct analysis for familial adenomatous polyposis mutations. Mol. Biotechnol., 2002; 20(2): 197–207.CrossRefGoogle ScholarPubMed
Setianingsih, I. I., Williamson, R., Marzuk, S., et al. Molecular basis of beta-thalassemia in Indonesia: Application to prenatal diagnosis. Mol. Diagn., 1998; 3(1): 11–9.CrossRefGoogle ScholarPubMed
Myers, R. M., Larin, Z., Maniatis, T., Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science, 1985; 230(4731): 1242–6.CrossRefGoogle ScholarPubMed
Hiyama, K., Kodaira, M., Satoh, C., Detection of deletions, insertions and single nucleotide substitutions in cloned beta-globin genes and new polymorphic nucleotide substitutions in beta-globin genes in a Japanese population using ribonuclease cleavage at mismatches in RNA:DNA duplexes. Mutat. Res., 1990; 231(2): 219–31.CrossRefGoogle Scholar
Platt, O. S., Brambilla, D. J., Rosse, W. F., et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med., 1994; 330: 1639–44.CrossRefGoogle ScholarPubMed
Gladwin, M. T., Sachdev, V., Jison, M. L., et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N. Engl. J. Med., 2004; 350: 886–95.CrossRefGoogle ScholarPubMed
Steinberg, M. H., Barton, F., Castro, O., et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA, 2003; 289: 1645–51.CrossRefGoogle Scholar
Sun, P. M., Wilburn, W., Raynor, B. D., et al. Sickle cell disease in pregnancy: 20 years at Grady Memorial Hospital, Atlanta, GA. Am. J. Obstet. Gynecol., 2001; 184(6): 1127–30.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×