Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T20:46:21.458Z Has data issue: false hasContentIssue false

2 - GaAs FETs – physics, design, and models

Published online by Cambridge University Press:  05 November 2011

Rob Davis
Affiliation:
RFMD
Get access

Summary

Introduction

The manufacture of Gallium Arsenide FET devices and integrated circuits is now a mature industry. The GaAs FET was first developed in the 1960s and 1970s [1], with the impetus to establish a manufacturing capability coming in the 1980s driven by governmental support – most notably the comprehensive “MIMIC” programme in the United States. In the intervening time the GaAs FET became the default solid-state device for all manner of RF and microwave applications. However, the position of the GaAs FET in this arena has not gone unchallenged. It was soon joined by the GaAs HBT which has dominated the cellular handset power amplifier market. The upper frequency limit of silicon LDMOS technology has steadily increased over recent years as its highly mature technology was further refined with the result that this technology currently dominates high-power RF applications below 3 GHz. More recently, gallium nitride devices join the fray. The GaN FET is a device technology of great promise that is steadily being made available by more vendors as its reliability is established. Initially, gallium nitride is also targeting the lower frequency bands but is capable of being developed for applications across the whole microwave bandwidth. For the higher millimetre-wave frequencies indium phosphide technology has a place. However, GaAs FET technology is proven, competent, mature, and remains a good choice for many applications including high-frequency power and high linearity. GaAs technology also has significant cost advantages over its nonsilicon competitors. The economies of scale that the cellular communications market has brought to GaAs technology has revolutionized the manufacture of GaAs products and has given rise to dramatic reductions in cost. It is in the area of continued cost reduction that the most significant new developments in GaAs device and associated technologies are focused.

This chapter aims to introduce contemporary GaAs-based power FET technology. It is written with the perspective of the user of the technology in mind. The material properties and the pertinent device physics are reviewed and relevant concepts are recapped briefly as necessary. The device design issues are described followed by a section on fabrication with particular focus on low-cost manufacture. The chapter concludes with a discussion of device models for circuit design.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, Y.Hirano, Y.High-power GaAs FETsHigh-power GaAs FET AmplifiersWalker, J. L. B.Artech House 1993 43Google Scholar
Ioffe Physico-Technical Institutehttp://www.ioffe.ru/SVA/NSM/Semicond/
Sze, S. M.Physics of Semiconductor DevicesWiley, 1981Google Scholar
Dobaczewski, L.Peaker, A. R.Langer, J. M.DX defect centres in AlGaAsProperties of Aluminum Gallium ArsenideAdachi, S.IET/INSPEC 1993 278Google Scholar
Matthews, J.W.Blakeslee, A.E.Defects in epitaxial multilayersJ. Crystal Growth 27 118 1974Google Scholar
DiLorenzo, J.V.Wisseman, W.R.GaAs power MESFETs: design, fabrication and performanceIEEE Trans. Microw. Theory Tech. 27 367 1979CrossRefGoogle Scholar
