Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T19:38:22.510Z Has data issue: false hasContentIssue false

Part III - Deep Dives on Methods and Tools for Testing Your Question of Interest

Published online by Cambridge University Press:  12 December 2024

Harry T. Reis
Affiliation:
University of Rochester, New York
Tessa West
Affiliation:
New York University
Charles M. Judd
Affiliation:
University of Colorado Boulder
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alwin, D. F. (2007). Margins of Error: A Study of Reliability in Survey Measurement. John Wiley & Sons.CrossRefGoogle Scholar
Amaya, A., Biemer, P. P., and Kinyon, D. (2020). Total error in a big data world: Adapting the TSE framework to big data. Journal of Survey Statistics and Methodology, 8(1), 89119.CrossRefGoogle Scholar
American Association for Public Opinion Research. (2016). Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys, 9th ed. American Association for Public Opinion Research, www.aapor.org/AAPOR_Main/media/publications/Standard-Definitions20169theditionfinal.pdf.Google Scholar
American National Election Studies (2021). The Anes Guide to Public Opinion and Electoral Behavior (August 16, 2021, version), https://electionstudies.org/resources/anes-guide.Google Scholar
Ansolabehere, S., and Schaffner, B. F. (2014). Does survey mode still matter? Findings from a 2010 multi-mode comparison. Political Analysis, 22(3), 285303.CrossRefGoogle Scholar
Antoun, C., Zhang, C., Conrad, F. G., and Schober, M. F. (2016). Comparisons of online recruitment strategies for convenience samples: Craigslist, Google AdWords, Facebook, and Amazon Mechanical Turk. Field Methods, 28(3), 231246.CrossRefGoogle Scholar
Baker, R., Brick, J. M., Bates, N. A., Battaglia, M., Couper, M. P., Dever, J. A., Gile, K. J., and Tourangeau, R. (2013). Summary report of the AAPOR task force on non-probability sampling. Journal of Survey Statistics and Methodology, 1(2), 90143.CrossRefGoogle Scholar
Battaglia, M. P., Dillman, D. A., Frankel, M. R., Harter, R., Buskirk, T. D., McPhee, C. B., DeMatteis, J. M., and Yancey, T. (2016). Sampling, data collection, and weighting procedures for address-based sample surveys. Journal of Survey Statistics and Methodology, 4(4), 476500.CrossRefGoogle Scholar
Biemer, P. P., and Lyberg, L. E. (2003). Introduction to Survey Quality. John Wiley & Sons, Inc.CrossRefGoogle Scholar
Blom, A. G., Bosnjak, M., Cornilleau, A., Cousteaux, A.-S., Das, M., Douhou, S., and Krieger, U. (2016). A comparison of four probability-based online and mixed-mode panels in Europe. Social Science Computer Review, 34(1), 825.CrossRefGoogle Scholar
Blumberg, S. J., and Luke, J. V. (2022). Wireless Substitution: Early Release of Estimates from the National Health Interview Survey, July–December 2021, U.S. Department of Health and Human Services; Centers for Disease Control and Prevention; National Center for Health Statistics.CrossRefGoogle Scholar
Bradburn, N. M., Sudman, S., and Wansink, B. (2004). Asking Questions: The Definitive Guide to Questionnaire Design – for Market Research, Political Polls, and Social and Health Questionnaires. Jossey-Bass.Google Scholar
Brick, J. M., and Williams, D. (2013). Explaining rising nonresponse rates in cross-sectional surveys. Annals of the American Academy of Political and Social Science, 645(1), 3659.CrossRefGoogle Scholar
Buhrmester, M. D., Talaifar, S., and Gosling, S. D. (2018). An evaluation of Amazon’s Mechanical Turk, its rapid rise, and its effective use. Perspectives on Psychological Science, 13(2), 149154.CrossRefGoogle ScholarPubMed
Bureau of Labor Statistics, B. (2022). Household and establishment survey response rates (December 1, 2022), www.bls.gov/osmr/response-rates/home.htm.Google Scholar
Callegaro, M., and DiSogra, C. (2009). Computing response metrics for online panels. Public Opinion Quarterly, 72(5), 10081032.CrossRefGoogle Scholar
Chyung, S. Y., Barkin, J. R., and Shamsy, J. A. (2018). Evidence-based survey design: The use of negatively worded items in surveys. Performance Improvement, 57(3), 1625.CrossRefGoogle Scholar
Cornesse, C., Blom, A. G., Dutwin, D., Krosnick, J. A., de Leeuw, E. D., Legleye, S., Pasek, J., Pennay, D., Phillips, B., Sakshaug, J. W., Struminskaya, B., and Wenz, A. (2020). A review of conceptual approaches and empirical evidence on probability and nonprobability sample survey research. Journal of Survey Statistics and Methodology, 8(1), 436.CrossRefGoogle Scholar
Davern, M., Bautista, R., Freese, J., Morgan, S. L., and Smith, T. W. (2021). General Social Survey 2021 Cross-section (machine-readable data file (68,846 cases) and one codebook (506 pages)).Google Scholar
de Leeuw, E. (2005). To mix or not to mix data collection modes in surveys [review article]. Journal of Official Statistics, 21(2), 233255.Google Scholar
Dijkstra, W. (2016). Sequence Viewer (version 6.1), www.sequenceviewer.nl/index.html.Google Scholar
Dillman, D. A., Smyth, J. D., and Christian, L. M. (2014). Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method. John Wiley & Sons.CrossRefGoogle Scholar
DiSogra, C., and Callegaro, M. (2016). Metrics and design tool for building and evaluating probability-based online panels. Social Science Computer Review, 34(1), 2640.CrossRefGoogle Scholar
Ditonto, T. M., Lau, R. R., and Sears, D. O. (2013). AMPing racial attitudes: Comparing the power of explicit and implicit racism measures in 2008. Political Psychology, 34(4), 487510.CrossRefGoogle Scholar
Dutwin, D., and Buskirk, T. D. (2020). Telephone sample surveys: Dearly beloved or nearly departed? Trends in survey errors in the era of declining response rates. Journal of Survey Statistics and Methodology, 9(3), 353380.CrossRefGoogle Scholar
Dykema, J., Garbarski, D., Wall, I. F., and Edwards, D. F. (2019). Measuring trust in medical researchers: adding insights from cognitive interviews to examine agree–disagree and construct-specific survey questions. Journal of Official Statistics, 35(2), 353386.CrossRefGoogle ScholarPubMed
Dykema, J., Schaeffer, N. C., Garbarski, D., Assad, N., and Blixt, S. (2022). Towards a reconsideration of the use of agree–disagree questions in measuring subjective evaluations. Research in Social and Administrative Pharmacy, 18(2), 23352344.CrossRefGoogle ScholarPubMed
English, N., Kennel, T., Buskirk, T., and Harter, R. (2018). The construction, maintenance, and enhancement of address-based sampling frames. Journal of Survey Statistics and Methodology, 7(1), 6692.CrossRefGoogle Scholar
Fields, J. F., Hunter-Childs, J., Tersine, A., Sisson, J., Parker, E., Velkoff, V., Logan, C., and Shin, H. B. (2020). Design and Operation of the 2020 Household Pulse Survey, U.S. Census Bureau.Google Scholar
Fowler, F. J., and Mangione, T. W. (1990). Standardized Survey Interviewing: Minimizing Interviewer-Related Error. Sage Publications.CrossRefGoogle Scholar
Gallup (2022). Employee Engagement, www.gallup.com/394373/indicator-employee-engagement.aspx (retrieved November 15, 2022).Google Scholar
Geisen, E., and Bergstrom, J. R. (2017). Usability Testing for Survey Research. Morgan Kaufmann Publishers.Google Scholar
Graesser, A. C., Cai, Z., Louwerse, M. M., and Daniel, F. (2006). Question understanding aid (QUAID): A web facility that helps survey methodologists improve the comprehensibility of questions. Public Opinion Quarterly, 70, 322.CrossRefGoogle Scholar
Groves, R. M. (1989). Survey Errors and Survey Costs. John Wiley & Sons, Inc.CrossRefGoogle Scholar
Groves, R. M. (2006). Nonresponse rates and nonresponse bias in household surveys. Public Opinion Quarterly, 70(5), 646675.CrossRefGoogle Scholar
Groves, R. M., and Couper, M. (1998). Nonresponse in Household Interview Surveys. John Wiley & Sons, Inc.CrossRefGoogle Scholar
Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., and Tourangeau, R. (2004). Survey Methodology. John Wiley & Sons, Inc.Google Scholar
Groves, R. M., and Heeringa, S. G. (2006). Responsive design for household surveys: Tools for actively controlling survey nonresponse and costs. Journal of the Royal Statistical Society, 169(3), 439457.CrossRefGoogle Scholar
Groves, R. M., and Peytcheva, E. (2008). The impact of nonresponse rates on nonresponse bias: A meta-analysis. Public Opinion Quarterly, 72(2), 167189.CrossRefGoogle Scholar
Groves, R. M., Singer, E., and Corning, A. (2000). Leverage-saliency theory of survey participation: Description and an illustration. Public Opinion Quarterly, 64(3), 299308.CrossRefGoogle Scholar
Kennedy, C., and Hartig, H. (2019). Response rates in telephone surveys have resumed their decline, www.pewresearch.org/fact-tank/2019/02/27/response-rates-in-telephone-surveys-have-resumed-their-decline.Google Scholar
Kennedy, C., Mercer, A., Keeter, S., Hatley, N., McGeeney, K., and Gimenez, A. (2016). Evaluating Online Nonprobability Surveys (May 2, 2016). Pew Research Center, www.pewresearch.org/methods/2016/05/02/evaluating-online-nonprobability-surveys (retrieved December 7, 2018).Google Scholar
Keusch, F., and Conrad, F. G. (2021). Using smartphones to capture and combine self-reports and passively measured behavior in social research. Journal of Survey Statistics and Methodology, 10(4), 863885.CrossRefGoogle Scholar
Kish, L. (1965). Survey Sampling. John Wiley & Sons, Inc.Google Scholar
Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., and Stillwell, D. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70(6), 543556.CrossRefGoogle ScholarPubMed
Krosnick, J. A. (1991). Response strategies for coping with the cognitive demands of attitude measures in surveys. Applied Cognitive Psychology, 5, 213236.CrossRefGoogle Scholar
Krysan, M., and Couper, M. P. (2003). Race in the live and the virtual interview: Racial deference, social desirability, and activation effects in attitude surveys. Social Psychology Quarterly, 66(4), 364383.CrossRefGoogle Scholar
Lau, A., and Kennedy, C. (2019). When Online Survey Respondents Only “Select Some That Apply,” www.pewresearch.org/methods/2019/05/09/when-online-survey-respondents-only-select-some-that-apply.Google Scholar
Lavrakas, P. J., Traugott, M. W., Kennedy, C., Holbrook, A., de Leeuw, E. D., and West, B. T. (eds.) (2019). Experimental Methods in Survey Research: Techniques That Combine Random Sampling with Random Assignment. John Wiley & Sons, Inc.CrossRefGoogle Scholar
Lenzner, T. (2014). Are readability formulas valid tools for assessing survey question difficulty? Sociological Methods & Research, 43(4), 677698.CrossRefGoogle Scholar
Little, R. J. A., and Rubin, D. B. (2002). Statistical Analysis with Missing Data. John Wiley & Sons, Inc.CrossRefGoogle Scholar
Lynn, P. (2003). PEDAKSI: Methodology for collecting data about survey non-respondents. Quality & Quantity, 37, 239261.CrossRefGoogle Scholar
McCarthy, J. (2022). Same-sex marriage support inches up to new high of 71%, https://news.gallup.com/poll/393197/same-sex-marriage-support-inches-new-high.aspx.Google Scholar
Maitland, A., and Presser, S. (2016). How accurately do different evaluation methods predict the reliability of survey questions? Journal of Survey Statistics and Methodology, 4(3), 362381.CrossRefGoogle Scholar
Maitland, A., and Presser, S. (2018). How do question evaluation methods compare in predicting problems observed in typical survey conditions? Journal of Survey Statistics and Methodology, 6(4), 465490.CrossRefGoogle Scholar
National Center for Education Statistics. (2022). National Assessment of Educational Progress (NAEP), 2019 and 2022 Reading Assessments, www.nationsreportcard.gov/reading/survey-questionnaires/?grade=4.Google Scholar
National Center for Health Statistics. (2022). National Health Interview Survey, 2021 Survey Description. Hyattsville, Maryland Centers for Disease Control and Prevention, National Center for Health Statistics, https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHIS/2021/srvydesc-508.pdf.Google Scholar
Olson, K. (2010). An examination of questionnaire evaluation by expert reviewers. Field Methods, 22(4), 295318.CrossRefGoogle Scholar
Olson, K., and Bilgen, I. (2011). The role of interviewer experience on acquiescence. Public Opinion Quarterly, 75(1), 99114.CrossRefGoogle Scholar
Olson, K., Lepkowski, J. M., and Garabrant, D. H. (2011). An experimental examination of the content of persuasion letters on nonresponse rates and survey estimates in a nonresponse follow-up study. Survey Research Methods, 5(1), 2126.Google Scholar
Olson, K., and Peytchev, A. (2007). Effect of interviewer experience on interview pace and interviewer attitudes. Public Opinion Quarterly, 71, 273286.CrossRefGoogle Scholar
Olson, K., Smyth, J. D., Dykema, J., Holbrook, A. L., Kreuter, F., and West, B. T. (eds.) (2020). Interviewer Effects from a Total Survey Error Perspective. CRC Press.CrossRefGoogle Scholar
Olson, K., Smyth, J. D., and Ganshert, A. (2018). The effects of respondent and question characteristics on respondent answering behaviors in telephone interviews. Journal of Survey Statistics and Methodology, 7(2), 275–308.CrossRefGoogle Scholar
Olson, K., Smyth, J. D., Horwitz, R., Keeter, S., Lesser, V., Marken, S., Mathiowetz, N. A., McCarthy, J. S., O’Brien, E., Opsomer, J. D., Steiger, D., Sterrett, D., Su, J., Suzer-Gurtekin, Z. T., Turakhia, C., and Wagner, J. (2021). Transitions from telephone surveys to self-administered and mixed-mode surveys: AAPOR task force report. Journal of Survey Statistics and Methodology, 9(3), 381411.CrossRefGoogle Scholar
Olson, K., Smyth, J. D., and Kirchner, A. (2020). The effect of question characteristics on question reading behaviors in telephone surveys. Journal of Survey Statistics and Methodology, 8(4), 636666.CrossRefGoogle Scholar
Olson, K., Wagner, J., and Anderson, R. (2020). Survey costs: Where are we and what is the way forward? Journal of Survey Statistics and Methodology, 9(5), 921942.CrossRefGoogle Scholar
O’Muircheartaigh, C., and Campanelli, P. (1998). The relative impact of interviewer effects and sample design effects on survey precision. Journal of the Royal Statistical Society, A, 161, 6377.CrossRefGoogle Scholar
Ongena, Y. P., and Dijkstra, W. (2006). Methods of behavior coding of survey interviews. Journal of Official Statistics, 22(3), 419451.Google Scholar
Peer, E., Rothschild, D., Gordon, A., Evernden, Z., and Damer, E. (2022). Data quality of platforms and panels for online behavioral research. Behavior Research Methods, 54(4), 16431662.CrossRefGoogle ScholarPubMed
Peterson, S., Toribio, N., Farber, J., and Hornick, D. (2021). Nonresponse Bias Report for the 2020 Household Pulse Survey, www2.census.gov/programs-surveys/demo/technical-documentation/hhp/2020_HPS_NR_Bias_Report-final.pdf.Google Scholar
Presser, S., and McCulloch, S. (2011). The growth of survey research in the United States: Government-sponsored surveys, 1984–2004. Social Science Research, 40(4), 10191024.CrossRefGoogle Scholar
Prins, K. (2016). Population Register Data, Basis for the Netherlands’ Population Statistics. Statistics Netherlands.Google Scholar
Roberts, C., Herzing, J. M. E., Sobrino Piazza, J., Abbet, P., and Gatica-Perez, D. (2022). Data privacy concerns as a source of resistance to complete mobile data collection tasks via a smartphone app. Journal of Survey Statistics and Methodology, 10(3), 518548.CrossRefGoogle Scholar
