Published online by Cambridge University Press: 05 November 2011
Introduction
The manufacture of Gallium Arsenide FET devices and integrated circuits is now a mature industry. The GaAs FET was first developed in the 1960s and 1970s [1], with the impetus to establish a manufacturing capability coming in the 1980s driven by governmental support – most notably the comprehensive “MIMIC” programme in the United States. In the intervening time the GaAs FET became the default solid-state device for all manner of RF and microwave applications. However, the position of the GaAs FET in this arena has not gone unchallenged. It was soon joined by the GaAs HBT which has dominated the cellular handset power amplifier market. The upper frequency limit of silicon LDMOS technology has steadily increased over recent years as its highly mature technology was further refined with the result that this technology currently dominates high-power RF applications below 3 GHz. More recently, gallium nitride devices join the fray. The GaN FET is a device technology of great promise that is steadily being made available by more vendors as its reliability is established. Initially, gallium nitride is also targeting the lower frequency bands but is capable of being developed for applications across the whole microwave bandwidth. For the higher millimetre-wave frequencies indium phosphide technology has a place. However, GaAs FET technology is proven, competent, mature, and remains a good choice for many applications including high-frequency power and high linearity. GaAs technology also has significant cost advantages over its nonsilicon competitors. The economies of scale that the cellular communications market has brought to GaAs technology has revolutionized the manufacture of GaAs products and has given rise to dramatic reductions in cost. It is in the area of continued cost reduction that the most significant new developments in GaAs device and associated technologies are focused.
This chapter aims to introduce contemporary GaAs-based power FET technology. It is written with the perspective of the user of the technology in mind. The material properties and the pertinent device physics are reviewed and relevant concepts are recapped briefly as necessary. The device design issues are described followed by a section on fabrication with particular focus on low-cost manufacture. The chapter concludes with a discussion of device models for circuit design.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.