Johnson, E.O.Physical limitations on frequency and power parameters of transistorsIRE Int. Conv. Rec. 13 27 1965CrossRefGoogle Scholar
Sauiner, P.Kopp, W. S.Tserng, H. Q.Kao, Y. C.Heston, D. D.635 1992
Cooper, S.Anderson, K.Salman, K.Culbertson, R.Mason, J.Bryant, D.Saunier, P. 1992 183
Takenaka, I.Ishikura, K.Takahashi, H.Asano, K.Morikawa, J.Satou, K.Kishi, K.Hasegawa, K.Tokunaga, K.Emori, F.Kuzuhara, M.L/S-band 140-W push–pull power AlGaAs/GaAs HFET's for digital cellular base stationsIEEE J. Solid-State Circuits 34 1181 1999CrossRefGoogle Scholar
Yang, M.Chan, Y.Device linearity comparisons between doped-channel and modulation-doped designs in pseudomorphic AlGaAs/InGaAs heterostructuresIEEE Trans. Electron Devices 43 1174 1996CrossRefGoogle Scholar
Morikawa, J.Asano, K.Ishikura, K.Oikawa, H.Kanamori, M.Kuzuhara, M.1413 1997
Lin, Y. C.Yi Chang, EdwardYamaguchi, H.Hirayama, Y.Chang, X. Y.Chang, C. Y.Device linearity comparison of uniformly doped and δ-doped In0.52Al0.48As/In0.6Ga0.4As metamorphic HEMTsIEEE Electron Device Lett. 27 535 2006CrossRefGoogle Scholar
Geiger, D.Mittermeier, E.Dickmann, J.Geng, C.Winterhof, R.Scholz, F.Kohn, E.InGaP/InGaAs HFET with high current density and high cut-off frequenciesIEEE Electron Device Letters 16 1995CrossRefGoogle Scholar
Drummond, T. J.Masselink, W. T.Morkoc, H.Modulation-doped GaAs/(Al,Ga)As heterojunction field-effect transistors: MODFETsProc. IEEE 74 773 1986CrossRefGoogle Scholar
Nguyen, L. D.Larson, L. E.Mishra, U. K.Ultra-high-speed modulation-doped field-effect transistors: a tutorial reviewProc. IEEE 80 494 1992CrossRefGoogle Scholar
DiLorenzo, J.V.Laterwasser, B. D.Zaitlin, M. 1994 1
Moll, N.Hueschen, M. R.Fischer-Colbrie, A.Pulse-doped AlGaAs/InGaAs pseudomorphic MODFETsIEEE Trans. Electron Devices 35 879 1988CrossRefGoogle Scholar
Snider, G.http://www.nd.edu/∼gsnider
Ladbrooke, P. H.MMIC Design: GaAs FETs and HEMTsArtech House 1989Google Scholar
Ladbrooke, P. H.Bridge, J. P.Goodship, N. J.Battison, D. J. 2000
Dunleavy, L.Clausen, W.Weller, T.Pulsed for nonlinear modelingMicrow. J. 46 68 2003Google Scholar
Rocchi, M.Status of the surface and bulk parasitic effects limiting the performances of GaAs IC'sPhysica B. 129 119 1985CrossRefGoogle Scholar
Lo, S.Lee, C.Analysis of surface state effect on gate lag phenomena in GaAs MESFET'sIEEE Trans. Electron Devices 41 1504 1994Google Scholar
Ladbrooke, P. H.Blight, S. R.Low-field low-frequency dispersion of transconductance in GaAs MESFET's with implications for other rate-dependent anomaliesIEEE Trans. Electron Devices 35 1988CrossRefGoogle Scholar
Canali, C.Magistrali, F.Paccagnella, A.Sangalli, M.Tedesco, C.Zanoni, E.Trap-related effects in AlGaAslGaAs HEMTsIEE Proc., Part G 38 104 1991Google Scholar
Binari, S. C.Klein, P. B.Kazior, T. E.Trapping effects in GaN and SiC microwave FETsProc. IEEE 90 1048 2002CrossRefGoogle Scholar
Hasumi, Y.Matsunaga, N.Oshima, T.Kodera, H.Characterization of the frequency dispersion of transconductance and drain conductance of GaAs MESFET, IEEE TransElectron Devices 50 2032 2003CrossRefGoogle Scholar
Izumi, T.Ohshima, T.Tsunotani, M.Kimura, T. 2002
Basile, A.F.Mazzanti, A.Manzini, E.Verzellesi, G.Canali, C.Pierobon, R.Lanzieri, C. 2002 63
Verzellesi, G.Mazzanti, A.Basile, A. F.Boni, A.Zanoni, E.Canali, C.Experimental and numerical assessment of gate-lag phenomena in AlGaAs–GaAs heterostructure field-effect transistors (FETs)IEEE Trans. Electron Devices 50 1733 2003CrossRefGoogle Scholar