Sakshaug, J. W., Couper, M. P., Ofstedal, M. B., and Weir, D. R. (2012). Linking survey and administrative records: mechanisms of consent. Sociological Methods & Research, 41(4), 535569.CrossRefGoogle Scholar
Saris, W. E., and Gallhofer, I. N. (2007). Design, Evaluation, and Analysis of Questionnaires for Survey Research. John Wiley & Sons.CrossRefGoogle Scholar
Scanlon, P. (2020). Using Targeted Embedded Probes to Quantify Cognitive Interviewing Findings. In Beatty, P. C., Collins, D., Kaye, L., Padilla, J.-L., Willis, G. B., and Wilmot, A. (eds.) Advances in Questionnaire Design, Development, Evaluation and Testing. John Wiley & Sons.Google Scholar
Schaeffer, N. C., and Dykema, J. (2011). Response 1 to Fowler’s chapter: Coding the behavior of interviewers and respondents to evaluate survey questions. In Madans, J., Miller, K., Maitland, A., and Willis, G. (eds.) Question Evaluation Methods: Contributing to the Science of Data Quality. John Wiley & Sons.Google Scholar
Schaeffer, N. C., and Dykema, J. (2020). Advances in the science of asking questions. Annual Review of Sociology, 46(1), 3760.CrossRefGoogle Scholar
Schaeffer, N. C., Garbarski, D., Freese, J., and Maynard, D. W. (2013). An interactional model of the call for survey participation: Actions and reactions in the survey recruitment call. Public Opinion Quarterly, 77(1), 323351.CrossRefGoogle ScholarPubMed
Schaeffer, N. C., Min, B. H., Purnell, T., Garbarski, D., and Dykema, J. (2018). Greeting and response: Predicting participation from the call opening. Journal of Survey Statistics and Methodology, 6(1), 122148.CrossRefGoogle ScholarPubMed
Schober, M. F., Conrad, F. G., Antoun, C., Ehlen, P., Fail, S., Hupp, A. L., Johnston, M., Vickers, L., Yan, H. Y., and Zhang, C. (2015). Precision and disclosure in text and voice interviews on smartphones. PLOS ONE, 10(6), e0128337.CrossRefGoogle ScholarPubMed
Schoeni, R. F., Stafford, F., Mcgonagle, K. A., and Andreski, P. (2013). Response rates in national panel surveys. Annals of the American Academy of Political and Social Science, 645(1), 6087.CrossRefGoogle ScholarPubMed
Schouten, B., Peytchev, A., and Wagner, J. (2018). Adaptive Survey Design. CRC Press.Google Scholar
Schuldt, J. P., Konrath, S. H., and Schwarz, N. (2011). “Global warming” or “climate change”? Whether the planet is warming depends on question wording. Public Opinion Quarterly, 75(1), 115124.CrossRefGoogle Scholar
Shiffman, S., Stone, A. A., and Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4(1), 132.CrossRefGoogle ScholarPubMed
Singer, E. (2002). The use of incentives to reduce nonresponse in household surveys. In Groves, R. M., Dillman, D. A., Eltinge, J. L., and Little, R. J. A. (eds.) Survey Nonresponse. John Wiley & Sons, Inc.Google Scholar
Singer, E., and Ye, C. (2013). The use and effects of incentives in surveys. Annals of the American Academy of Political and Social Science, 645(1), 112141.CrossRefGoogle Scholar
Smith, T. W., and Son, J. (2019). Tracking question-wording experiments across time in the General Social Survey, 1984–2014. In Lavrakas, P. J., Traugott, M. W., Kennedy, C., Holbrook, A., Leeuw, E. D., and West, B. T. (eds.) (2019). Experimental Methods in Survey Research: Techniques That Combine Random Sampling with Random Assignment. John Wiley & Sons, Inc.Google Scholar
Smyth, J. D., Dillman, D. A., Christian, L. M., and Stern, M. J. (2006). Comparing check-all and forced-choice question formats in web surveys. Public Opinion Quarterly, 70(1), 6677.CrossRefGoogle Scholar
Smyth, J. D., and Olson, K. (2019). The effects of mismatches between survey question stems and response options on data quality and responses. Journal of Survey Statistics and Methodology, 7(1), 3465.CrossRefGoogle Scholar
Smyth, J. D., and Olson, K. (2020). How well do interviewers record responses to numeric, interviewer field-code, and open-ended narrative questions in telephone surveys? Field Methods, 32(1), 89104.CrossRefGoogle Scholar
Smyth, J. D., Olson, K., and Stange, M. (2019). Within-household selection methods: A critical review and experimental examination. In Lavrakas, P. J., Traugott, M. W., Kennedy, C., Holbrook, A., Leeuw, E. D., and West, B. T. (eds.) (2019). Experimental Methods in Survey Research: Techniques That Combine Random Sampling with Random Assignment. John Wiley & Sons, Inc.Google Scholar
Stenger, R., Olson, K., and Smyth, J. D. (2023). Comparing readability measures and computer‐assisted question evaluation tools for self‐administered survey questions. Field Methods, 35(4), 287302.CrossRefGoogle Scholar
Sudman, S., and Bradburn, N. M. (1982). Asking Questions: A Practical Guide to Questionnaire Design. Jossey-Bass Publishers.Google Scholar
Sudman, S., Bradburn, N. M., and Schwarz, N. (1996). Thinking about Answers: The Application of Cognitive Processes to Survey Methodology. Jossey-Bass Publishers.Google Scholar
Swain, S. D., Weathers, D., and Niedrich, R. W. (2008). Assessing three sources of misresponse to reversed Likert items. Journal of Marketing Research, 45(1), 116131.CrossRefGoogle Scholar
Tourangeau, R., Couper, M. P., and Conrad, F. (2007). Color, labels, and interpretive heuristics for response scales. Public Opinion Quarterly, 71(1), 91112.CrossRefGoogle Scholar
Tourangeau, R., Maitland, A., Steiger, D., and Yan, T. (2020). A framework for making decisions about question evaluation methods. In Beatty, P. C., Collins, D., Kaye, L., Padilla, J.-L., Willis, G. B., and Wilmot, A. (eds.) Advances in Questionnaire Design, Development, Evaluation, and Testing. John Wiley & Sons.Google Scholar
Tourangeau, R., Rips, L. J., and Rasinski, K. A. (2000). The Psychology of Survey Response. Cambridge University Press.CrossRefGoogle Scholar
Tourangeau, R., and Yan, T. (2007). Sensitive questions in surveys. Psychological Bulletin, 133(5), 859883.CrossRefGoogle ScholarPubMed
Census Bureau, U.S. (2022a). Household Pulse Survey User Notes, Phase 3.3. U.S. Census Bureau, www2.census.gov/programs-surveys/demo/technical-documentation/hhp/Phase3-3_2022_Household_Pulse_Survey_User_Notes_03022022.pdf.Google Scholar
Census Bureau, U.S. (2022b). Measuring Household Experiences during the Coronavirus Pandemic, www.census.gov/data/experimental-data-products/household-pulse-survey.html.Google Scholar
Walzenbach, S., Burton, J., Couper, M. P., Crossley, T. F., and Jäckle, A. (2022). Experiments on multiple requests for consent to data linkage in surveys. Journal of Survey Statistics and Methodology, 11(3), 518540.CrossRefGoogle Scholar
Wells, B. M., Hughes, T., Park, R., CHIS Redesign Working Group, and Ponce, N. (2019). Evaluating the California Health Interview Survey of the Future: Results from a Statewide Pilot of an Address-Based Sampling Mail Push-to-Web Data Collection, https://healthpolicy.ucla.edu/chis/design/Documents/CHIS%20Fall%202018%20ABS%20Web%20Pilot%20Report%20for%20DHCS%20(July%202019).pdf.Google Scholar
Wells, B. M., Hughes, T., Park, R., CHIS Redesign Working Group, Rogers, T. B., and Ponce, N. (2018). Evaluating the California Health Interview Survey of the Future: Results from a Methodological Experiment to Test an Address-Based Sampling Mail Push-to-Web Data Collection, https://healthpolicy.ucla.edu/chis/design/Documents/CHIS%20Spring%202018%20ABS%20Web%20Field%20Experiment%20Report.pdf.Google Scholar
West, B. T., and Blom, A. G. (2017). Explaining interviewer effects: a research synthesis. Journal of Survey Statistics and Methodology, 5(2), 175211.Google Scholar
West, B. T., Kreuter, F., and Jaenichen, U. (2013). “Interviewer” effects in face-to-face surveys: A function of sampling, measurement error, or nonresponse? Journal of Official Statistics, 29(2), 277297.CrossRefGoogle Scholar
