Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T22:39:59.854Z Has data issue: false hasContentIssue false

1 - Perspective on heliophysics

Published online by Cambridge University Press:  05 April 2013

George L. Siscoe
Affiliation:
University of Michigan
Carolus J. Schrijver
Affiliation:
Solar and Astrophysics Laboratory
Carolus J. Schrijver
Affiliation:
Solar and Astrophysics Laboratory, Lockheed Martin
George L. Siscoe
Affiliation:
Boston University
Get access

Summary

Universal processes: “laws” of space weather

Heliophysics is concerned with laws that give rise to structures and processes that occur in magnetized plasmas and in neutral environments in the local cosmos, both temporal (weather-like) and persistent (climate-like). These laws systematize the results of half a century of exploring space that followed centuries of ground-based observations. During this time spacecraft have imaged the Sun over many wavelengths and resolutions. They have visited every planet, all major satellites and many minor ones, and a selection of comets and asteroids. Beyond this they have traversed the expanse of the heliosphere itself. Out of the vast store of data so accumulated, the laws and principles of heliophysics are emerging to describe structures that are natural to magnetized plasmas and neutrals in cosmic settings and to specify principles that make the heliosphere a realm of numerous, original dynamical modes.

By “the laws of heliophysics” we are not here referring to a subset of the laws of physics that apply to all things everywhere. A discipline that needs to refer back to the fundamental laws of physics to explain its phenomena would be totally derivative, having no synthesizing laws of its own, no regularities peculiar to it, no inherent principles with explanatory power sufficient to link its own distinctive phenomena; in short, no paradigms. To help fix this idea, we list here a few familiar examples from other fields of discipline-specific general laws or principles: chemistry – the periodic table, valence, Le Chatelier–Braun principle; biology – evolution, double helix; geology – “deep time”, plate tectonics; astronomy – Kepler's laws, Hertzsprung-Russell diagram, expanding universe; meteorology – Hadley cell, baroclinic instability.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×