Pajona, O.Aupetit-Berthelemot, C.Dumas, J. M. 2003 151
Wang, F.Jemison, W. D.Hwang, J. C. M.815 2001
Haruyama, J.Negishi, H.Nishimura, Y.Nashimoto, Y.Substrate-related kink effects with a strong light-sensitivity in AlGaAs/InGaAs PHEMT,IEEE Trans. Electron Devices 44 1997CrossRefGoogle Scholar
Kuang, J. B.Tasker, P. J.Wang, G. W.Chen, Y. K.Eastman, L. F.Aina, O. A.Hier, H.Fathimulla, A.Kink effect in submicrometer-gate MBE-Grown InAlAs/InGaAs/InAlAs heterojunction MESFET'sIEEE Electron Device Lett. 9 630 1988CrossRefGoogle Scholar
Ladbrooke, P. H.Bridge, J. P.Benign mechanism giving rise to kinks in GaAs MESFET and HEMT I(V) characteristicsElectron. Lett. 31 1947 1995CrossRefGoogle Scholar
Chen, J.-W.Thurairaj, M.Das, M. B.Optimization of gate-to-drain separation in submicron gate-length modulation doped FET's for maximum power gain performanceIEEE Trans. Electron Devices 41 465 1994CrossRefGoogle Scholar
Suemitsu, T.Enoki, T.Sano, N.Tomizawa, M.Ishii, Y.An analysis of the kink phenomena in InAlAs/InGaAs HEMT's using two-dimensional device simulationIEEE Trans. Electron Devices 45 2390 1998CrossRefGoogle Scholar
Somerville, M. H.Ernst, A.del Alamo, J. A.A physical model for the kink effect in InAlAs/InGaAs HEMT'sIEEE Trans. Electron Devices 47 922 2000CrossRefGoogle Scholar
Mazzanti, A.Verzellesi, G.Canali, C.Meneghesso, G.Zanoni, E.Physics-based explanation of kink dynamics in AlGaAs/GaAs HFETsIEEE Electron Device Letters 23 383 2002CrossRefGoogle Scholar
Somerville, M. H.del Alamo, J. A.Saunier, P.Off-state breakdown in power pHEMT's: the impact of the sourceIEEE Trans. Electron Devices 45 1883 1998CrossRefGoogle Scholar
Li, H. P.Hartin, O. L.Ray, M.An updated temperature-dependent breakdown coupling model including both impact ionization and tunneling mechanisms for AlGaAs/InGaAs HEMTsIEEE Trans. Electron Devices 49 1675 2002CrossRefGoogle Scholar
Menozzi, R.Off-state breakdown of GaAs PHEMTs: review and new dataIEEE Trans. Device and Materials Rel. 4 54 2004CrossRefGoogle Scholar
Trew, R. J.Mishra, U. K.Gate breakdown in MESFET's and HEMT'sIEEE Electron Device Lett. 12 524 1991CrossRefGoogle Scholar
Bahl, S. R.del Alamo, J. A.Physics of breakdown in InAlAs/n+-InGaAs heterostructure field-effect transistorsIEEE Trans. Electron Devices 41 2268 1994CrossRefGoogle Scholar
del Alamo, J. A.Somerville, M. H.Breakdown in millimeter-wave power InP HEMTs: a comparison with GaAs PHEMT'sIEEE J. Solid-State Circuits 34 1999CrossRefGoogle Scholar
Somerville, M. H.Blanchard, R.del Alamo, J. A.Duh, K. G.Chao, P. C.On-state breakdown in power HEMT's: measurements and modelingIEEE Trans. Electron Devices 46 1999CrossRefGoogle Scholar
van der Zanden, K.Schreurs, D. M. M.-P.Menozzi, R.Borgarino, M.Reliability testing of InP HEMT's using electrical stress methodsIEEE Trans. Electron Devices 46 1570 1999CrossRefGoogle Scholar
Di Carlo, A.Rossi, L.Lugli, P.Zandler, G.Meneghesso, G.Jackson, M.Zanoni, E.Monte Carlo study of the dynamic breakdown effects in HEMT'sIEEE Electron Device Letters 21 2000CrossRefGoogle Scholar
Sleiman, A.Di Carlo, A.Lugli, P.Meneghesso, G.Zanoni, E.Thobel, J. L.Channel thickness dependence of breakdown dynamic in InP-based lattice-matched HEMTsIEEE Trans. Electron Devices 50 2009 2003CrossRefGoogle Scholar
