Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T19:58:04.650Z Has data issue: false hasContentIssue false

13 - Mobile Sensing Methods

from Part III - Deep Dives on Methods and Tools for Testing Your Question of Interest

Published online by Cambridge University Press:  12 December 2024

Harry T. Reis
Affiliation:
University of Rochester, New York
Tessa West
Affiliation:
New York University
Charles M. Judd
Affiliation:
University of Colorado Boulder
Get access

Summary

This chapter provides an introduction to the use of mobile sensing in social and personality psychology. It first looks at mobile sensing’s historical roots and discusses how, in the field, the method follows in the footsteps of other traditional approaches to the collection of behavioral data. It then covers research questions of the kind that mobile sensing lends itself to, and provides a high-level summary of the current literature on mobile sensing. In the third section, the chapter illustrates the very basic how-to of mobile sensing with respect to technical rationale, implementation in studies, and coverage of variables. The fourth and final section is a psychometric reflection on where mobile sensing currently stands and where it is or should be going. To this end, five predictions are evaluated that were made for mobile sensing research when it first emerged in the psychological research landscape about a decade ago.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adib, F., Mao, H., Kabelac, Z., Katabi, D., and Miller, R. C. (2015). Smart homes that monitor breathing and heart rate. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 837846, https://doi.org/10.1145/2702123.2702200.CrossRefGoogle Scholar
Altini, M., and Kinnunen, H. (2021). The promise of sleep: A multi-sensor approach for accurate sleep stage detection using the Oura Ring. Sensors, 21(13), 4302. https://doi.org/10.3390/s21134302.CrossRefGoogle ScholarPubMed
Baumeister, R. F., Vohs, K. D., and Funder, D. C. (2007). Psychology as the science of self-reports and finger movements: Whatever happened to actual behavior? Perspectives on Psychological Science, 2(4), 396403.CrossRefGoogle ScholarPubMed
Beierle, F., Probst, T., Allemand, M., Zimmermann, J., Pryss, R., Neff, P., Schlee, W., Stieger, S., and Budimir, S. (2020). Frequency and Duration of daily smartphone usage in relation to personality traits. Digital Psychology, 1(1), 2028.CrossRefGoogle Scholar
Bemmann, F., and Buschek, D. (2020). LanguageLogger: A mobile keyboard application for studying language use in everyday text communication in the wild. Proceedings of the ACM on Human–Computer Interaction, 4, 124.CrossRefGoogle Scholar
Bolger, N., Davis, A., and Rafaeli, E. (2003). Diary methods: capturing life as it is lived. Annual Review of Psychology, 54(1), 579616.CrossRefGoogle ScholarPubMed
Brinberg, M., Ram, N., Yang, X., Cho, M.-J., Sundar, S. S., Robinson, T. N., and Reeves, B. (2021). The idiosyncrasies of everyday digital lives: Using the Human Screenome Project to study user behavior on smartphones. Computers in Human Behavior, 114, 106570, https://doi.org/10.1016/j.chb.2020.106570.CrossRefGoogle ScholarPubMed
Brown, N. A., Blake, A. B., and Sherman, R. A. (2017). A snapshot of the life as lived: Wearable cameras in social and personality psychological science. Social Psychological and Personality Science, 8(5), 592600.CrossRefGoogle Scholar
Conner, T. S., and Mehl, M. R. (2015). Ambulatory assessment: Methods for studying everyday life. In Scott, R. A. and Kosslyn, S. M. (eds.) Emerging Trends in the Social and Behavioral Sciences, 1st ed. Wiley.Google Scholar
