Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T22:48:35.822Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 June 2022

Paul F. X. Müller
Affiliation:
Johannes Kepler Universität Linz
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Hardy Martingales
Stochastic Holomorphy, L^1-Embeddings, and Isomorphic Invariants
, pp. 483 - 496
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, G. and Durán, R. G.. An optimal Poincaré inequality in L1 for convex domains. Proc. Amer. Math. Soc., 132(1):195202, 2004.Google Scholar
Aldous, D. J. Unconditional bases and martingales in Lp(F). Math. Proc. Cambridge Philos. Soc., 85(1):117123, 1979.Google Scholar
Aleksandrov, A. B. Spectral subspaces of the space Lp, p < 1. Algebra i Analiz, 19(3):175, 2007.Google Scholar
Anisimov, D. S. and Kislyakov, S. V.. Double singular integrals: interpolation and correction. Algebra i Analiz, 16(5):133, 2004.Google Scholar
Arai, H. Measures of Carleson type on filtrated probability spaces and the corona theorem on complex Brownian spaces. Proc. Amer. Math. Soc., 96(4):643647, 1986a.Google Scholar
Arai, H. On the algebra of bounded holomorphic martingales. Proc. Amer. Math. Soc., 97(4):616620, 1986b.Google Scholar
Asmar, N. and Hewitt, E.. Marcel Riesz’s theorem on conjugate Fourier series and its descendants. In Proceedings of the Analysis Conference, Singapore 1986, volume 150 of North-Holland Math. Stud., pages 156. North-Holland, Amsterdam, 1988.Google Scholar
Bass, R. F. Probabilistic Techniques in Analysis. Probability and its Applications. Springer-Verlag, New York, 1995.Google Scholar
Beauzamy, B. Introduction to Banach Spaces and Their Geometry, volume 68 of North-Holland Math. Stud. North-Holland, Amsterdam-New York, 1982.Google Scholar
Bedrosian, E. A product theorem for Hilbert transforms. Proceedings of the IEEE, 51(5):868869, May 1963.Google Scholar
Benedek, A., Calerón, A.-P., and Panzone, R.. Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. USA, 48:356365, 1962.Google Scholar
Bennett, C. and Sharpley, R.. Interpolation of Operators, volume 129 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1988.Google Scholar
Benyamini, Y. and Lindenstrauss, J.. Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence, RI, 2000.Google Scholar
Bessaga, C. and Pełczyński, A.. A generalization of results of R. C. James concerning absolute bases in Banach spaces. Studia Math., 17:165174, 1958a.Google Scholar
Bessaga, C. and Pełczyński, A.. On bases and unconditional convergence of series in Banach spaces. Studia Math., 17:151164, 1958b.CrossRefGoogle Scholar
Blasco, O. and Pełczyński, A.. Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces. Trans. Amer. Math. Soc., 323(1):335367, 1991.Google Scholar
Blower, G. A multiplier characterization of analytic UMD spaces. Studia Math., 96(2):117124, 1990.CrossRefGoogle Scholar
Blower, G. and Ransford, T.. Complex uniform convexity and Riesz measures. Canad. J. Math., 56(2):225245, 2004.Google Scholar
Bochner, S. Additive set functions on groups. Ann. Math. (2), 40:769799, 1939.Google Scholar
Bochner, S. Generalized conjugate and analytic functions without expansions. Proc. Nat. Acad. Sci. USA., 45:855857, 1959.Google Scholar
Bogachev, V. I. Measure theory. Vol. I, II.Springer-Verlag, Berlin, 2007.CrossRefGoogle Scholar
Bonami, A. Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst. Fourier (Grenoble), 20(2):335402, 1970.Google Scholar
Bourgain, J. La Propriete de Radon–Nikodym. Publications Mathematiques de l’Universite Pierre et Marie Curie No. 36, Paris, 1979.Google Scholar
Bourgain, J. Complémentation de sous-espaces L1 dans les espaces L1. In Seminar on Functional Analysis, 1979–1980 (French), Exp. No. 27, 7. École Polytech., Palaiseau, 1980a.Google Scholar
Bourgain, J. Walsh subspaces of Lp-product spaces. In Seminar on Functional Analysis, 1979–1980 (French), Exp. No. 4A, 9. École Polytech., Palaiseau, 1980b.Google Scholar
Bourgain, J. A counterexample to a complementation problem. Compositio Math., 43(1):133144, 1981.Google Scholar
Bourgain, J. Embedding L1 in L1/H1. Trans. Amer. Math. Soc., 278(2):689702, 1983a.Google Scholar
Bourgain, J. On the primarity of H-spaces. Israel J. Math., 45(4):329336, 1983b.CrossRefGoogle Scholar
Bourgain, J. Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat., 21(2):163168, 1983c.Google Scholar
Bourgain, J. Bilinear forms on H and bounded bianalytic functions. Trans. Amer. Math. Soc., 286(1):313337, 1984a.Google Scholar
Bourgain, J. The dimension conjecture for polydisc algebras. Israel J. Math., 48(4):289304, 1984b.CrossRefGoogle Scholar
Bourgain, J. Martingale transforms and geometry of Banach spaces. In Israel Seminar on Geometrical Aspects of Functional Analysis (1983/84), pages XIV, 16. Tel Aviv University, Tel Aviv, 1984.Google Scholar
Bourgain, J. New Banach space properties of the disc algebra and H. Acta Math., 152(1-2):148, 1984d.Google Scholar
Bourgain, J. On martingales transforms in finite-dimensional lattices with an appendix on the K-convexity constant. Math. Nachr., 119:4153, 1984e.Google Scholar
Bourgain, J. Some results on the bidisc algebra. Astérisque, 131:279298, 1985.Google Scholar
Bourgain, J. Homogeneous polynomials on the ball and polynomial bases. Israel J. Math., 68(3):327347, 1989.Google Scholar