Bock, K.Russ, C.Badenes, G.Groeseneken, G.Influence of well profile and gate length on the ESD performance of a fully silicided 0.25 µm CMOS technologyIEEE Trans. Components, Packaging and Manufacturing Technol., Part C 24 286 1998CrossRefGoogle Scholar
Verhaege, K. G.Mergensb, M.Russb, C.Armerb, J.Jozwiak, P.Novel design of driver and ESD transistors with significantly reduced silicon areaMicroelectronics Rel. 42 3 2002CrossRefGoogle Scholar
Menozzi, RCova, P.Canali, C.Fantini, F.Breakdown walkout in pseudomorphic HEMTsIEEE Trans. Electron Devices 43 543 1996CrossRefGoogle Scholar
Verspecht, J.Schreurs, D. 1998
David, J. P. R.Sitch, J. E.Stern, M. S.Gate–drain avalanche breakdown in GaAs power MESFET'sIEEE Trans. Electron Devices 29 1548 1982CrossRefGoogle Scholar
Shirokov, M. S.Leoni, R. E.Wei, C. J.Hwang, J. C. M. 1996 34
Ladbrooke, P. H.Carroll, J. E.Dielectric relaxation as a limit on transistor switching speedElectron. Lett. 32 1511 1996CrossRefGoogle Scholar
Vendelin, G. D.Design of Amplifiers and Oscillators by the S-parameter MethodWiley-Blackwell 1982Google Scholar
Mason, S. J.Power gain in feedback amplifier,” IRE Professional Group on Circuit Theory 1 20 1954CrossRefGoogle Scholar
Vendelin, G. D.Shin, S.-C.Applying max, t, and for microwave transistor designs at microwave and millimeter-wave frequenciesIEEE Microw. Mag.84 2007Google Scholar
Long, S. I.A comparison of the GaAs MESFET and the AlGaAs/GaAs heterojunction bipolar transistor for power microwave amplificationIEEE Trans. Electron Devices 37 1274 1989CrossRefGoogle Scholar
Macksey, H. M.GaAs power FET designDiLorenzo, J. V.Khandelwal, D. D.GaAs FET Principles and TechnologyArtech House 1982 257Google Scholar
Grave, T. 1994
Macksey, H.M.Optimisation of the + ledge channel structure for GaAs power FETs,IEEE Trans. Electron Devices 33 1818 1986CrossRefGoogle Scholar
Boos, J. B.Kruppa, W.InAlAs/lnGaAs/lnP HEMTs with high breakdown voltages using double-recess gate processElectron. Lett. 27 1909 1991CrossRefGoogle Scholar
Huang, J. C.Jackson, G. S.Shanfield, S.Platzker, A.Saledas, P. K.Weichert, C.An AlGaAs/InGaAs pseudomorphic high electron mobility transistor with improved breakdown voltage for X and Ku-band power applicationsIEEE Trans. Microw. Theory Tech 41 752 1993CrossRefGoogle Scholar
Kohno, Y.Matsubayashi, H.Komaru, M.Takano, H.Ishihara, O.Mitsui, S.263 1994
Marsetz, W.Hiilsmann, A.Kleindienst, T.Fischer, S.Demmler, M.Bronner, W.Fink, T.Kohler, K.Schlechtweg, M.0.20.80.250.75 1997 1030
Chen, C.-HSkogen, J.Improvement of GaAs MESFET performance using surface P-layer doping (SPD) techniqueIEEE Electron Device Lett. 10 352 1989CrossRefGoogle Scholar
Hirose, M.Matsuzawa, K.Mihara, M.Nitta, T.Kameyama, A.Uchitomi, N.A lightly doped deep drain GaAs MESFET structure for linear amplifiers of personal handy-phone systemsIEEE Trans. Electron Devices 43 2062 1996CrossRefGoogle Scholar
Hori, YasukoKuzuhara, MasaakiAndo, YujiMizuta, MasashiAnalysis of electric field distribution in GaAs metal-semiconductor field effect transistor with a field modulating plateJ. Appl. Physics 87 2000CrossRefGoogle Scholar
Matsunaga, K.Ishikura, K.Takenaka, I.Contrata, W.Wakejima, A.Ota, K. 2000 393
Sakura, N.Matsunaga, K.Ishikura, K.Takenaka, I.Asano, K.Jwata, N.Kanamori, M.Kuzuhara, M.1715 2000
Wakejima, A.Ota, K.Matsunaga, K.Contrata, W.Kuzuhara, M.151 2001
Inoue, K.Nagahara, M.Ui, N.Haematsu, H.Sano, S.Fukaya, J.821 2004
Miller, M. 2005 236