Conner, T. S., Tennen, H., Fleeson, W., and Barrett, L. F. (2009). Experience sampling methods: A modern idiographic approach to personality research: Experience sampling methods. Social and Personality Psychology Compass, 3(3), 292313.CrossRefGoogle ScholarPubMed
Cornet, V. P., and Holden, R. J. (2018). Systematic review of smartphone-based passive sensing for health and wellbeing. Journal of Biomedical Informatics, 77, 120132.CrossRefGoogle ScholarPubMed
daSilva, A. W., Huckins, J. F., Wang, W., Wang, R., Campbell, A. T., and Meyer, M. L. (2021). Daily perceived stress predicts less next day social interaction: Evidence from a naturalistic mobile sensing study. Emotion, 21(8), 17601770.CrossRefGoogle ScholarPubMed
Dubey, H., Mehl, M. R., and Mankodiya, K. (2016). BigEAR: Inferring the ambient and emotional correlates from smartphone-based acoustic big data. 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 7883, https://doi.org/10.1109/CHASE.2016.46.CrossRefGoogle Scholar
Eisele, G., Vachon, H., Lafit, G., Tuyaerts, D., Houben, M., Kuppens, P., … Viechtbauer, W. (2023). A mixed-method investigation into measurement reactivity to the experience sampling method: The role of sampling protocol and individual characteristics. Psychological Assessment, 35(1), 6881.CrossRefGoogle Scholar
Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., Buote, R., van Heerden, D., Luan, H., Cullen, K., Slade, L., and Taylor, N. G. A. (2020). Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: Systematic review. JMIR MHealth and UHealth, 8(9), e18694, https://doi.org/10.2196/18694.CrossRefGoogle ScholarPubMed
Harari, G. M., Gosling, S. D., Wang, R., and Campbell, A. T. (2015). Capturing situational information with smartphones and mobile sensing methods. European Journal of Personality, 29(5), 509511.CrossRefGoogle Scholar
Harari, G. M., Lane, N. D., Wang, R., Crosier, B. S., Campbell, A. T., and Gosling, S. D. (2016). Using smartphones to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. Perspectives on Psychological Science, 11(6), 838854.CrossRefGoogle Scholar
Harari, G. M., Müller, S. R., Aung, M. S., and Rentfrow, P. J. (2017). Smartphone sensing methods for studying behavior in everyday life. Current Opinion in Behavioral Sciences, 18, 8390.CrossRefGoogle Scholar
Harari, G. M., Müller, S. R., and Gosling, S. D. (2020). Naturalistic assessment of situations using mobile sensing methods. In Rauthmann, J. F., Sherman, R. A., and Funder, D. C. (eds.) The Oxford Handbook of Psychological Situations. Oxford University Press.Google Scholar
Harari, G. M., Müller, S. R., Stachl, C., Wang, R., Wang, W., Bühner, M., Rentfrow, P. J., Campbell, A. T., and Gosling, S. D. (2020). Sensing sociability: Individual differences in young adults’ conversation, calling, texting, and app use behaviors in daily life. Journal of Personality and Social Psychology, 119(1), 204228.CrossRefGoogle ScholarPubMed
Harari, G. M., Vaid, S. S., Müller, S. R., Stachl, C., Marrero, Z., Schoedel, R., Bühner, M., and Gosling, S. D. (2020). Personality sensing for theory development and assessment in the digital age. European Journal of Personality, 34(5), 649669.CrossRefGoogle Scholar
Hebbar, R., Papadopoulos, P., Reyes, R., Danvers, A. F., Polsinelli, A. J., Moseley, S. A., Sbarra, D. A., Mehl, M. R., and Narayanan, S. (2021). Deep multiple instance learning for foreground speech localization in ambient audio from wearable devices. EURASIP Journal on Audio, Speech, and Music Processing, 2021(1), 7, https://doi.org/10.1186/s13636-020-00194-0.CrossRefGoogle ScholarPubMed
Henrich, J., Heine, S. J., and Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183.CrossRefGoogle ScholarPubMed