Bourgain, J. and Davis, W. J.. Martingale transforms and complex uniform convexity. Trans. Amer. Math. Soc., 294(2):501515, 1986.Google Scholar
Bu, S. Q. Quelques remarques sur la propriété de Radon–Nikodým analytique. C. R. Acad. Sci. Paris Sér. I Math., 306(18):757760, 1988.Google Scholar
Bu, S. Q. On the analytic Radon–Nikodým property for bounded subsets in Banach spaces. J. London Math. Soc. (2), 47(3):484496, 1993.CrossRefGoogle Scholar
Bu, S. Q. and Khaoulani, B.. Une caractérisation de la propriété de Radon–Nikodým analytique pour les espaces de Banach isomorphes à leur carrés. Math. Ann., 288(2):345360, 1990.Google Scholar
Bu, S. Q. and Schachermayer, W.. Approximation of Jensen measures by image measures under holomorphic functions and applications. Trans. Amer. Math. Soc., 331(2):585608, 1992.Google Scholar
Buhvalov, A. V. Hardy spaces of vector-valued functions. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 65:516, 203, 1976.Google Scholar
Bukhvalov, A. V. Hardy spaces of vector-valued functions. J. Sov. Math., 16:10511059, 1981.Google Scholar
Bukhvalov, A. V. and Danilevich, A. A.. Boundary properties of analytic and harmonic functions with values in a Banach space. Mat. Zametki, 31(2):203214, 317, 1982.Google Scholar
Burkholder, D. L. Distribution function inequalities for martingales. Ann. Probability, 1:1942, 1973.Google Scholar
Burkholder, D. L. A sharp inequality for martingale transforms. Ann. Probab., 7(5):858863, 1979.Google Scholar
Burkholder, D. L. Martingale transforms and the geometry of Banach spaces. In Probability in Banach Spaces, III (Medford, Mass., 1980), volume 860 of Lecture Notes in Math., pages 3550. Springer, Berlin-New York, 1981.Google Scholar
Burkholder, D. L. A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., pages 270286. Wadsworth, Belmont, CA, 1983.Google Scholar
Burkholder, D. L. Differential subordination of harmonic functions and martingales. In Harmonic Analysis and Partial Differential Equations (El Escorial, 1987), volume 1384 of Lecture Notes in Math., pages 123. Springer, Berlin, 1989.Google Scholar
Burkholder, D. L. Martingales and singular integrals in Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I, pages 233269. North-Holland, Amsterdam, 2001.Google Scholar
Burkholder, D. L., Davis, B. J., and Gundy, R. F.. Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory, pages 223240, 1972.Google Scholar
Burkholder, D. L. and Gundy, R. F.. Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math., 124:249304, 1970.Google Scholar
Burkholder, D. L., Gundy, R. F., and Silverstein, M. L.. A maximal function characterization of the class Hp. Trans. Amer. Math. Soc., 157:137153, 1971.Google Scholar
Calderón, A.-P. Intermediate spaces and interpolation, the complex method. Studia Math., 24:113190, 1964.Google Scholar
Capon, M. Primarité de lp(L1). Math. Ann., 250(1):5563, 1980.Google Scholar
Carleson, L. On convergence and growth of partial sums of Fourier series. Acta Math., 116:135157, 1966.Google Scholar
Carne, K. The algebra of bounded holomorphic martingales. J. Funct. Anal., 45(1):95108, 1982.Google Scholar
Chang, S.-Y. A., Wilson, J. M., and Wolff, T. H.. Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv., 60(2):217246, 1985.CrossRefGoogle Scholar
Chatterji, S. D. Martingale convergence and the Radon–Nikodym theorem in Banach spaces. Math. Scand., 22:2141, 1968.Google Scholar
Coifman, R. R., Jones, P. W., and Semmes, S.. Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves. J. Amer. Math. Soc., 2(3):553564, 1989.Google Scholar
David, G. Wavelets and Singular Integrals on Curves and Surfaces, volume 1465 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1991.Google Scholar
David, G. Unrectifiable 1-sets have vanishing analytic capacity. Rev. Mat. Iberoameri- cana, 14(2):369479, 1998.CrossRefGoogle Scholar
Davis, B. On the integrability of the martingale square function. Israel J. Math., 8:187190, 1970.Google Scholar
Davis, W. J., Figiel, T., Johnson, W. B., and Pelczynski, A.. Factoring weakly compact operators. J. Funct. Anal., 17:311327, 1974.Google Scholar
Davis, W. J., Garling, D. J. H., and Tomczak-Jaegermann, N.. The complex convexity of quasinormed linear spaces. J. Funct. Anal., 55(1):110150, 1984.Google Scholar
Davis, W. J., Ghoussoub, N., Johnson, W. B., Kwapień, S., and Maurey, B.. Weak convergence of vector valued martingales. In Probability in Banach Spaces 6 (Sandbjerg, 1986), volume 20 of Progr. Probab., pages 4150. Birkhäuser Boston, Boston, MA, 1990.Google Scholar
Dechamps-Gondim, M. Analyse harmonique, analyse complexe et géométrie des espaces de Banach (d’après Jean Bourgain). Astérisque, 1983(121122):171195, 1985. Seminar Bourbaki, Vol. 1983/84.Google Scholar
Delbaen, F. and Schachermayer, W.. An inequality for the predictable projection of an adapted process. In Séminaire de Probabilités, XXIX, volume 1613 of Lecture Notes in Math., pages 1724. Springer, Berlin, 1995.Google Scholar
Dellacherie, C. and Meyer, P.-A.. Probabilités et potentiel. Hermann, Paris, 1975. Chapitres I à IV, Édition entièrement refondue, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV, Actualités Scientifiques et Industrielles, No. 1372.Google Scholar
Dellacherie, C. and Meyer, P.-A.. Probabilities and Potential, volume 29 of North-Holland Math. Stud. North-Holland, Amsterdam-New York, 1978.Google Scholar