Chiu, H.-C.Chiang, Y.-C.Wu, C.-S.High breakdown voltage AlGaInP/InGaAs quasi-enhancement-mode pHEMT with field-plate technologyIEEE Electron Device Lett. 26 2005Google Scholar
Kuvas, R. L.Equivalent circuit model of FET including distributed gate effectsIEEE Trans. Electron Devices 27 1193 1980CrossRefGoogle Scholar
Higashisaka, A.Takayama, YA high-power GaAs MESFET with experimentally optimized patternIEEE Trans. Electron Devices 27 1980CrossRefGoogle Scholar
Mondal, J. P.Distributed scaling approach of MESFETs and its comparison with lumped-element approachIEEE Trans. Microw. Theory Tech 37 1085 1989CrossRefGoogle Scholar
Teeter, D.Bouthillette, S.Aucoin, L.Platzker, AAlfaro, C.Bradford, D.High power, high efficiency PHEMTs for use at 8 GHzIEEE MTT-S Int. Symp. Dig323 1995Google Scholar
Hasegawa, F.Power GaAs FETsDiLorenzo, J. V.Khandelwal, D. D.GaAs FET Principles and TechnologyArtech House 1982 219Google Scholar
Walker, J. L. B.Combining techniquesWalker, J. L. B.High-Power GaAs FET AmplifiersArtech House 1993 263Google Scholar
Bahl, I. J. 1994 71
Derewonko, H.Laviron, M.Lepage, J.X- and Ku-band internally matched packaged GaAs F.E.TElectron. Lett. 15 1979CrossRefGoogle Scholar
Honjo, K.Takayama, Y.Higashisaka, A.Broad-band internal matching of microwave power GaAs MESFET’SIEEE Trans. Microw. Theory Tech. 27 1979CrossRefGoogle Scholar
Shichang, Z.Tangsheng, C.Gang, L.Fuxiao, L. 2006
Mori, K.Nishihara, J.Utsumi, H.Inoue, A.Miyazaki, M.315 2008
Fu, S. T.Komiak, J. J.Lester, L. F.Duh, K. H. G.Smith, P. M.Chao, P. C.Yu, T. H. 1993 355
Takenaka, I.Takahashi, H.Asano, K.Morikawa, J.Ishikura, K.Kanamori, M.Kuzuhara, M.Tsutsui, H.i1417 1997
Wakejima, A.Asano, T.Hirano, T.Funabashi, M.Matsunaga, K.C-band GaAs FET power amplifiers with 70-W output power and 50% PAE for satellite communication useIEEE J. Solid-State Circuits 40 2005CrossRefGoogle Scholar
Canali, C.Castaldo, F.Fantini, F.Ogliari, D.Umena, L.Zanoni, E.Gate metallization ‘sinking’ into the active channel in TilWlAu metallized power MESFET'sIEEE Electron Device Lett. 7 185 1986CrossRefGoogle Scholar
Kole, T. M. 2000 79
Webb, P. W.Thermal imaging of electronic devices with low surface emissivityIEE Proc., Part G 138 390 1991Google Scholar
Minot, Mark N.495 1986
Fukui, H. 1980 118
Webb, P. W.Measurement of thermal resistance using electrical methodsIEE Proc., Part I, 134 51 1987Google Scholar
Technologies, Agilent5966
Angelov, I.Kärnfelt, C.351 2007
Sarua, A.Ji, H.Kuball, M.Uren, M. J.Martin, T.Hilton, K. P.Balmer, R. S.Integrated micro-Raman/Infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structuresIEEE Trans. Electron Devices 53 2438 1986CrossRefGoogle Scholar
Mittereder, J. A.Roussos, J. A.Anderson, W. T.Ioannou, D. E.Quantitative measurement of channel temperature of GaAs devices for reliable life-time predictionIEEE Trans. Rel. 51 482 2002CrossRefGoogle Scholar
Webb, P. W.Russell, I. A. D.Thermal resistance of gallium-arsenide field-effect transistorsIEE Proc. Part G 136 229 1989Google Scholar
Webb, P. W.Thermal modeling of power microwave integrated circuitsIEEE Trans. Electron Devices 40 867 1993CrossRefGoogle Scholar
Wilson, J.Decker, K. 1994 121
Batty, W. 2006 316
Cooke, H. F.Precise technique finds FET thermal resistanceMicrowave85 1986Google Scholar
Kokkas, A. G.Thermal analysis of multiple-layer structuresIEEE Trans. Electron Devices 21 674 1974CrossRefGoogle Scholar