Huckins, J. F., daSilva, A. W., Wang, W., Hedlund, E., Rogers, C., Nepal, S. K., Wu, J., Obuchi, M., Murphy, E. I., Meyer, M. L., Wagner, D. D., Holtzheimer, P. E., and Campbell, A. T. (2020). Mental health and behavior of college students during the early phases of the COVID-19 pandemic: Longitudinal smartphone and ecological momentary assessment study. Journal of Medical Internet Research, 22(6), e20185, https://doi.org/10.2196/20185.CrossRefGoogle ScholarPubMed
Jensen, C. L., Rodriguez, K. E., MacLean, E. L., Abdul Wahab, A. H., Sabbaghi, A., and O’Haire, M. E. (2022). Characterizing veteran and PTSD service dog teams: Exploring potential mechanisms of symptom change and canine predictors of efficacy. PLOS ONE, 17(7), e0269186, https://doi.org/10.1371/journal.pone.0269186.CrossRefGoogle ScholarPubMed
Kaplan, D. M., Rentscher, K. E., Lim, M., Reyes, R., Keating, D., Romero, J., Shah, A., Smith, A. D., York, K. A., Milek, A., Tackman, A. M., and Mehl, M. R. (2020). Best practices for electronically activated recorder (EAR) research: A practical guide to coding and processing EAR data. Behavior Research Methods, 52(4), 15381551.CrossRefGoogle ScholarPubMed
Kemp, S. (2022, January 27). DIGITAL 2021: Global Overview Report. DATAREPORTAL, https://datareportal.com/reports/digital-2021-global-overview-report.Google Scholar
Keusch, F., Bähr, S., Haas, G.-C., Kreuter, F., and Trappmann, M. (2020). Coverage error in data collection combining mobile surveys with passive measurement using apps: Data from a German national survey. Sociological Methods & Research, 52(2), 004912412091492. https://doi.org/10.1177/0049124120914924.Google Scholar
Keusch, F., Struminskaya, B., Antoun, C., Couper, M. P., and Kreuter, F. (2019). Willingness to participate in passive mobile data collection. Public Opinion Quarterly, 83(S1), 210235.CrossRefGoogle ScholarPubMed
Krämer, M. D., Roos, Y., Schoedel, R., Wrzus, C., and Richter, D. (2023). Social dynamics and affect: Investigating within-person associations in daily life using experience sampling and mobile Sensing. Emotion, https://doi.org/10.1037/emo0001309.CrossRefGoogle Scholar
Kreuter, F., Haas, G. C., Keusch, F., Bähr, S., and Trappmann, M. (2020). Collecting survey and smartphone sensor data with an app: Opportunities and challenges around privacy and informed consent. Social Science Computer Review, 38(5), 533549.CrossRefGoogle Scholar
Krumm, J. (ed.). (2010). Ubiquitous Computing Fundamentals. Chapman & Hall/CRC Press.Google Scholar
Mack, D. L., DaSilva, A. W., Rogers, C., Hedlund, E., Murphy, E. I., Vojdanovski, V., Plomp, J., Wang, W., Nepal, S. K., Holtzheimer, P. E., Wagner, D. D., Jacobson, N. C., Meyer, M. L., Campbell, A. T., and Huckins, J. F. (2021). Mental health and behavior of college students during the COVID-19 pandemic: Longitudinal mobile smartphone and ecological momentary assessment study, part II. Journal of Medical Internet Research, 23(6), e28892, https://doi.org/10.2196/28892.CrossRefGoogle ScholarPubMed
Marciano, L., Driver, C. C., Schulz, P. J., and Camerini, A.-L. (2022). Dynamics of adolescents’ smartphone use and well-being are positive but ephemeral. Scientific Reports, 12(1), 1316, https://doi.org/10.1038/s41598-022-05291-y.CrossRefGoogle ScholarPubMed
Mason, A. E., Hecht, F. M., Davis, S. K., Natale, J. L., Hartogensis, W., Damaso, N., Claypool, K. T., Dilchert, S., Dasgupta, S., Purawat, S., Viswanath, V. K., Klein, A., Chowdhary, A., Fisher, S. M., Anglo, C., Puldon, K. Y., Veasna, D., Prather, J. G., Pandya, L. S., … Smarr, B. L. (2022). Detection of COVID-19 using multimodal data from a wearable device: Results from the first TemPredict study. Scientific Reports, 12(1), 3463, https://doi.org/10.1038/s41598-022-07314-0.CrossRefGoogle ScholarPubMed