Dellacherie, C. and Meyer, P.-A.. Probabilities and Potential B Theory of Martingales, volume 72 of North-Holland Math. Stud. North-Holland, Amsterdam, 1982.Google Scholar
Diestel, J. Geometry of Banach Spaces – Selected Topics. Lecture Notes in Mathematics, Vol. 485. Springer-Verlag, Berlin-New York, 1975.Google Scholar
Diestel, J., Jarchow, H., and Tonge, A.. Absolutely Summing Operators, volume 43 of Camb. Stud. Adv. Math. Cambridge University Press, Cambridge, 1995.Google Scholar
Diestel, J. and Uhl, J. J. Jr.. Vector Measures. American Mathematical Society, Providence, R.I., 1977.Google Scholar
Dieudonné, J. Éléments d’analyse. Tome I: Fondements de l’analyse moderne. Traduit de l’anglais par D. Huet. Avant-propos de G. Julia. Nouvelle édition revue et corrigée. Cahiers Scientifiques, Fasc. XXVIII. Gauthier-Villars, Éditeur, Paris, 1968a.Google Scholar
Dieudonné, J. Éléments d’analyse. Tome II: Chapitres XII à XV. Cahiers Scientifiques, Fasc. XXXI. Gauthier-Villars, Éditeur, Paris, 1968b.Google Scholar
Dilworth, S. J. Complex convexity and the geometry of Banach spaces. Math. Proc. Camb. Philos. Soc., 99(3):495506, 1986.Google Scholar
Doob, J. L. Stochastic Processes. Wiley, New York, 1953.Google Scholar
Doob, J. L. Semimartingales and subharmonic functions. Trans. Amer. Math. Soc., 77:86121, 1954.Google Scholar
Dor, L. E. On projections in L1. Ann. Math. (2), 102(3):463474, 1975.Google Scholar
Dosev, D., Johnson, W. B., and Schechtman, G.. Commutators on Lp, 1 ≤ p < ∞. J. Am. Math. Soc., 26(1):101127, 2013.Google Scholar
Dowling, P. N. Representable operators and the analytic Radon–Nikodým property in Banach spaces. Proc. R. Ir. Acad. Sect. A, 85(2):143150, 1985.Google Scholar
Dowling, P. N. and Edgar, G. A.. Some characterizations of the analytic Radon– Nikodým property in Banach spaces. J. Funct. Anal., 80(2):349357, 1988.Google Scholar
Dunford, N. and Pettis, B. J.. Linear operations on summable functions. Trans. Am. Math. Soc., 47:323392, 1940.CrossRefGoogle Scholar
Durrett, R. Brownian Motion and Martingales in Analysis. Wadsworth Mathematics Series. Wadsworth International Group, Belmont, CA, 1984.Google Scholar
Edgar, G. A. Disintegration of measures and the vector-valued Radon–Nikodým theorem. Duke Math. J., 42(3):447450, 1975.Google Scholar
Edgar, G. A. Complex martingale convergence. In Kalton, N.J., Saab, E. (eds) Banach Spaces. Lecture Notes in Mathematics, vol 1166. Springer, Berlin, Heidelberg, 1985.Google Scholar
Edgar, G. A. Analytic martingale convergence. J. Funct. Anal., 69(2):268280, 1986.Google Scholar
Enflo, P. and Starbird, T. W.. Subspaces of L1 containing L1. Studia Math., 65(2):203225, 1979.Google Scholar
Fakhoury, H. Représentations d’opérateurs à valeurs dans L1(X, Σ, μ). Math. Ann., 240(3):203212, 1979.Google Scholar
Fetter, H. and Gamboa de Buen, B.. The James Forest, volume 236 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1997.Google Scholar
Föllmer, H. Stochastic holomorphy. Math. Ann., 207:245255, 1974.Google Scholar
García-Cuerva, J. and Rubio de Francia, J. L.. Weighted Norm Inequalities and Related Topics, volume 116 of North-Holland Math. Stud. North-Holland, Amsterdam, 1985.Google Scholar
Garling, D. J. H. Brownian motion and UMD-spaces. In Probability and Banach Spaces (Zaragoza, 1985), volume 1221 of Lecture Notes in Math., pages 3649. Springer, Berlin, 1986.Google Scholar
Garling, D. J. H On martingales with values in a complex Banach space. Math. Proc. Camb. Philos. Soc., 104(2):399406, 1988.Google Scholar
Garling, D. J. H. Random martingale transform inequalities. In Probability in Banach Spaces 6 (Sandbjerg, 1986), volume 20 of Progr. Probab., pages 101119. Birkhäuser Boston, Boston, MA, 1990.Google Scholar
Garling, D. J. H. Hardy martingales and the unconditional convergence of martingales. Bull. London Math. Soc., 23(2):190192, 1991.Google Scholar
Garling, D. J. H. Inequalities: A Journey Into Linear Analysis. Cambridge University Press, Cambridge, 2007.Google Scholar
Garling, D. J. H. and Montgomery-Smith, S. J.. Complemented subspaces of spaces obtained by interpolation. J. London Math. Soc. (2), 44(3):503513, 1991.Google Scholar
Garnett, J. B. Bounded Analytic Functions, volume 96 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981.Google Scholar
Garnett, J. B. and Jones, P. W.. The distance in BMO to L. Ann. of Math., 108(2):373393, 1978.Google Scholar
Garnett, J. B. and Jones, P. W.. BMO from dyadic BMO. Pacific J. Math., 99(2):351371, 1982.Google Scholar
Garsia, A. M. Martingale Inequalities: Seminar Notes on Recent Progress. W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. Mathematics Lecture Notes Series.Google Scholar
Getoor, R. K. and Sharpe, M. J.. Conformal martingales. Invent. Math., 16:271308, 1972.Google Scholar
Ghoussoub, N. Duality and Perturbation Methods in Critical Point Theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993.Google Scholar
Ghoussoub, N., Lindenstrauss, J., and Maurey, B.. Analytic martingales and plurisub-harmonic barriers in complex Banach spaces. In Banach Space Theory (Iowa City, IA, 1987), volume 85 of Contemp. Math., pages 111130. Amer. Math. Soc., Providence, RI, 1989.Google Scholar