Marsetz, W.Dammann, M.Kawashima, H.Rtidiger, J.Matthes, B.Hiilsmann, A.Schlechtweg, M. 1998 439
Williams, R.Modern GaAs Processing MethodsArtech House 1990Google Scholar
Chang, C. Y.Kai, F.GaAs High-speed Devices: Physics, Technology and CircuitWiley 1994Google Scholar
Schmukler, B. C.Brunemeier, P. E.Hitchens, W. R.Cantos, B. D.Strifler, W. A.Rosenblatt, D. H.Remba, R. D. 1993 325
Alavi, K.Ogut, S.Lyman, P.Hoke, W.Borkowski, M. 2002
Hanson, A. W.Danzilio, D.Bacher, K.Leung, L. 1998 195
Hays, D. C.Abernathy, C. R.Pearton, S. J.Ren, F.Hobson, W. S.Wet and dry etch selectivity for the GaAs/AlGaAs and GaAs/InGaP systemsElectrochemical Soc. Proc. 98 202 1998Google Scholar
Spooner, F.Quinn, W.Hanes, L.Woolsey, S.Smith, K.Mason, J. 2004
Chang, E. Y.Van Hove, J. M.Pande, K. P.A selective dry-etch technique for GaAs MESFET gate recessingIEEE Trans. Electron Devices 35 1580 1988CrossRefGoogle Scholar
Ren, F.Pearton, S. J.Abernathy, C. R.Wu, C. S.Hu, M.Pao, K.Wang, D. C.Wen, C. P.0.25-pm Pseudomorphic HEMT's processed with damage-free dry-etch gate-recess technologyIEEE Trans. Electron Devices 39 2701 1992CrossRefGoogle Scholar
Geissberger, A. E.Bahl, I. J.Griffin, E. L.Sadler, R. A.A new refractory self-aligned gate technology for gaas microwave power FET's and MMIC'sIEEE Trans. Electron Devices 35 615 1988CrossRefGoogle Scholar
Yanagihara, M.Ota, Y.Nishii, K.Ishikawa, O.Tamura, A.Highly efficient GaAs power MESFETs with + asymmetrical LDD structureElectronics Lett. 28 686 1992CrossRefGoogle Scholar
Ping, A. T.Liebl, W.Mahoney, G.Mahon, S.Berger, O. 2005
Hwu, M.-J.Chiu, H.-C.Yang, S.-C.Chan, Y.-J.A novel double-recessed 0.2 µm T-gate process for heterostructure InGaP-InGaAs doped channel FET fabricationIEEE Electron Device Letters 24 381 2003Google Scholar
Metze, G. M.Bass, J. F.Lee, T. T.Porter, D.Carlson, H. E.Laux, P. E.A dielectric-defined process for the formation of T-gate field-effect transistorsIEEE Microw. Guided Wave Lett. 1 198 1991CrossRefGoogle Scholar
Muller, J.-E.Grave, T.Siweris, H. J.Kärner, M.Schafer, A.Tischer, H.Riechert, H.Schleicher, L.Verweyen, L.Bangert, A.Kellner, W.Meier, T.A GaAs HEMT MMIC chip set for automotive radar systems fabricated by optical stepper lithographyIEEE J. Solid-State Circuits 32 1997CrossRefGoogle Scholar
Jones, S. K.Bazley, D. J.Brambley, D. R.Claxton, P. A.Cleverley, I. R.Davies, I.Davies, R. A.Hill, C.Phillips, W. A.Shorrocks, N. M.Stott, M.Vanner, K.Wallis, R. H.Warner, D. J. 2001
Chang, E. Y.Cibuzar, G. T.Pande, K. P.Passivation of GaAs FET's with PECVD silicon nitride films of different stress statesIEEE Trans. Electron Devices 35 1412 1988CrossRefGoogle Scholar
Mackenzie, K. D.Reelfs, B.DeVre, M. W.Westerman, R.lJohnson, D. J. 2004
Clausen, M.C.McMonagle, J. 2005
Fanning, D.Witkowski, L.Stidham, J.Tserng, H.Q.Muir, M.Saunier, P. 2002
O’Keefe, M. F.Atherton, J. S.Bösch, W.Burgess, P.Cameron, N. I.Snowden, C. M.GaAs pHEMT-based technology for microwave applications in a volume MMIC production environment on 150-mm WafersIEEE Trans Semicond. Manuf. 16 376 2003CrossRefGoogle Scholar
Yuan, C.-G.Hsieh, Y. Y.Yeh, T. J.Chen, C.-H.Tu, D. W.Wang, Y.-C.Murad, J. L. S. 2005
O’Keefe, M. F.Mayock, J. G.E.Brookbanks, D. M.McMonagle, J.Atherton, J. S. 2005
Lodhi, T.McMonagle, J.Davis, R. G.Brookbanks, D. M.Combe, S.Clausen, M.O’Keefe, M. F.Collar, A.Atherton, J. S. 2006 125
J Liu, S. M.Cheng-Guan, Y.Wu, T. D.-W. R.Huang, J.Shih-Wei, Y.Lai, W.Yu, P. 2008 1