Mehl, M. R. (2017). The electronically activated recorder (EAR): A method for the naturalistic observation of daily social Behavior. Current Directions in Psychological Science, 26(2), 184190.CrossRefGoogle Scholar
Mehl, M. R., Eid, M., Wrzus, C., Harari, G., and Ebner-Priemer, U. (2024). Handbook of Mobile Sensing in Psychology: Methods and Applications.Google Scholar
Mehl, M. R., Raison, C. L., Pace, T. W. W., Arevalo, J. M. G., and Cole, S. W. (2017). Natural language indicators of differential gene regulation in the human immune system. Proceedings of the National Academy of Sciences, 114(47), 1255412559.CrossRefGoogle ScholarPubMed
Mehl, M. R., Vazire, S., Holleran, S. E., and Clark, C. S. (2010). Eavesdropping on happiness: Well-being is related to having less small talk and more substantive conversations. Psychological Science, 21(4), 539541.CrossRefGoogle ScholarPubMed
Mehl, M. R., Vazire, S., Ramírez-Esparza, N., Slatcher, R. B., and Pennebaker, J. W. (2007). Are women really more talkative than men? Science, 317(5834), 82. https://doi.org/10.1126/science.1139940.CrossRefGoogle ScholarPubMed
Milek, A., Butler, E. A., Tackman, A. M., Kaplan, D. M., Raison, C. L., Sbarra, D. A., Vazire, S., and Mehl, M. R. (2018). “Eavesdropping on happiness” revisited: A pooled, multisample replication of the association between life satisfaction and observed daily conversation quantity and quality. Psychological Science, 29(9), 14511462.CrossRefGoogle ScholarPubMed
Miller, G. (2012). The smartphone psychology manifesto. Perspectives on Psychological Science, 7(3), 221237.CrossRefGoogle ScholarPubMed
Mohr, D. C., Zhang, M., and Schueller, S. M. (2017). Personal sensing: Understanding mental health using ubiquitous sensors and machine learning. Annual Review of Clinical Psychology, 13(1), 2347.CrossRefGoogle ScholarPubMed
Mønsted, B., Mollgaard, A., and Mathiesen, J. (2018). Phone-based metric as a predictor for basic personality traits. Journal of Research in Personality, 74, 1622.CrossRefGoogle Scholar
Montag, C., Błaszkiewicz, K., Lachmann, B., Andone, I., Sariyska, R., Trendafilov, B., Reuter, M., and Markowetz, A. (2014). Correlating personality and actual phone usage: Evidence from psychoinformatics. Journal of Individual Differences, 35(3), 158165.CrossRefGoogle Scholar
Moshe, I., Terhorst, Y., Opoku Asare, K., Sander, L. B., Ferreira, D., Baumeister, H., Mohr, D. C., and Pulkki-Råback, L. (2021). Predicting symptoms of depression and anxiety using smartphone and wearable data. Frontiers in Psychiatry, 12, 625247, https://doi.org/10.3389/fpsyt.2021.625247.CrossRefGoogle ScholarPubMed
Müller, S. R., Bayer, J. B., Ross, M. Q., Mount, J., Stachl, C., Harari, G. M., Chang, Y.-J., and Le, H. T. K. (2022). Analyzing GPS data for psychological research: A tutorial. Advances in Methods and Practices in Psychological Science, 5(2), 251524592210826, https://doi.org/10.1177/25152459221082680.CrossRefGoogle Scholar
Müller, S. R., Peters, H., Matz, S. C., Wang, W., and Harari, G. M. (2020). Investigating the relationships between mobility behaviours and indicators of subjective well-being using smartphone-based experience sampling and GPS tracking. European Journal of Personality, 34(5), 714732.CrossRefGoogle Scholar
Ozer, D. J., and Benet-Martínez, V. (2006). Personality and the prediction of consequential outcomes. Annual Review of Psychology, 57(1), 401421.CrossRefGoogle ScholarPubMed
Paulhus, D. L., and Vazire, S. (2007). The self-report method. In Robins, R. W., Fraley, R. C., and Krueger, R. F. (eds.) Handbook of Research Methods in Personality Psychology. Guilford Press.Google Scholar