Ghoussoub, N. and Maurey, B.. Hδ-embedding in Hilbert space and optimization on Gδ-sets. Mem. Amer. Math. Soc., 62(349):101, 1986.Google Scholar
Ghoussoub, N. and Maurey, B.. Plurisubharmonic martingales and barriers in complex quasi-Banach spaces. Ann. Inst. Fourier (Grenoble), 39(4):10071060, 1989.Google Scholar
Ghoussoub, N., Maurey, B., and Schachermayer, W.. Pluriharmonically dentable complex Banach spaces. J. Reine Angew. Math., 402:76127, 1989.Google Scholar
Ghoussoub, N. and Rosenthal, H. P.. Martingales, Gδ-embeddings and quotients of L1. Math. Ann., 264(3):321332, 1983.Google Scholar
Godefroy, G., Kalton, N. J., and Li, D.. Operators between subspaces and quotients of L1. Indiana Univ. Math. J., 49(1):245286, 2000.Google Scholar
Gohberg, I. C. and Krein, M. G.. Theory and Applications of Volterra Operators in Hilbert Space. Translated from the Russian by Feinstein, A.. Translations of Mathematical Monographs, Vol. 24. American Mathematical Society, Providence, R.I., 1970.Google Scholar
Grossetête, C. Sur certaines classes de fonctions harmoniques dans le disque à valeur dans un espace vectoriel topologique localement convexe. C. R. Acad. Sci. Paris Sér. A-B, 273:A1048A1051, 1971.Google Scholar
Grossetête, C. Classes de Hardy et de Nevanlinna pour les fonctions holomorphes à valeurs vectorielles. C. R. Acad. Sci. Paris Sér. A-B, 274:A251A253, 1972.Google Scholar
Haagerup, U. and Pisier, G.. Factorization of analytic functions with values in noncommutative L1-spaces and applications. Canad. J. Math., 41(5):882906, 1989.Google Scholar
Heins, M. Hardy Classes on Riemann Surfaces. Lecture Notes in Mathematics, No. 98. Springer-Verlag, Berlin-New York, 1969.Google Scholar
Helson, H. Conjugate series and a theorem of Paley. Pacific J. Math., 8:437446, 1958.Google Scholar
Helson, H. Conjugate series in several variables. Pacific J. Math., 9:513523, 1959.Google Scholar
Henkin, G. M. The nonisomorphy of certain spaces of functions of different numbers of variables. Funkcional. Anal. i Priložen., 1(4):5768, 1967.Google Scholar
Henkin, G. M. The Banach spaces of analytic functions in a ball and in a bicylinder are nonisomorphic. Funkcional. Anal. i Priložen., 2(4):8291, 1968.Google Scholar
Henkin, G. M. On non-isomorphism of Banach spaces of holomorphic functions. Studia Math., 38:267270, 1970.Google Scholar
Hensgen, W. Hardy–Räume vektorwertiger Funktionen. Dissertation Ludwig-Maximilians-Universität München, pages 1151, 1986.Google Scholar
Hensgen, W. Operatoren H1X. Manuscripta Math., 59(4):399422, 1987.Google Scholar
Hensgen, W. Some remarks on boundary values of vector-valued harmonic and analytic functions. Arch. Math. (Basel), 57(1):8896, 1991.Google Scholar
Hoffmann-Jorgensen, J. Sums of independent Banach space valued random variables. Studia Math., 52:159186, 1974.Google Scholar
Hunt, R., Muckenhoupt, B., and Wheeden, R.. Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc., 176:227251, 1973.Google Scholar
Hunt, R. A. On the convergence of Fourier series. In Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), pages 235255. Southern Illinois Univ. Press, Carbondale, Ill., 1968.Google Scholar
Hytönen, T., van Neerven, J., Veraar, M., and Weis, L.. Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory Springer, Cham, 2016.Google Scholar
Itô, K., and McKean, H. P. Jr. Diffusion processes and their sample paths. Springer-Verlag, Berlin-New York, 1965.Google Scholar
Ivanisvili, P., Lindenberger, A., Müller, P. F. X., and Schmuckenschläger, M.. Hyper contractivity on the unit circle for ultraspherical measures: linear case. arXiv:2004.05567, DOI: 10.4171/RMI/1305, 2020.Google Scholar
James, R. C. Bases and reflexivity of Banach spaces. Ann. of Math., 52:518527, 1950.Google Scholar
James, R. C. A separable somewhat reflexive Banach space with nonseparable dual. Bull. Am. Math. Soc., 80:738743, 1974.Google Scholar
Jiao, Y., Randrianantoanina, N., Wu, L., and Zhou, D.. Square functions for noncommutative differentially subordinate martingales. Comm. Math. Phys., 374(2):9751019, 2020.Google Scholar
Jiao, Y., Xie, G., and Zhou, D.. Dual spaces and John–Nirenberg inequalities of martingale Hardy–Lorentz–Karamata spaces. Q. J. Math., 66(2):605623, 2015.Google Scholar
Jiao, Y., Wu, L., Yang, A., and Yi, R.. The predual and John–Nirenberg inequalities on generalized BMO martingale spaces. Trans. Am. Math. Soc., 369(1):537553, 2017.Google Scholar
Johnson, W. B., Maurey, B., and Schechtman, G.. Weakly null sequences in L1. J. Am. Math. Soc., 20(1):2536, 2007.Google Scholar
Jones, P. W. L estimates for the problem in a half-plane. Acta Math., 150(1–2):137152, 1983.Google Scholar
Jones, P. W. and Müller, P. F. X.. Conditioned Brownian motion and multipliers into SL. Geom. Funct. Anal., 14(2):319379, 2004.Google Scholar
Kadec, M. I. and Pełczyński, A.. Bases, lacunary sequences and complemented subspaces in the spaces Lp. Studia Math., 21:161176, 1961/62.Google Scholar
Kahane, J.-P. Some Random Series of Functions. D. C. Heath and Co. Raytheon Education Co., Lexington, Mass., 1968.Google Scholar
Kahane, J.-P. Some Random Series of Functions, volume 5 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1985.Google Scholar
Kalton, N. J. The endomorphisms of Lp(0 ≤ pi). Indiana Univ. Math. J., 27(3):353381, 1978.Google Scholar