Yuan, C.-G.Liu, S. M.Tu, D.-W.Wu, R.Huang, J.Chen, F.Wang, Y-C. 2009
Fujii, K.Stanback, J.Morkner, H. 2009 503
Steel, V. 1996 18
Ho, T.Santos, F.Uscola, R.Szymanowski, M.Marshall, S. 2009 1269
2008
Chiriac, V. A.Lee, T. T.Hause, V.Thermal performance optimisation of radio frequency packages for wireless communicationJ. Electron. Packaging 126 2004CrossRefGoogle Scholar
Krishnamoorthi, S.Goh, K. Y.Chong, Y. R.Kapoor, R.Sun, Y. S. 2003 485
Aihara, K.Chen, A. C.Pham, A. V.Roman, J. W. 2005 167
Wormald, R.David, S.Panaghiston, G.Jeffries, R. 2006
Aihara, K.Chen, M. J.Pham, A.-V.Development of thin-film liquid-crystal-polymer surface-mount packages for Ka-band applicationsIEEE Trans. Microw. Theory Tech. 56 2111 2008CrossRefGoogle Scholar
Suh, Y.-H.Richardson, D.Dadello, A.Mahon, S.Harvey, J. T. 2005 545
Ersland, P.Jen, H.-R.Yang, X. 2003 3
Roesch, W. J. 2005 111
Extance, A.25 2009
Dambrine, G.Cappy, A.Heliodore, F.Playez, E.A new method for determining the FET small-signal equivalent circuitIEEE Trans. Microw. Theory Tech. 36 1151 1988CrossRefGoogle Scholar
Trew, R. J.Steer, M. B.Millimetre-wave performance of state-of-the-art MESFET, MODFET and PBT transistorsElectron. Lett. 23 149 1987CrossRefGoogle Scholar
Akhtar, S.Tiwari, S.Non-quasi-static transient and small-signal two-dimensional modeling of GaAs MESFET's with emphasis on distributed effectsIEEE Trans. Electron Devices 40 2154 1993CrossRefGoogle Scholar
Tasker, P. J.Braunstein, J.611 1995
Crupi, G.Schreurs, D. M. M.-P.Raffo, A.Caddemi, A.Vannini, G.A new millimeter-wave small-signal modeling approach for pHEMTs accounting for the output conductance time delayIEEE Trans. Microw. Theory Tech 56 741 2008CrossRefGoogle Scholar
Brookbanks, D. M. 1990 109
Hajji, R.Shumaker, J.Camargo, E. 2004
Rauscher, C.Simulation of non-linear microwave FET performance using a quasi-static modelIEEE Trans. Microw. Theory Tech 27 834 1979CrossRefGoogle Scholar
McCamant, A. J.McCormack, G. D.An improved GaAs MESFET model for SPICEIEEE Trans. Microw. Theory Tech. 38 822 1990CrossRefGoogle Scholar
Angelov, I.Zirath, H.Rorsman, N.A new empirical nonlinear model for HEMT and MESFET devicesIEEE Trans. Microw. Theory Tech 40 2258 1992CrossRefGoogle Scholar
Parker, A. E.Skellern, D. J.A realistic large-signal MESFET model for SPICEIEEE Trans. Microw. Theory Tech. 45 1563 1997CrossRefGoogle Scholar
Angelov, I.Bengtsson, L.Garcia, M.Temperature and dispersion effect extensions of the Chalmers nonlinear HEMT and MESFET modelIEEE Radio Frequency Integrated Circuits Symp. Dig.1515 1995Google Scholar
Angelov, I.Bengtsson, L.Garcia, M.Extensions of the Chalmers nonlinear HEMT and MESFET modelIEEE Trans. Microw. Theory Tech. 44 1664 1996CrossRefGoogle Scholar
Staudinger, J.de Baca, M. CVaitkus, R. 1998 343
Hallgren, R. B.Litzenberg, P. H.TOM3 capacitance model: linking large and small-signal MESFET models in SPICEIEEE Trans. Microw. Theory Tech. 47 556 1999CrossRefGoogle Scholar
Tajima, Y. 2006
Aglient Technologies 2007
Snider, A. D.Charge conservation and the transcapacitance element: an expositionIEEE Trans. Educ. 38 376 1995CrossRefGoogle Scholar
Root, D. E. 2001 678
Wren, M.Brazil, T. J.31 2004
Root, D. E.Hughes, B.Principles of nonlinear active device modeling for circuit simulationARFTG Conf. Dig. 14 1 1988Google Scholar
Maas, S. A.Nonlinear Microwave and RF CircuitsArtech House 2003Google Scholar
Brookbanks, D. M.