Phan, L. V., Modersitzki, N., Gloystein, K. K., and Müller, S. (2022). Mobile sensing around the globe: Considerations for cross-cultural research (preprint). PsyArXiv, https://doi.org/10.31234/osf.io/q8c7y.CrossRefGoogle Scholar
Rauthmann, J. F., and Sherman, R. A. (2021). Conceptualizing and measuring the psychological situation. In Wood, D., Read, S. J., Harms, P. D., and Slaughter, A. (eds.) Measuring and Modeling Persons and Situations. Elsevier.Google Scholar
Reis, H. T. (2010). How we got here from there: A brief history of social psychology. In Baumeister, R. F. and Finkel, E. J. (eds.) Advanced Social Psychology: The State of the Science. Oxford University Press.Google Scholar
Reis, H. T. (2018). Why researchers should think “real-world.” In Reis, H. T. (ed.) Relationships, Well-Being and Behaviour: Selected Works of Harry T. Reis, 1st ed. Routledge.CrossRefGoogle Scholar
Renner, K., Klee, S., and von Oertzen, T. (2020). Bringing back the person into behavioural personality science using big data. European Journal of Personality, 34(5), 670686.CrossRefGoogle Scholar
Rüegger, D., Stieger, M., Nißen, M., Allemand, M., Fleisch, E., and Kowatsch, T. (2020). How are personality states associated with smartphone data? European Journal of Personality, 34(5), 687713.CrossRefGoogle Scholar
Sadeh, A. (2015). III. Sleep assessment methods: Sleep assessment. Monographs of the Society for Research in Child Development, 80(1), 3348.CrossRefGoogle ScholarPubMed
Sandstrom, G. M., Lathia, N., Mascolo, C., and Rentfrow, P. J. (2017). Putting mood in context: Using smartphones to examine how people feel in different locations. Journal of Research in Personality, 69, 96101.CrossRefGoogle Scholar
Schindler, D., Spors, S., Demiray, B., and Krüger, F. (2022). Automatic behavior assessment from uncontrolled everyday audio recordings by deep learning. Sensors, 22(22), 8617, https://doi.org/10.3390/s22228617.CrossRefGoogle ScholarPubMed
Schoedel, R., Au, Q., Völkel, S. T., Lehmann, F., Becker, D., Bühner, M., Bischl, B., Hussmann, H., and Stachl, C. (2018). Digital footprints of sensation seeking: A traditional concept in the big data era. Zeitschrift für Psychologie, 226(4), 232245.CrossRefGoogle Scholar
Schoedel, R., Kunz, F., Bergmann, M., Bemmann, F., Bühner, M., and Sust, L. (2023). Snapshots of daily life: Situations investigated through the lens of smartphone sensing. Journal of Personality and Social Psychology, 125(6), 14421471.CrossRefGoogle ScholarPubMed
Schoedel, R., Oldemeier, M., Bonauer, L., and Sust, L. (2022). Systematic categorisation of 3,091 smartphone applications from a large-scale smartphone sensing dataset. Journal of Open Psychology Data, 10(1), 7, https://doi.org/10.5334/jopd.59.CrossRefGoogle Scholar
Schoedel, R., Pargent, F., Au, Q., Völkel, S. T., Schuwerk, T., Bühner, M., and Stachl, C. (2020). To challenge the morning lark and the night owl: Using smartphone sensing data to investigate day–night behaviour patterns. European Journal of Personality, 34(5), 733752.CrossRefGoogle Scholar
Schwarz, N. (2007). Retrospective and concurrent self-reports: The rationale for real-time data capture. In Stone, A. A. (ed.) The Science of Real-Time Data Capture: Self-Reports in Health Research. Oxford University Press.Google Scholar
Servia-Rodríguez, S., Rachuri, K. K., Mascolo, C., Rentfrow, P. J., Lathia, N., and Sandstrom, G. M. (2017). Mobile sensing at the service of mental well-being: A large-scale longitudinal study. Proceedings of the 26th International Conference on World Wide Web, 103112, https://doi.org/10.1145/3038912.3052618.CrossRefGoogle Scholar