Kalton, N. J. Embedding L1 in a Banach lattice. Israel J. Math., 32(2-3):209220, 1979.Google Scholar
Kalton, N. J. Linear operators on Lp for 0 < p < 1. Trans. Am. Math. Soc., 259(2): 319355, 1980.Google Scholar
Kalton, N. J. Banach spaces embedding into L0. Israel J. Math., 52(4):305319, 1985.Google Scholar
Kalton, N. J. Differentiability properties of vector valued functions. In Probability and Banach Spaces (Zaragoza, 1985), volume 1221 of Lecture Notes in Math., pages 141181. Springer, Berlin, 1986a.Google Scholar
Kalton, N. J. Some applications of vector-valued analytic and harmonic functions. In Probability and Banach spaces (Zaragoza, 1985), volume 1221 of Lecture Notes in Math., pages 114140. Springer, Berlin, 1986b.Google Scholar
Kalton, N. J. and Pełczyński, A.. Kernels of surjections from L1-spaces with an application to Sidon sets. Math. Ann., 309(1):135158, 1997.Google Scholar
Kalton, N. J. and Weis, L.. The H-calculus and sums of closed operators. Math. Ann., 321(2):319345, 2001.Google Scholar
Katznelson, Y. An Introduction to Harmonic Analysis. John Wiley & Sons, Inc., New York-London-Sydney, 1968.Google Scholar
Kazaniecki, K. and Wojciechowski, M.. On the equivalence between the sets of the trigonometric polynomials. arXiv:1502.05994, 2014.Google Scholar
Kislyakov, S. V. What is needed for a 0-absolutely summing operator to be nuclear? In Complex Analysis and Spectral Theory (Leningrad, 1979/1980), volume 864 of Lecture Notes in Math., pages 336364. Springer, Berlin-New York, 1981.Google Scholar
Kislyakov, S. V. Spaces with a “small” annihilator. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 65:192195, 209, 1976.Google Scholar
Kislyakov, S. V. Absolutely summing operators on the disc algebra. Algebra i Analiz, 3(4):177, 1991.Google Scholar
König, H. On the best constants in the Khintchine inequality for Steinhaus variables. Israel J. Math., 203(1):2357, 2014.Google Scholar
Koosis, P. Introduction to Hp Spaces, volume 40 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge-New York, 1980.Google Scholar
Kuratowski, K. and Ryll-Nardzewski, C.. A general theorem on selectors. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 13:397403, 1965.Google Scholar
Kwapień, S. Unsolved problems (problem 3). Studia Math., 38:467483, 1970.Google Scholar
Kwapień, S. On the form of a linear operator in the space of all measurable functions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21:951954, 1973.Google Scholar
Kwapień, S. On Banach spaces containing c0. Studia Math., 52:187188, 1974. A supplement to the paper by J. Hoffmann-Jorgensen “Sums of independent Banach space valued random variables” (Studia Math. 52 (1974), 159–186).Google Scholar
Kwapień, S. and Pełczyński, A.. The main triangle projection in matrix spaces and its applications. Studia Math., 34:4368, 1970.CrossRefGoogle Scholar
Kwapien, S. and Woyczyński, W. A.. Random Series and Stochastic Integrals: Single and Multiple. Probability and its Applications. Birkhäuser Boston Inc., Boston, MA, 1992.Google Scholar
Lechner, R. Factorization in SL. Israel J. Math., 226(2):957991, 2018.Google Scholar
Lechner, R. Dimension dependence of factorization problems: Hardy spaces and . Israel J. Math., 232(2):677693, 2019.Google Scholar
Lechner, R., Motakis, P., Müller, P. F. X., and Schlumprecht, T.. The factorisation property of l(Xk). Math. Proc. Camb. Philos. Soc., 171(2):421448, 2021Google Scholar
Lechner, R., Motakis, P., Müller, P. F. X., and Schlumprecht, T.. Strategically reproducible bases and the factorization property. Israel J. Math., 238(1):1360, 2020.Google Scholar
Lépingle, D. Une inégalité de martingales. In Séminaire de Probabilités, XII (Univ. Strasbourg, Strasbourg, 1976/1977), volume 649 of Lecture Notes in Math., pages 134137. Springer, Berlin, 1978.Google Scholar
Lévy, P. Processus stochastiques et mouvement Brownien. Suivi d’une note de M. Loève. Gauthier-Villars, Paris, 1948.Google Scholar
Lewis, D. R. and Stegall, C.. Banach spaces whose duals are isomorphic to l1(Γ). J. Funct. Anal., 12:177187, 1973.Google Scholar
Li, D. and Queffélec, H.. Introduction à l’étude des espaces de Banach, volume 12 of Cours Spécialisés. Société Mathématique de France, Paris, 2004.Google Scholar
Li, D. and Queffélec, H.. Introduction to Banach Spaces: Analysis and Probability. Vol. 1, volume 166 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2018. Translated from the French by Danièle Gibbons and Greg Gibbons, For the French original see [MR2124356].Google Scholar
Lindenstrauss, J. and Pełczyński, A.. Contributions to the theory of the classical Banach spaces. J. Funct. Anal., 8:225249, 1971.Google Scholar
Lindenstrauss, J. and Rosenthal, H. P.. The spaces. Israel J. Math., 7:325349, 1969.Google Scholar
Lindenstrauss, J. and Stegall, C.. Examples of separable spaces which do not contain 1 and whose duals are non-separable. Studia Math., 54(1):81105, 1975.Google Scholar
Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces. I. Springer-Verlag, Berlin-New York, 1977.Google Scholar
Littlewood, J. E. Mathematical Notes (8); On Functions Subharmonic in a Circle (II). Proc. London Math. Soc. (2), 28(5):383394, 1928.Google Scholar
Liu, Z. A decomposition theorem for operators on L1. J. Operator Theory, 40(1):334, 1998.Google Scholar