West, B. T., and Olson, K. (2010). How much of interviewer variance is really nonresponse error variance? Public Opinion Quarterly, 74(5), 10041026.CrossRefGoogle Scholar
Williams, D., and Brick, J. M. (2018). Trends in U.S. face-to-face household survey nonresponse and level of effort. Journal of Survey Statistics and Methodology, 6(2), 186211.CrossRefGoogle Scholar
Willis, G. B. (2005). Cognitive Interviewing: A Tool for Improving Questionnaire Design. Sage Publications.CrossRefGoogle Scholar
Ye, C., Fulton, J., and Tourangeau, R. (2011). More positive or more extreme? A meta-analysis of mode differences in response choice. Public Opinion Quarterly, 75(2), 349365.CrossRefGoogle Scholar
Yeager, D. S., Krosnick, J. A., Chang, L., Javitz, H. S., Levendusky, M. S., Simpser, A., and Wang, R. (2011). Comparing the accuracy of RDD telephone surveys and internet surveys conducted with probability and non-probability samples. Public Opinion Quarterly, 75(4), 709747.CrossRefGoogle Scholar

References

Anderson, C. A., Allen, J. J., Plante, C., Quigley-McBride, A., Lovett, A., and Rokkum, J. N. (2019). The MTurkification of social and personality psychology. Personality and Social Psychology Bulletin, 45(6), 842850.CrossRefGoogle ScholarPubMed
Bem, D. J. (2011). Feeling the future: Experimental evidence for anomalous retroactive influences on cognition and affect. Journal of Personality and Social Psychology, 100(3), 407425.CrossRefGoogle ScholarPubMed
Bialek, M., and Pennycook, G. (2018). The cognitive reflection test is robust to multiple exposures. Behavior Research Methods, 50(5), 19531959.CrossRefGoogle ScholarPubMed
Birnbaum, M. H. (2004). Human research and data collection via the Internet. Annual Review of Psychology, 55, 803832.CrossRefGoogle ScholarPubMed
Bosnjak, M., Fiebach, C. J., Mellor, D., Mueller, S., O’Connor, D. B., Oswald, F. L., and Sokol- Chang, R. I. (2022). A template for preregistration of quantitative research in psychology: Report of the joint psychological societies preregistration task force. American Psychologist, 77, 602615.CrossRefGoogle ScholarPubMed
Brock, R. L., Barry, R. A., Lawrence, E., Dey, J., and Rolffs, J. (2012). Internet administration of paper-and-pencil questionnaires used in couple research: Assessing psychometric equivalence. Assessment, 19(2), 226242.CrossRefGoogle ScholarPubMed
Buhrmester, M. D., Kwang, T., and Gosling, S. D. (2011). Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6, 35.CrossRefGoogle Scholar
Chandler, J. J., and Paolacci, G. (2017). Lie for a dime: When most prescreening responses are honest but most study participants are impostors. Social Psychological and Personality Science, 8(5), 500508.CrossRefGoogle Scholar
Chandler, J., Paolacci, G., Peer, E., Mueller, P., and Ratliff, K. A. (2015). Using nonnaive participants can reduce effect sizes. Psychological Science, 26(7), 11311139.CrossRefGoogle ScholarPubMed
Chandler, J., Rosenzweig, C., Moss, A. J., Robinson, J., and Litman, L. (2019). Online panels in social science research: Expanding sampling methods beyond Mechanical Turk. Behavior Research Methods, 51(5), 20222038.CrossRefGoogle ScholarPubMed
Clifford, S., Jewell, R. M., and Waggoner, P. D. (2015). Are samples drawn from Mechanical Turk valid for research on political ideology? Research & Politics, 2(4), 2053168015622072, https://doi.org/10.1177%2F2053168015622072.CrossRefGoogle Scholar
Coppock, A. (2019). Generalizing from survey experiments conducted on Mechanical Turk: A replication approach. Political Science Research and Methods, 7(3), 613628.CrossRefGoogle Scholar
Coppock, A., Leeper, T. J., and Mullinix, K. J. (2018). Generalizability of heterogeneous treatment effect estimates across samples. Proceedings of the National Academy of Sciences, 115(49), 1244112446.CrossRefGoogle ScholarPubMed
Crump, M. J., McDonnell, J. V., and Gureckis, T. M. (2013). Evaluating Amazon’s Mechanical Turk as a tool for experimental behavioral research. PLOS ONE, 8(3), e57410, https://doi.org/10.1371/journal.pone.0057410.CrossRefGoogle Scholar
Curran, P. G. (2016). Methods for the detection of carelessly invalid responses in survey data. Journal of Experimental Social Psychology, 66, 419.CrossRefGoogle Scholar
Fraley, R. C. (2004). How to Conduct Behavioral Research over the Internet: A Beginner’s Guide to HTML and CGI/Perl. Guilford Press.Google Scholar
Gosling, S. D., Vazire, S., Srivastava, S., and John, O. P. (2004). Should we trust web-based studies? A comparative analysis of six preconceptions about internet questionnaires. American Psychologist, 59(2), 93104.CrossRefGoogle ScholarPubMed
Hauser, D. J., and Schwarz, N. (2015). It’s a trap! Instructional manipulation checks prompt systematic thinking on “tricky” tasks. Sage Open, 5(2), 2158244015584617, https://doi.org/10.1177%2F2158244015584617.CrossRefGoogle Scholar
Hauser, D. J., and Schwarz, N. (2016). Attentive Turkers: MTurk participants perform better on online attention checks than do subject pool participants. Behavior Research Methods, 48(1), 400407.CrossRefGoogle ScholarPubMed
Hawkins, R. X. (2015). Conducting real-time multiplayer experiments on the web. Behavior Research Methods, 47(4), 966976.CrossRefGoogle ScholarPubMed
Henrich, J., Heine, S. J., and Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183.CrossRefGoogle ScholarPubMed
Ilagan, M. J., and Falk, C. F. (in press). Supervised classes, unsupervised mixing proportions: Detection of bots in a Likert-type questionnaire. Educational and Psychological Measurement, https://doi.org/10.1177/00131644221104220.CrossRefGoogle Scholar
Kees, J., Berry, C., Burton, S., and Sheehan, K. (2017). An analysis of data quality: Professional panels, student subject pools, and Amazon’s Mechanical Turk. Journal of Advertising, 46(1), 141155.CrossRefGoogle Scholar
Krantz, J. H., and Dalal, R. (2000). Validity of Web-based psychological research. In Birnbaum, M. H. (ed.) Psychological Experiments on the Internet. Academic Press.Google Scholar
Kraut, R., Olson, J., Banaji, M., Bruckman, A., Cohen, J., and Couper, M. (2004). Psychological research online: Report of Board of Scientific Affairs’ Advisory Group on the Conduct of Research on the Internet. American Psychologist, 59(2), 105117.CrossRefGoogle Scholar
Litman, L., and Robinson, J. (2021). Conducting Online Research on Amazon Mechanical Turk and Beyond. Sage Academic Publishing.CrossRefGoogle Scholar
Mason, W., and Suri, S. (2012). Conducting behavioral research on Amazon’s Mechanical Turk. Behavior Research Methods, 44(1), 123.CrossRefGoogle ScholarPubMed
Moss, A., and Litman, L. (2018). After the Bot Scare: Understanding What’s Been Happening with Data Collection on MTurk and How to Stop It, www.cloudresearch.com/resources/blog/after-the-bot-scare-understanding-whats-been-happening-with-data-collection-on-mturk-and-how-to-stop-it.Google Scholar
Necka, E. A., Cacioppo, S., Norman, G. J., and Cacioppo, J. T. (2016). Measuring the prevalence of problematic respondent behaviors among MTurk, campus, and community participants. PLOS ONE, 11(6), e0157732, https://doi.org/10.1371/journal.pone.0157732.CrossRefGoogle ScholarPubMed
Nosek, B. A., Banaji, M. R., and Greenwald, A. G. (2002). E‐research: Ethics, security, design, and control in psychological research on the Internet. Journal of Social Issues, 58(1), 161176.CrossRefGoogle Scholar
Nosek, B. A., Sriram, N., and Umansky, E. (2012). Presenting survey items one at a time compared to all at once decreases missing data without sacrificing validity in research with internet volunteers. PLOS ONE, 7(5), e36771, https://doi.org/10.1371/journal.pone.0036771.CrossRefGoogle Scholar
Oppenheimer, D. M., Meyvis, T., and Davidenko, N. (2009). Instructional manipulation checks: Detecting satisficing to increase statistical power. Journal of Experimental Social Psychology, 45(4), 867872.CrossRefGoogle Scholar