Shaw, H., Taylor, P. J., Ellis, D. A., and Conchie, S. M. (2022). Behavioral consistency in the digital age. Psychological Science, 33(3), 364370.CrossRefGoogle ScholarPubMed
Stachl, C., Au, Q., Schoedel, R., Gosling, S. D., Harari, G. M., Buschek, D., Völkel, S. T., Schuwerk, T., Oldemeier, M., Ullmann, T., Hussmann, H., Bischl, B., and Bühner, M. (2020). Predicting personality from patterns of behavior collected with smartphones. Proceedings of the National Academy of Sciences, 117(30), 1768017687.CrossRefGoogle ScholarPubMed
Stachl, C., Hilbert, S., Au, J., Buschek, D., De Luca, A., Bischl, B., Hussmann, H., and Bühner, M. (2017). Personality traits predict smartphone usage. European Journal of Personality, 31(6), 701722.CrossRefGoogle Scholar
Tausczik, Y. R., and Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29(1), 2454.CrossRefGoogle Scholar
Taylor, P. (2023, January 18). Number of Smartphone Subscriptions Worldwide from 2016 to 2021, with Forecasts from 2022 to 2027. Statista, www.statista.com/statistics/330695/number-of-smartphone-users-worldwide.Google Scholar
Trull, T. J., and Ebner-Priemer, U. W. (2020). Ambulatory assessment in psychopathology research: A review of recommended reporting guidelines and current practices. Journal of Abnormal Psychology, 129(1), 5663.CrossRefGoogle ScholarPubMed
Wac, K. (2018). From quantified self to quality of life. In Rivas, H. and Wac, K. (eds.) Digital Health. Springer International Publishing, https://doi.org/10.1007/978-3-319-61446-5_7.Google Scholar
Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., and Campbell, A. T. (2014). StudentLife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 314, https://doi.org/10.1145/2632048.2632054.CrossRefGoogle Scholar
Wang, R., Harari, G., Hao, P., Zhou, X., and Campbell, A. T. (2015). SmartGPA: How smartphones can assess and predict academic performance of college students. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous ComputingUbiComp ’15, 295306, https://doi.org/10.1145/2750858.2804251.CrossRefGoogle Scholar
Wang, R., Wang, W., daSilva, A., Huckins, J. F., Kelley, W. M., Heatherton, T. F., and Campbell, A. T. (2018). Tracking depression dynamics in college students using mobile phone and wearable sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1), 126.Google ScholarPubMed
Wang, W., Nepal, S., Huckins, J. F., Hernandez, L., Vojdanovski, V., Mack, D., Plomp, J., Pillai, A., Obuchi, M., daSilva, A., Murphy, E., Hedlund, E., Rogers, C., Meyer, M., and Campbell, A. (2022). First-gen lens: Assessing mental health of first-generation students across their first year at college using mobile sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(2), 132.Google ScholarPubMed
Watanabe, J., Matsuda, S., and Yano, K. (2013). Using wearable sensor badges to improve scholastic performance. Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, 139142, https://doi.org/10.1145/2494091.2494137.CrossRefGoogle Scholar
Wrzus, C., and Schoedel, R. (2023). Transparency and reproducibility in mobile sensing research. In Mehl, M. R., Eid, M., Wrzus, C., Harari, G. M., and Ebner-Priemer, U. W. (eds.) Mobile Sensing in Psychology: Methods and Applications, Guilford Press.Google Scholar
Wu, C., Fritz, H., Bastami, S., Maestre, J. P., Thomaz, E., Julien, C., Castelli, D. M., de Barbaro, K., Bearman, S. K., Harari, G. M., Cameron Craddock, R., Kinney, K. A., Gosling, S. D., Schnyer, D. M., and Nagy, Z. (2021). Multi-modal data collection for measuring health, behavior, and living environment of large-scale participant cohorts. GigaScience, 10(6), giab044, https://doi.org/10.1093/gigascience/giab044.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×