Long, R. L. Martingale Spaces and Inequalities. Peking University Press, Beijing; Friedr. Vieweg & Sohn, Braunschweig, 1993.Google Scholar
Marcus, M. B. and Pisier, G.. Random Fourier Series with Applications to Harmonic Analysis, Ann. Math. Stud., 101:1150, 1981.Google Scholar
Maslyuchenko, O. V., Mykhaylyuk, V. V., and Popov, M. M.. A lattice approach to narrow operators. Positivity, 13(3):459495, 2009.Google Scholar
Maurey, B. Théorèmes de factorisation pour les opérateurs linéaires àvaleurs dans un espace Lp(U, μ), 0 < p ≤ +∞. In Séminaire Maurey–Schwartz Année 1972–1973: Espaces Lp et applications radonifiantes, Exp. No. 15, page 8. Centre de Math., École Polytech., Paris, 1973a.Google Scholar
Maurey, B. Un lemme de H. P. Rosenthal. In Séminaire Maurey-Schwartz Année 1972–1973: Espaces Lp et applications radonifiantes, Exp. No. 21, page 11. Centre de Math., École Polytech., Paris, 1973b.Google Scholar
Maurey, B. Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp. Société Mathématique de France, Paris, 1974.Google Scholar
Maurey, B. Sous-espaces complémentés de Lp, d’après P. Enflo. In Séminaire Maurey-Schwartz 1974–1975: Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. No. III, pages 15 pp. (erratum, p. 1). 1975a.Google Scholar
Maurey, B. Système de Haar. In Séminaire Maurey-Schwartz 1974–1975: Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. I et II, pages 26 pp. (erratum, p. 1). Centre Math., École Polytech., Paris, 1975b.Google Scholar
Maurey, B. Isomorphismes entre espaces H1. Acta Math., 145(12):79120, 1980.Google Scholar
Maurey, B. and Pisier, G.. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math., 58(1):4590, 1976.Google Scholar
Maurey, B. and Rosenthal, H. P.. Normalized weakly null sequence with no unconditional subsequence. Studia Math., 61(1):7798, 1977.Google Scholar
Maurey, B. and Schechtman, G.. Some remarks on symmetric basic sequences in L1. Compos. Math., 38(1):6776, 1979.Google Scholar
Meyer, P. A. Démonstration probabiliste de certaines inégalités de Littlewood–Paley. IV. Semi-groupes de convolution symétriques. In Séminaire de Probabilités, X (Première partie, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), pages 175183. Lecture Notes in Math., Vol. 511. 1976.Google Scholar
Meyer, Y. Endomorphismes des ideaux fermes de L1 (G), classes de Hardy et series de Fourier lacunaires. Ann. Sci. École Norm. Sup. (4), 1:499580, 1968.Google Scholar
Mitiagin, B. S. and Pełczyński, A.. On the non-existence of linear isomorphisms between Banach spaces of analytic functions of one and several complex variables. Studia Math., 56(2):175186, 1976.Google Scholar
Montgomery-Smith, S. Concrete representation of martingales. Electron. J. Probab., 3:No. 15, 15 pp. 1998.Google Scholar
Müller, P. F. X. Holomorphic martingales and interpolation between Hardy spaces. J. Anal. Math., 61:327337, 1993.Google Scholar
Müller, P. F. X. Isomorphisms Between H1 spaces, volume 66 of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) Birkhäuser Verlag, Basel, 2005.Google Scholar
Müller, P. F. X. A decomposition for Hardy martingales. Indiana Univ. Math. J., 61(5):18011816, 2012.Google Scholar
Müller, P. F. X. A decomposition for Hardy martingales II. Math. Proc. Camb. Philos. Soc., 157(2):189207, 2014.Google Scholar
Müller, P. F. X. A decomposition for Hardy martingales III. Math. Proc. Camb. Philos. Soc., 162(1):173189, 2017.Google Scholar
Müller, P. F. X. and Passenbrunner, M.. Almost everywhere convergence of spline sequences. Israel J. Math., 240(1):149177, 2020.Google Scholar
Müller, P. F. X. and Penteker, J.. Lecture notes on singular integrals, projections, multipliers and rearrangements. In IMPAN Lecture Notes, Winter School on Harmonic Analysis, Bedlewo, www.impan.pl/swiat-matematyki/notatki-z-wyklado~/scriptsios_2.pdf, 2015.Google Scholar
Müller, P. F. X. and Riegler, K.. Radial variation of Bloch functions on the unit ball of Rd. Ark. Mat., 58(1):161178, 2020.Google Scholar
Müller, P. F. X. and Yuditskii, P.. Interpolation for Hardy spaces: Marcinkiewicz decomposition, complex interpolation and holomorphic martingales. Colloq. Math., 158(1):141155, 2019.Google Scholar
Neveu, J. Discrete-Parameter Martingales. North-Holland, Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, revised edition, 1975. Translated from the French by Speed, T. P., North-Holland Mathematical Library, Vol. 10.Google Scholar
Novikov, I. and Semenov, E.. Haar Series and Linear Operators, volume 367 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1997.Google Scholar
Odell, E. and Zheng, B.. On the unconditional subsequence property. J. Funct. Anal., 258(2):604615, 2010.Google Scholar
Osekowski, A. Sharp Martingale and Semimartingale Inequalities, volume 72 of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series). Birkhäuser/Springer Basel AG, Basel, 2012.Google Scholar
Pallares, A. and Kouba, O.. Seminar Notes. Groupe de Travail sur les Espaces de Banach. Equipe d’Analyse, Universite Paris VI, 1986-1987.Google Scholar
Parcet, J. and Randrianantoanina, N.. Gund’s decomposition for non-commutative martingales and applications. Proc. London Math. Soc. (3), 93(1):227252, 2006.Google Scholar
Passenbrunner, M. Martingale inequalities for spline sequences. Positivity, 24(1):95115, 2020.Google Scholar