Palan, S., and Schitter, C. (2018). Prolific.ac: A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 2227.CrossRefGoogle Scholar
Ping, H., Stoyanovich, J., and Howe, B. (2017). Datasynthesizer: Privacy-preserving synthetic datasets (June 2017). In Proceedings of the 29th International Conference on Scientific and Statistical Database Management, Association for Computing Machinery, New York.Google Scholar
Rhodes, M., Rizzo, M. T., Foster-Hanson, E., Moty, K., Leshin, R. A., Wang, M., … Ocampo, J. D. (2020). Advancing developmental science via unmoderated remote research with children. Journal of Cognition and Development, 21(4), 477493.CrossRefGoogle ScholarPubMed
Sears, D. O. (1986). College sophomores in the laboratory: Influences of a narrow data base on social psychology’s view of human nature. Journal of Personality and Social Psychology, 51(3), 515530.CrossRefGoogle Scholar
Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 13591366.CrossRefGoogle ScholarPubMed
Skitka, L. J., and Sargis, E. G. (2006). The Internet as psychological laboratory. Annual Review of Psychology, 57, 529555.CrossRefGoogle ScholarPubMed
Srivastava, S., John, O. P., Gosling, S. D., and Potter, J. (2003). Development of personality in early and middle adulthood: Set like plaster or persistent change? Journal of Personality and Social Psychology, 84, 10411053.CrossRefGoogle ScholarPubMed
Summerville, A., and Chartier, C. R. (2013). Pseudo-dyadic “interaction” on Amazon’s Mechanical Turk. Behavior Research Methods, 45(1), 116124.CrossRefGoogle ScholarPubMed
Thai, S., and Page-Gould, E. (2018). ExperienceSampler: An open-source scaffold for building smartphone apps for experience sampling. Psychological Methods, 23(4), 729739.CrossRefGoogle ScholarPubMed
Tissera, H., Mignault, M. C., and Human, L. J. (2023). “Zooming” in on positive and accurate metaperceptions in first impressions: Examining the links with social anxiety and liking in online video interactions. Journal of Personality and Social Psychology, 125(4), 852873.CrossRefGoogle Scholar
Zhou, H., and Fishbach, A. (2016). The pitfall of experimenting on the web: How unattended selective attrition leads to surprising (yet false) research conclusions. Journal of Personality and Social Psychology, 111(4), 493504.CrossRefGoogle ScholarPubMed

References

Almeida, D. M. (1997). National study of daily experiences: The MIDUS in-depth diary study. In Daily Inventory of Stressful Events: Expert Coding Manual. MacArthur Foundation Research Network on Successful Midlife Development.Google Scholar
Asch, S. E. (1952). Social Psychology. Prentice Hall, Inc.CrossRefGoogle Scholar
Barrett, L., and Pietromonaco, P. R. (1997). Accuracy of the five-factor model in predicting perceptions of daily social interactions. Personality and Social Psychology Bulletin, 23, 11731187.CrossRefGoogle Scholar
Barsics, C., van der Linden, M., and D’Argembeau, A. (2016). Frequency, characteristics, and perceived functions of emotional future thinking in daily life. Quarterly Journal of Experimental Psychology, 69(2), 217233.CrossRefGoogle ScholarPubMed
Baumeister, R. F., Vohs, K. D., and Funder, D. C. (2007). Psychology as the science of self-reports and finger movements: Whatever happened to actual behavior? Perspectives on Psychological Science, 2(4), 396403.CrossRefGoogle ScholarPubMed
Beck, E. D., and Jackson, J. J. (2020). Consistency and change in idiographic personality: A longitudinal ESM network study. Journal of Personality and Social Psychology, 118(5), 10801100.CrossRefGoogle ScholarPubMed
Bernard, H. R., Killworth, P., Kronenfeld, D., and Sailer, L. (1984). The problem of informant accuracy: The validity of retrospective data. Annual Review of Anthropology, 13, 495517.CrossRefGoogle Scholar
Birnbaum, G. E., Reis, H. T., Mikulincer, M., Gillath, O., and Orpaz, A. (2006). When sex is more than just sex: Attachment orientations, sexual experience, and relationship quality. Journal of Personality and Social Psychology, 91, 929943.CrossRefGoogle ScholarPubMed
Blanke, E. S., Brose, A., Kalokerinos, E. K., Erbas, Y., Riediger, M., and Kuppens, P. (2020). Mix it to fix it: Emotion regulation variability in daily life. Emotion, 20(3), 473485.CrossRefGoogle ScholarPubMed
Bolger, N., Davis, A., and Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54, 579616.CrossRefGoogle ScholarPubMed
Bolger, N., Delongis, A., Kessler, R. C., and Schilling, E. A. (1989). Effects of daily stress on negative mood. Journal of Personality and Social Psychology, 57, 808818.CrossRefGoogle ScholarPubMed
Bolger, N., and Laurenceau, J. P. (2013). Intensive Longitudinal Methods: An Introduction to Diary and Experience Sampling Research. Guilford Press.Google Scholar
Bolger, N., and Schilling, E. A. (1991). Personality and the problems of everyday life: The role of neuroticism in exposure and reactivity to daily stressors. Journal of Personality, 59, 355386.CrossRefGoogle ScholarPubMed
Buu, A., Yang, S., Li, R., Zimmerman, M. A., Cunningham, R. M., and Walton, M. A. (2020). Examining measurement reactivity in daily diary data on substance use: Results from a randomized experiment. Addictive Behaviors, 102, 106198.CrossRefGoogle ScholarPubMed
Campbell, L., Simpson, J. A., Boldry, J. G., and Rubin, H. (2010). Trust, variability in relationship evaluations, and relationship processes. Journal of Personality and Social Psychology, 99, 1431.CrossRefGoogle ScholarPubMed
Carmichael, C. L., Reis, H. T., and Duberstein, P. R. (2015). In your 20s it’s quantity, in your 30s it’s quality: The prognostic value of social activity across 30 years of adulthood. Psychology and Aging, 30(1), 95105.CrossRefGoogle ScholarPubMed
Clark, L. A., and Watson, D. (1988). Mood and the mundane: Relations between daily life events and self-reported mood. Journal of Personality and Social Psychology, 54, 296308.CrossRefGoogle ScholarPubMed
Cohn, M. A., Mehl, M. R., and Pennebaker, J. W. (2004). Linguistic indicators of psychological change after September 11, 2001. Psychological Science, 15, 687693.CrossRefGoogle Scholar
Colombo, D., Suso-Ribera, C., Fernández-Álvarez, J., Cipresso, P., Garcia-Palacios, A., Riva, G., and Botella, C. (2020). Affect recall bias: Being resilient by distorting reality. Cognitive Therapy and Research, 44(5), 906918.CrossRefGoogle Scholar
Columbus, S., Molho, C., Righetti, F., and Balliet, D. (2021). Interdependence and cooperation in daily life. Journal of Personality and Social Psychology, 120(3), 626650.CrossRefGoogle ScholarPubMed
Conner, T., and Barrett, L. F. (2012). Trends in ambulatory self-report: The role of momentary experience in psychosomatic medicine, Psychosomatic Medicine, 74, 327337.CrossRefGoogle ScholarPubMed
Conner, T. S., and Reid, K. (2012). Effects of intensive mobile happiness reporting in daily life. Social Psychological and Personality Science, 3(3), 315323.CrossRefGoogle Scholar
Coppersmith, D. D., Fortgang, R. G., Kleiman, E. M., Millner, A. J., Yeager, A. L., Mair, P., and Nock, M. K. (2022). Effect of frequent assessment of suicidal thinking on its incidence and severity: High-resolution real-time monitoring study. British Journal of Psychiatry, 220(1), 4143.CrossRefGoogle ScholarPubMed
Csikszentmihalyi, M., Larson, R. W., and Prescott, S. (1977). The ecology of adolescent activity and experience. Journal of Youth and Adolescence, 6, 281294.CrossRefGoogle ScholarPubMed
Dejonckheere, E., Mestdagh, M., Houben, M., Rutten, I., Sels, L., Kuppens, P., and Tuerlinckx, F. (2019). Complex affect dynamics add limited information to the prediction of psychological well-being. Nature Human Behaviour, 3(5), 478491.CrossRefGoogle Scholar