Paggi, M.Williams, P. H.Borrego, J. M.Nonlinear GaAs MESFET modeling using pulsed gate measurementsIEEE Trans. Microw. Theory Tech. 36 1593 1988CrossRefGoogle Scholar
Platzker, A.Palevsky, A.Nash, S.Struble, W.Tajima, Y.1137 1990
Struble, W.Chu, S. L. G.Schindler, M. J.Tajima, Y.Huang, J. 1991 179
Staudinger, J.Golio, M.Woodin, C.de Baca, M. C.Considerations for improving the accuracy of large-signal GaAs MESFET models to predict power amplifier circuit performanceIEEE J. Solid-State Circuits 29 366 1994CrossRefGoogle Scholar
Ouarch, Z.Collantes, J. M.Teyssier, J. P.Quere, R.599 1998
Jardel, O.De Groote, F.Reveyrand, T.Jacquet, J.Charbonniaud, C.Teyssier, J.Floriot, D.Quéré, R.An electrothermal model for AlGaN/GaN power HEMTs including trapping effects to improve large-signal simulation results on high VSWRIEEE Trans. Microw. Theory Tech. 55 2660 2007CrossRefGoogle Scholar
Liu, L. S.Ma, J. G.Ng, G. I.749 2009
Codecasa, L.D’Amore, D.Maffezzoni, P.Modeling the thermal response of semiconductor devices through equivalent electrical networks, IEEE TransCircuits and Systems – I: Fundamental Theory and Applications 49 1187 2002CrossRefGoogle Scholar
Raffo, A.Vadalà, V.Vannini, G.Santarelli, A.1421 2008
Verzellesi, G.Bade, A.Mazzanti, A.Canali, C.Meneghesso, G.Zanoni, E.39 2003
Luniya, S.Batty, W.Caccamesit, V.Garcia, M.Christoffersen, C.Melamed, S.Davis, W. R.Steer, M.651 2006
Snowden, C. M. 2006 295
Root, D. E.Fan, S.Meyer, J. 1991 927
Angelov, I.Zirath, H.Rorsman, N.new empirical nonlinear model for HEMT and MESFET devicesIEEE Trans. Microw. Theory Tech. 40 2258 1992CrossRefGoogle Scholar
Xu, J.Gunyan, D.Iwamoto, M.Cognata, A.Root, D. E.469 2006
Root, D. E.Xu, J.Gunyan, D.Horn, J.Iwamoto, M. 2009
Schreurs, D. M. M.-P.Verspecht, J.Vandenberghe, S.Vandamme, E.Straightforward and accurate nonlinear device model parameter estimation method based on vectorial large-signal measurementsIEEE Trans. Microw. Theory Tech. 50 2315 2002CrossRefGoogle Scholar
Currás-Francos, M. C.Tasker, P. J.Fernández-Barciela, M.Campos-Roca, Y.Sánchez, E.Direct extraction of nonlinear FET Q–V functions from time domain large signal measurementsIEEE Microw. Guided Wave Lett. 10 531 2000CrossRefGoogle Scholar
Verspecht, J.Root, D. E.Polyharmonic distortion modelingIEEE Microw. Mag. 7 44 2006CrossRefGoogle Scholar
Qi, H.Benedikt, J.Tasker, P. J.Novel nonlinear model for rapid waveform-based extraction enabling accurate high power PA designIEEE MTT-S Int. Symp. Dig.2019 2007Google Scholar
Simpson, G.Horn, J.Gunyan, D.Root, D. E. 2008
Tsironis, C.Jurenas, A.Liu, W. 2001 1311
Aboush, Z.Jones, C.Knight, G.Sheikh, A.Lee, H.Lees, J.Benedikt, J.Tasker, P. J. 2005
Cripps, S. C.221 1983
Gupta, M. S.Power gain in feedback amplifiers, a classic revisitedIEEE Trans. Microw. Theory Tech 40 864 1992CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×