Passenbrunner, M. Spline characterizations of the Radon–Nikodým property. Proc. Am. Math. Soc., 148(2):811824, 2020.Google Scholar
Pełczyński, A. On the impossibility of embedding of the space L in certain Banach spaces. Colloq. Math., 8:199203, 1961.Google Scholar
Pełczyński, A. Banach Spaces of Analytic Functions and Absolutely Summing Operators. American Mathematical Society, Providence, R.I., 1977. Expository lectures from the CBMS Regional Conference held at Kent State University, Kent, Ohio, July 11–16, 1976, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 30.Google Scholar
Pełczyński, A. Geometry of finite-dimensional Banach spaces and operator ideals. In Notes in Banach Spaces, pages 81181. Univ. Texas Press, Austin, TX, 1980.Google Scholar
Pełczyński, A. and Wojciechowski, M.. Absolutely summing surjections from Sobolev spaces in the uniform norm. In Progress in Functional Analysis (Peñíscola, 1990), volume 170 of North-Holland Math. Stud., pages 423431. North-Holland, Amsterdam, 1992a.Google Scholar
Pełczyński, A. and Wojciechowski, M.. Paley projections on anisotropic Sobolev spaces on tori. Proc. London Math. Soc. (3), 65(2):405422, 1992b.Google Scholar
Penteker, J. Postorder rearrangement operators. Q. J. Math., 66(4):11031126, 2015.CrossRefGoogle Scholar
Perrin, M. A noncommutative Davis’ decomposition for martingales. J. Lond. Math. Soc. (2), 80(3):627648, 2009.Google Scholar
Petersen, K. E. Brownian Motion, Hardy Spaces and Bounded Mean Oscillation. Cambridge University Press, Cambridge-New York-Melbourne, 1977. London Mathematical Society Lecture Note Series, No. 28.Google Scholar
Phelps, R. R. Convex Functions, Monotone Operators and Differentiability, volume 1364 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1989.Google Scholar
Pisier, G. Sur les espaces qui ne contiennent pas de uniformément. In Séminaire Maurey-Schwartz (1973–1974), Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. No. 7, pages 19 pp. (errata, p. E.1). 1974.Google Scholar
Pisier, G. Martingales with values in uniformly convex spaces. Israel J. Math., 20(34):326350, 1975a.Google Scholar
Pisier, G. Un exemple concernant la super-réflexivité. In Séminaire Maurey-Schwartz 1974–1975: Espaces Lp applications radonifiantes et géométrie des espaces de Banach, Annexe No. 2, page 12. 1975b.Google Scholar
Pisier, G. Une nouvelle classe d’espaces de Banach vérifiant le théorème de Grothendieck. Ann. Inst. Fourier, 28(1):x, 6990, 1978.Google Scholar
Pisier, G. Some applications of the complex interpolation method to Banach lattices. J. Anal. Math., 35:264281, 1979.Google Scholar
Pisier, G. Sur les espaces de Banach K-convexes. In Seminar on Functional Analysis, 1979–1980 (French), pages Exp. No. 11, 15. École Polytech., Palaiseau, 1980.Google Scholar
Pisier, G. Holomorphic semigroups and the geometry of Banach spaces. Ann. Math. (2), 115(2):375392, 1982a.Google Scholar
Pisier, G. Quotients of Banach spaces of cotype q. Proc. Am. Math. Soc., 85(1):3236, 1982b.Google Scholar
Pisier, G. Counterexamples to a conjecture of Grothendieck. Acta Math., 151(34):181208, 1983.Google Scholar
Pisier, G. Factorization of Linear Operators and Geometry of Banach Spaces, volume 60 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986.Google Scholar
Pisier, G. Factorization of operator valued analytic functions. Adv. Math., 93(1):61125, 1992a.Google Scholar
Pisier, G. Interpolation between Hp spaces and noncommutative generalizations. I. Pacific J. Math., 155(2):341368, 1992b.Google Scholar
Pisier, G. Interpolation between Hp spaces and noncommutative generalizations. II. Rev. Mat. Iberoamericana, 9(2):281291, 1993.Google Scholar
Pisier, G. A polynomially bounded operator on Hilbert space which is not similar to a contraction. arXiv: arxiv.org/abs/math/9602207, 1996.Google Scholar
Pisier, G. A polynomially bounded operator on Hilbert space which is not similar to a contraction. J. Am. Math. Soc., 10(2):351369, 1997.Google Scholar
Pisier, G. Martingales in Banach Spaces, volume 155 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.Google Scholar
Pisier, G. and Xu, Q.. Non-commutative martingale inequalities. Comm. Math. Phys., 189(3):667698, 1997.Google Scholar
Popov, M. and Randrianantoanina, B.. Narrow Operators on Function Spaces and Vector Lattices, volume 45 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 2013.Google Scholar
Qiu, Y. On the UMD constants for a class of iterated Lp(Lq) spaces. J. Funct. Anal., 263(8):24092429, 2012a.Google Scholar
Qiu, Y. Propriété UMD pour les espaces de Banach et d’opérateurs. Thèse de Doctorat, Université Pierre et Marie Curie, 2012b.Google Scholar
Randrianantoanina, N. Conditioned square functions for noncommutative martingales. Ann. Probab., 35(3):10391070, 2007.Google Scholar
Randrianantoanina, N. Wu, L. and Xu, Q. Noncommutative Davis type decompositions and applications. J. Lond. Math. Soc. (2), 99(1):97126, 2019.Google Scholar
Ransford, T. Potential Theory in the Complex Plane, volume 28 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1995.Google Scholar
Revuz, D. and Yor, M.. Continuous Martingales and Brownian Motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1991.Google Scholar
Rosenthal, H. P. On subspaces of Lp. Ann. Math. (2), 97:344373, 1973.Google Scholar