Delespaul, P. A. E. G. (1995). Assessing Schizophrenia in Daily Life: The Experience Sampling Method. International Institute for Psycho-social and Socio-ecological Research.Google Scholar
Delongis, A., Folkman, S., and Lazarus, R. S. (1988). The impact of daily stress on health and mood: Psychological and social resources as mediators. Journal of Personality and Social Psychology, 54, 486495.CrossRefGoogle ScholarPubMed
DePaulo, B. M., Kashy, D. A., Kirkendol, S. E., Wyer, M. M., and Epstein, J. A. (1996). Lying in everyday life. Journal of Personality and Social Psychology, 70, 979995.CrossRefGoogle ScholarPubMed
Depow, G. J., Francis, Z., and Inzlicht, M. (2021). The experience of empathy in everyday life. Psychological Science, 32(8), 11981213.CrossRefGoogle ScholarPubMed
De Vuyst, H. J., Dejonckheere, E., Van der Gucht, K., and Kuppens, P. (2019). Does repeatedly reporting positive or negative emotions in daily life have an impact on the level of emotional experiences and depressive symptoms over time? PLOS ONE, 14(6), e0219121.CrossRefGoogle ScholarPubMed
Diamond, L. M., Hicks, A. M., and Otter-Henderson, K. D. (2008). Every time you go away: Changes in affect, behavior, and physiology associated with travel-related separations from romantic partners. Journal of Personality and Social Psychology, 95, 385403.CrossRefGoogle ScholarPubMed
Diener, E. (1996). Traits can be powerful, but are not enough: Lessons from subjective well-being. Journal of Research in Personality, 30, 389399.CrossRefGoogle Scholar
Diener, E., Larsen, R. J., Levine, S., and Emmons, R. A. (1985). Intensity and frequency: Dimensions underlying positive and negative affect. Journal of Personality and Social Psychology, 48, 12531265.CrossRefGoogle ScholarPubMed
Eisele, G., Vachon, H., Lafit, G., Kuppens, P., Houben, M., Myin-Germeys, I., and Viechtbauer, W. (2022). The effects of sampling frequency and questionnaire length on perceived burden, compliance, and careless responding in experience sampling data in a student population. Assessment, 29(2), 136151.CrossRefGoogle Scholar
Eisenberger, N. I., Gable, S. L., and Lieberman, M. D. (2007. Functional magnetic resonance imaging responses relate to differences in real-world social experience. Emotion, 7, 745754.CrossRefGoogle ScholarPubMed
Emery, L. F., Hughes, E. K., and Gardner, W. L. (2023). Confusion or clarity? Examining a possible tradeoff between self-expansion and self-concept clarity. Social Psychological and Personality Science, 14(1), 312.CrossRefGoogle Scholar
Epstein, S. (1983). Aggregation and beyond: Some basic issues on the prediction of behavior. Journal of Personality, 51, 360392.CrossRefGoogle ScholarPubMed
Fernandez, K. C., Johnson, M. R., and Rodebaugh, T. L. (2013). TelEMA: A low-cost and user-friendly telephone assessment platform. Behavior Research Methods, 45(4), 12791291.CrossRefGoogle ScholarPubMed
Fetterman, A. K., Wilkowski, B. M., and Robinson, M. D. (2018). On feeling warm and being warm: Daily perceptions of physical warmth fluctuate with interpersonal warmth. Social Psychological and Personality Science, 9(5), 560567.CrossRefGoogle Scholar
Finkel, E. J., DeWall, C. N., Slotter, E. B., McNulty, J. K. Pond, S. R., and Atkins, D. C. (2012). Using I3 theory to clarify when dispositional aggressiveness predicts intimate partner violence perpetration, Journal of Personality and Social Psychology, 102, 533549.CrossRefGoogle ScholarPubMed
Finnigan, K. M., and Vazire, S. (2018). The incremental validity of average state self-reports over global self-reports of personality. Journal of Personality and Social Psychology, 115(2), 321337.CrossRefGoogle ScholarPubMed
Fiske, S. T., and Taylor, S. E. (2021). Social Cognition, 4th ed. McGraw-Hill.Google Scholar
Fleeson, W. (2001). Toward a structure- and process-integrated view of personality traits as density distributions of states. Journal of Personality and Social Psychology, 80, 10111027.CrossRefGoogle Scholar
Fleeson, W., and Noftle, E. E. (2012). Personality research. In Mehl, M. R. and Conner, T. S. (eds.) Handbook of Research Methods for Studying Daily Life. Guilford Press.Google Scholar
Fraley, R. C., Vicary, A. M., Brumbaugh, C. C., and Roisman, G. I. (2011). Patterns of stability in adult attachment: An empirical test of two models of continuity and change. Journal of Personality and Social Psychology, 101, 974992.CrossRefGoogle ScholarPubMed
Furr, R. M. (2009). Personality psychology as a truly behavioural science. European Journal of Personality, 23(5), 369401.CrossRefGoogle Scholar
Gable, S. L., Hopper, E. A., and Schooler, J. W. (2019). When the muses strike: Creative ideas of physicists and writers routinely occur during mind wandering. Psychological Science, 30(3), 396404.CrossRefGoogle ScholarPubMed
Gable, S. L., and Reis, H. T. (1999). Now and then, them and us, this and that: Studying relationships across time, partner, context, and person. Personal Relationships, 6, 415432.CrossRefGoogle Scholar
Gable, S. L., Reis, H. T., and Downey, G. (2003). He said, she said: A quasi-signal detection analysis of daily interactions between close relationship partners. Psychological Science, 14, 100105.CrossRefGoogle Scholar
Gable, S. L., Reis, H. T., and Elliot, A. J. (2000). Behavioral activation and inhibition in everyday life. Journal of Personality and Social Psychology, 78, 11351149.CrossRefGoogle ScholarPubMed
Gallo, L. C., Bogart, L. M., Vranceanu, A. M., and Matthews, K. A. (2005). Socioeconomic status, resources, psychological experiences, and emotional responses: A test of the reserve capacity model. Journal of Personality and Social Psychology, 88, 386399.CrossRefGoogle ScholarPubMed
Gleason, M. E. J., Iida, M., Shrout, P. E., and Bolger, N. (2008). Receiving support as a mixed blessing: Evidence for dual effects of support on psychological outcomes. Journal of Personality and Social Psychology, 94, 824838.CrossRefGoogle ScholarPubMed
Gordon, A. M., and Mendes, W. B. (2021). A large-scale study of stress, emotions, and blood pressure in daily life using a digital platform. Proceedings of the National Academy of Sciences, 118(31), e2105573118.CrossRefGoogle ScholarPubMed
Gunthert, K. C., and Wenze, S. J. (2012). Daily diary methods. In Mehl, M. R. and Conner, T. S. (eds.) Handbook of Research Methods for Studying Daily Life. Guilford Press.Google Scholar
Haines, S. J., Gleeson, J., Kuppens, P., Hollenstein, T., Ciarrochi, J., Labuschagne, I., … Koval, P. (2016). The wisdom to know the difference: Strategy–situation fit in emotion regulation in daily life is associated with well-being. Psychological Science, 27(12), 16511659.CrossRefGoogle Scholar
Hank, P., and Baltes-Götz, B. (2019). The stability of self-esteem variability: A real-time assessment. Journal of Research in Personality, 79, 143150.CrossRefGoogle Scholar
Hays, R. B. (1989). The day-to-day functioning of close versus casual friendships. Journal of Social and Personal Relationships, 6, 2137.CrossRefGoogle Scholar
Hektner, J. M., Schmidt, J. A., and Csikszentmihalyi, M. (2007). Experience Sampling Method: Measuring the Quality of Everyday Life. Sage Publications, Inc.CrossRefGoogle Scholar
Hofmann, W., Baumeister, R. F., Förster, G., and Vohs, K. D. (2012). Everyday temptations: an experience sampling study of desire, conflict, and self-control. Journal of Personality and Social Psychology, 102(6), 13181335.CrossRefGoogle ScholarPubMed
Houts, A. C., Cook, T. D., and Shadish, W. R. (1986). The person–situation debate: A critical multiplist perspective. Journal of Personality, 54, 52105.CrossRefGoogle Scholar