Rosenthal, H. P. Sign-embeddings of L1. In Banach Spaces, Harmonic Analysis, and Probability Theory (Storrs, Conn., 1980/1981), volume 995 of Lecture Notes in Math., pages 155165. Springer, Berlin, 1983.Google Scholar
Rosenthal, H. P. Embeddings of L1 in L1. In Conference in Modern Analysis and Probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 335349. Amer. Math. Soc., Providence, RI, 1984.Google Scholar
Rudin, W. Real and Complex Analysis. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, second edition, 1974.Google Scholar
Rudin, W. Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.Google Scholar
Ryan, R. Boundary values of analytic vector valued functions. Indag. Math., 65:558572, 1962.Google Scholar
Ryll, J. and Wojtaszczyk, P.. On homogeneous polynomials on a complex ball. Trans. Am. Math. Soc., 276(1):107116, 1983.Google Scholar
Rzeszut, M. and Wojciechowski, M.. Independent sums of and . J. Funct. Anal., 273(2):836873, 2017.Google Scholar
Sarason, D. Generalized interpolation in H. Trans. Am. Math. Soc., 127:179203, 1967.Google Scholar
Sawa, J. The best constant in the Khintchine inequality for complex Steinhaus variables, the case p = 1. Studia Math., 81(1):107126, 1985.Google Scholar
Schachermayer, W., Sersouri, A., and Werner, E.. Moduli of nondentability and the Radon–Nikodým property in Banach spaces. Israel J. Math., 65(3):225257, 1989.Google Scholar
Schwartz, L. Les applications p-sommantes. In Séminaire Maurey-Schwartz Année 1972–1973: Espaces Lp et applications radonifiantes, Exp. No. 2, page 19. Centre de Math., École Polytech., Paris, 1973.Google Scholar
Semenov, E. M. and Uksusov, S. N.. Multipliers of series in the Haar system. Sibirsk. Mat. Zh., 53(2):388395, 2012.Google Scholar
Stegall, C. Optimization of functions on certain subsets of Banach spaces. Math. Ann., 236(2):171176, 1978.Google Scholar
Stegall, C. Applications of Descriptive Topology in Functional Analysis. Institutsbericht 289. J. Kepler Universität, Institut für Mathematik, Linz, 1985.Google Scholar
Szarek, S. J. On the best constants in the Khinchin inequality. Studia Math., 58(2):197208, 1976.Google Scholar
Talagrand, M. The three-space problem for L1. J. Am. Math. Soc., 3(1):929, 1990.Google Scholar
Tsuji, M. Potential Theory in Modern Function Theory. Chelsea Publishing Co., New York, 1975.Google Scholar
Varopoulos, N. T. The Helson–Szegő theorem and Ap-functions for Brownian motion and several variables. J. Funct. Anal., 39(1):85121, 1980.Google Scholar
Varopoulos, N. T. Probabilistic approach to some problems in complex analysis. Bull. Sci. Math. (2), 105(2):181224, 1981.Google Scholar
Wark, H. M. A remark on the multipliers of the Haar basis of L1[0, 1]. Studia Math., 227(2):141148, 2015.Google Scholar
Wark, H. M. Operator-valued Fourier Haar multipliers on vector-valued L1 spaces. J. Math. Anal. Appl., 450(2):11481156, 2017.Google Scholar
Weis, L. On the representation of order continuous operators by random measures. Trans. Am. Math. Soc., 285(2):535563, 1984.Google Scholar
Weissler, F. B. Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal., 37(2):218234, 1980.Google Scholar
Weisz, F. Martingale Hardy Spaces and their Applications in Fourier Analysis, volume 1568 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994.Google Scholar
Wojtaszczyk, P. Decompositions of Hp spaces. Duke Math. J., 46(3):635644, 1979a.Google Scholar
Wojtaszczyk, P. On projections in spaces of bounded analytic functions with applications. Studia Math., 65(2):147173, 1979b.Google Scholar
Wojtaszczyk, P. Projections and isomorphisms of the ball algebra. J. London Math. Soc. (2), 29(2):301305, 1984.Google Scholar
Wojtaszczyk, P. Banach Spaces for Analysts, volume 25 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1991.Google Scholar
Wolniewicz, T. Seminar Notes. Arbeitsgruppe Funkionalanalysis. Institut f. Mathematik, J. Kepler University, Summer 1991.Google Scholar
Xu, Q. Littlewood–Paley theory for functions with values in uniformly convex spaces. J. Reine Angew. Math., 504:195226, 1998.Google Scholar
Xu, Q. H. Inégalités pour les martingales de Hardy et renormage des espaces quasinormés. C. R. Acad. Sci. Paris Sér. I Math., 306(14):601604, 1988.Google Scholar
Xu, Q. H. Applications du théorème de factorisation pour des fonctions à valeurs opérateurs. Studia Math., 95(3):273292, 1990.Google Scholar
Xu, Q. H. Analytic functions with values in lattices and symmetric spaces of measurable operators. Math. Proc. Camb. Philos. Soc., 109(3):541563, 1991.Google Scholar
Yudin, V. A. On the Fourier sums in Lp. Proc. Steklov Inst. Math., 180:279280, 1989.Google Scholar
Zygmund, A. Trigonometric Series. Vol. I, II. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Paul F. X. Müller, Johannes Kepler Universität Linz
  • Book: Hardy Martingales
  • Online publication: 30 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781108976015.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Paul F. X. Müller, Johannes Kepler Universität Linz
  • Book: Hardy Martingales
  • Online publication: 30 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781108976015.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Paul F. X. Müller, Johannes Kepler Universität Linz
  • Book: Hardy Martingales
  • Online publication: 30 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781108976015.010
Available formats
×