Husky, M., Olié, E., Guillaume, S., Genty, C., Swendsen, J., and Courtet, P. (2014). Feasibility and validity of ecological momentary assessment in the investigation of suicide risk. Psychiatry Research, 220(1–2), 564570.CrossRefGoogle ScholarPubMed
Ickes, W., and Tooke, W. (1988). The observational method: Studying the interaction of minds and bodies. In Duck, S. and Hay, D. F. (eds.). Handbook of Personal Relationships: Theory, Research, and Intervention. John Wiley & Sons.Google Scholar
Inauen, J., Shrout, P. E., Bolger, N., Stadler, G., and Scholz, U. (2016). Mind the gap? An intensive longitudinal study of between-person and within-person intention–behavior relations. Annals of Behavioral Medicine, 50(4), 516522.CrossRefGoogle Scholar
Janssen, L. H., Kullberg, M. L. J., Verkuil, B., van Zwieten, N., Wever, M. C., van Houtum, L. A., … Elzinga, B. M. (2020). Does the COVID-19 pandemic impact parents’ and adolescents’ well-being? An EMA-study on daily affect and parenting. PLOS ONE, 15(10), e0240962.CrossRefGoogle ScholarPubMed
Jensen-Campbell, L. A., and Graziano, W. G. (2000). Beyond the school yard: Relationships as moderators of daily interpersonal conflict. Personality and Social Psychology Bulletin, 26, 923935.CrossRefGoogle Scholar
Kahneman, D., Krueger, A. B., Schkade, D. A., Schwarz, N., and Stone, A. A. (2004). A survey method for characterizing daily life experience: The day reconstruction method. Science, 306, 17761780.CrossRefGoogle ScholarPubMed
Kaplan, D. M. (2022). Social-ecological measurement of daily life: How relationally focused ambulatory assessment can advance clinical intervention science. Review of General Psychology, 27(1), 10892680221142802.Google Scholar
Kelley, H. H. (1997). The “stimulus field” for interpersonal phenomena: The source of language and thought about interpersonal events. Personality and Social Psychology Review, 1, 140169.CrossRefGoogle Scholar
Kernis, M. H., Cornell, D. P., Sun, C. R., Berry, A., and Harlow, T. (1993). There’s more to self-esteem than whether it is high or low: The importance of stability of self-esteem. Journal of Personality and Social Psychology, 65, 11901204.CrossRefGoogle ScholarPubMed
Knee, C. R., Canavello, A., Bush, A. L., and Cook, A. (2008). Relationship-contingent self-esteem and the ups and downs of romantic relationships. Journal of Personality and Social Psychology, 95, 608627.CrossRefGoogle ScholarPubMed
Kramer, I., Simons, C. J., Hartmann, J. A., Menne‐Lothmann, C., Viechtbauer, W., … Wichers, M. (2014). A therapeutic application of the experience sampling method in the treatment of depression: A randomized controlled trial. World Psychiatry, 13(1), 6877.CrossRefGoogle ScholarPubMed
Kuppens, P., Dejonckheere, E., Kalokerinos, E. K., and Koval, P. (2022). Some recommendations on the use of daily life methods in affective science. Affective Science, 111.CrossRefGoogle Scholar
Kuppens, P., Oravecz, Z., and Tuerlinckx, F. (2010). Feelings change: Accounting for individual differences in the temporal dynamics of affect. Journal of Personality and Social Psychology, 99(6), 10421060.CrossRefGoogle ScholarPubMed
Kuppens, P., and Verduyn, P. (2017). Emotion dynamics. Current Opinion in Psychology, 17, 2226.CrossRefGoogle ScholarPubMed
LaBuda, J. E., Gere, J., and Impett, E. A. (2020). Perceptions of a romantic partner’s approach and avoidance motives: Accuracy, bias, and emotional cues. Journal of Personality and Social Psychology, 119(3), 695712.CrossRefGoogle ScholarPubMed
Lane, R. D., Zareba, W., Reis, H. T., Peterson, D. R., and Moss, A. J. (2011). Changes in ventricular repolarization duration during typical daily emotion in patients with long QT syndrome. Psychosomatic Medicine, 73, 98105.CrossRefGoogle ScholarPubMed
Larsen, R. J., and Kasimatis, M. (1990). Individual-differences in entrainment of mood to the weekly calendar. Journal of Personality and Social Psychology, 58, 164171.CrossRefGoogle Scholar
Lay, J. C., Pauly, T., Graf, P., Mahmood, A., and Hoppmann, C. A. (2020). Choosing solitude: Age differences in situational and affective correlates of solitude-seeking in midlife and older adulthood. Journals of Gerontology: Series B, 75(3), 483493.Google ScholarPubMed
Leary, M. R., Nezlek, J. B., Downs, D., Radford-Davenport, J., Martin, J., and McMullen, A. (1994). Self-presentation in everyday interactions: Effects of target familiarity and gender composition. Journal of Personality and Social Psychology, 67, 664673.CrossRefGoogle ScholarPubMed
Lee, S., Crain, T. L., McHale, S. M., Almeida, D. M., and Buxton, O. M. (2017). Daily antecedents and consequences of nightly sleep. Journal of Sleep Research, 26(4), 498509.CrossRefGoogle ScholarPubMed
Loyka, C. M., Ruscio, J., Edelblum, A. B., Hatch, L., Wetreich, B., and Zabel, A. (2020). Weighing people rather than food: A framework for examining external validity. Perspectives on Psychological Science, 15(2), 483496.CrossRefGoogle ScholarPubMed
Lucas, R. E., Wallsworth, C., Anusic, I., and Donnellan, M. B. (2021). A direct comparison of the day reconstruction method (DRM) and the experience sampling method (ESM). Journal of Personality and Social Psychology, 120(3), 816835.CrossRefGoogle ScholarPubMed
Lyubomirsky, S. (2011). Hedonic adaptation to positive and negative experiences. In Folkman, S. (ed.) Oxford Handbook of Stress, Health, and Coping. Oxford University Press.Google Scholar
McAdams, D. P. (1995). What do we know when we know a person? Journal of Personality, 63, 365396.CrossRefGoogle Scholar
McClelland, D. C. (1957). Toward a science of personality psychology. In David, H. P. and von Bracken, H. (eds.) Perspective in Personality Theory. Basic Books.Google Scholar
McFarland, C., Ross, M., and Decourville, N. (1989). Women’s theories of menstruation and biases in recall of menstrual symptoms. Journal of Personality and Social Psychology, 57, 522531.CrossRefGoogle ScholarPubMed
McGuire, W. J. (1997). Creative hypothesis generating in psychology: Some useful heuristics. Annual Review of Psychology, 48, 130.CrossRefGoogle ScholarPubMed
Maniaci, M. R., and Rogge, R. D. (2014). Caring about carelessness: Participant inattention and its effects on research. Journal of Research in Personality, 48, 6183.CrossRefGoogle Scholar
Margolin, G., Christensen, A., and John, R. S. (1996). The continuance and spillover of everyday tension in distressed and nondistressed families. Journal of Family Psychology, 10, 304321.CrossRefGoogle Scholar
Mehl, M. R., and Conner, T. S. (eds.) (2012). Handbook of Research Methods for Studying Daily Life. Guilford Press.Google Scholar
Mehl, M. R., and Pennebaker, J. W. (2003). The sounds of social life: A psychometric analysis of students’ daily social environments and natural conversations. Journal of Personality and Social Psychology, 84, 857870.CrossRefGoogle ScholarPubMed
Mehl, M. R., and Robbins, M. L. (2012). The electronically activated recorder (EAR). In Mehl, M. R. and Conner, T. S. (eds.) Handbook of Research Methods for Studying Daily Life. Guilford Press.Google Scholar
Mischel, W., and Shoda, Y. (1995). A cognitive–affective system theory of personality: Reconceptualizing situations, dispositions, dynamics, and invariance in personality structure. Psychological Review, 102, 246268.CrossRefGoogle ScholarPubMed
Mohr, C. D., Armeli, S., Tennen, H., Carney, M. A., Affleck, G., and Hromi, A. (2001). Daily interpersonal experiences, context, and alcohol consumption: Crying in your beer and toasting good times. Journal of Personality and Social Psychology, 80, 489500.CrossRefGoogle ScholarPubMed
Moneta, G. B., and Csikszentmihalyi, M. (1996). The effect of perceived challenges and skills on the quality of subjective experience. Journal of Personality, 64, 275310.CrossRefGoogle ScholarPubMed
Moore, R. C., Depp, C. A., Wetherell, J. L., and Lenze, E. J. (2016). Ecological momentary assessment versus standard assessment instruments for measuring mindfulness, depressed mood, and anxiety among older adults. Journal of Psychiatric Research, 75, 116123.CrossRefGoogle ScholarPubMed
Mortensen, C. R., and Cialdini, R. B. (2010). Full-cycle social psychology for theory and application. Social and Personality Psychology Compass, 4, 5363.CrossRefGoogle Scholar
Moskowitz, D. S., and Sadikaj, G. (2012). Event-contingent recording. In Mehl, M. R. and Conner, T. S. (eds.) Handbook of Research Methods for Studying Daily Life. Guilford Press.Google Scholar
Muise, A., Harasymchuk, C., Day, L. C., Bacev-Giles, C., Gere, J., and Impett, E. A. (2019). Broadening your horizons: Self-expanding activities promote desire and satisfaction in established romantic relationships. Journal of Personality and Social Psychology, 116(2), 237258.CrossRefGoogle ScholarPubMed
Myin-Germeys, I., and Kuppens, P. (2022). The Open Handbook of the Experience Sampling Methodology. Center for Research on Experience Sampling and Ambulatory Methods Leuven.Google Scholar
Naab, T. K., Karnowski, V., and Schlütz, D. (2019). Reporting mobile social media use: How survey and experience sampling measures differ. Communication Methods and Measures, 13(2), 126147.CrossRefGoogle Scholar
Neubauer, A. B., Scott, S. B., Sliwinski, M. J., and Smyth, J. M. (2020). How was your day? Convergence of aggregated momentary and retrospective end-of-day affect ratings across the adult life span. Journal of Personality and Social Psychology, 119(1), 185203.CrossRefGoogle ScholarPubMed
Newman, D. B., and Nezlek, J. B. (2022). The influence of daily events on emotion regulation and well-being in daily life. Personality and Social Psychology Bulletin, 48(1), 1933.CrossRefGoogle ScholarPubMed
Newman, D. B., Sachs, M. E., Stone, A. A., and Schwarz, N. (2020). Nostalgia and well-being in daily life: An ecological validity perspective. Journal of Personality and Social Psychology, 118(2), 325347.CrossRefGoogle ScholarPubMed
O’Connor, S. C., and Rosenblood, L. K. (1996). Affiliation motivation in everyday experience: A theoretical comparison. Journal of Personality and Social Psychology, 70, 513522.CrossRefGoogle Scholar
O’Hara, R. E., Armeli, S., and Tennen, H. (2015). College students’ drinking motives and social-contextual factors: Comparing associations across levels of analysis. Psychology of Addictive Behaviors, 29(2), 420429.CrossRefGoogle ScholarPubMed
Ong, A. D., Fuller-Rowell, T., and Burrow, A. L. (2009). Racial discrimination and the stress process. Journal of Personality and Social Psychology, 96, 12591271.CrossRefGoogle ScholarPubMed
Overall, N. C., Hammond, M. D., McNulty, J. K., and Finkel, E. J. (2016). When power shapes interpersonal behavior: Low relationship power predicts men’s aggressive responses to low situational power. Journal of Personality and Social Psychology, 111(2), 195217.CrossRefGoogle ScholarPubMed
Page-Gould, E., Mendoza-Denton, R., and Tropp, L. R. (2008). With a little help from my cross-group friend: Reducing anxiety in intergroup contexts through cross-group friendship. Journal of Personality and Social Psychology, 95, 10801094.CrossRefGoogle ScholarPubMed
Parkinson, B., Briner, R. B., Reynolds, S., and Totterdell, P. (1995). Time frames for mood: Relations between momentary and generalized ratings of affect. Personality and Social Psychology Bulletin, 21(4), 331339.CrossRefGoogle Scholar
Pietromonaco, P. R., and Feldman-Barrett, L. (1997). Working models of attachment and daily social interactions. Journal of Personality and Social Psychology, 73, 14091423.CrossRefGoogle ScholarPubMed
Pollack, S., and Herres, J. (2020). Prior day negative affect influences current day procrastination: a lagged daily diary analysis. Anxiety, Stress, & Coping, 33(2), 165175.CrossRefGoogle ScholarPubMed
Pond, R. S., DeWall, C. N., Lambert, N. M., Deckman, T., Bonser, I. M., and Fincham, F. D. (2012). Repulsed by violence: Disgust sensitivity buffers trait, behavioral, and daily aggression. Journal of Personality and Social Psychology, 102, 175188.CrossRefGoogle ScholarPubMed
Reis, H. T. (1994). Domains of experience: Investigating relationship processes from three perspectives. In Erber, R. and Gilmour, R. (eds.) Theoretical Frameworks for Personal Relationships. Erlbaum.Google Scholar
Reis, H. T. (2008). Reinvigorating the concept of situation in social psychology. Personality and Social Psychology Review, 12, 311329.CrossRefGoogle ScholarPubMed
Reis, H. T. (2019). How we got here from there: A brief history of social psychology. In Baumeister, R. F. and Finkel, E. J. (eds.) Advanced Social Psychology: The State of the Science, 2nd ed. Oxford University Press.Google Scholar
Reis, H. T., and Holmes, J. G. (2012). Perspectives on the situation. In Erber, R. and Gilmour, R. (eds.) The Oxford Handbook of Personality and Social Psychology. Oxford University Press.Google Scholar
Reis, H. T., Senchak, M., and Solomon, B. (1985). Sex differences in the intimacy of social interaction: Further examination of potential explanations. Journal of Personality and Social Psychology, 48, 12041217.CrossRefGoogle Scholar
Reis, H. T., Sheldon, K. M., Gable, S. L., Roscoe, J., and Ryan, R. M. (2000). Daily well-being: The role of autonomy, competence, and relatedness. Personality and Social Psychology Bulletin, 26, 419435.CrossRefGoogle Scholar
Robinson, J. P., and Godbey, G. (1997). Time for Life: The Surprising Ways Americans Use Their Time. Pennsylvania State University Press.Google Scholar
Ross, M. (1989). Relation of implicit theories to the construction of personal histories. Psychological Review, 96, 341357.CrossRefGoogle Scholar
Roth, A. M., Felsher, M., Reed, M., Goldshear, J. L., Truong, Q., Garfein, R. S., and Simmons, J. (2017). Potential benefits of using ecological momentary assessment to study high-risk polydrug use. Mhealth, 3–46.Google Scholar
Ryon, H. S., and Gleason, M. E. (2014). The role of locus of control in daily life. Personality and Social Psychology Bulletin, 40(1), 121131.CrossRefGoogle ScholarPubMed
Sandstrom, G. M., and Dunn, E. W. (2014). Is efficiency overrated? Minimal social interactions lead to belonging and positive affect. Social Psychological and Personality Science, 5(4), 437442.CrossRefGoogle Scholar
Santangelo, P., Bohus, M., and Ebner-Priemer, U. W. (2014). Ecological momentary assessment in borderline personality disorder: A review of recent findings and methodological challenges. Journal of Personality Disorders, 28(4), 555576.CrossRefGoogle ScholarPubMed
Saxbe, D., and Repetti, R. L. (2010). For better or worse? Coregulation of couples’ cortisol levels and mood states. Journal of Personality and Social Psychology, 98, 92103.CrossRefGoogle ScholarPubMed
Sbarra, D. A. (2006). Predicting the onset of emotional recovery following nonmarital relationship dissolution: Survival analyses of sadness and anger. Personality and Social Psychology Bulletin, 32, 298312.CrossRefGoogle ScholarPubMed
Schwarz, N. (2007). Retrospective and concurrent self-reports: The rationale for real-time data capture. In Stone, A. S., Shiffman, S., Atienza, A. A., and Nebeling, L. (eds.) The Science of Real-Time Data Capture. Oxford University Press.Google Scholar
Schwarz, N. (2012). Why researchers should think “real-time”: A cognitive rationale. In Mehl, M. R. and Conner, T. S. (eds.) Handbook of Research Methods for Studying Daily Life. Guilford Press.Google Scholar
Schwarz, N., and Sudman, S. (eds.) (1996). Answering Questions: Methodology for Determining Cognitive and Communicative Processes in Survey Research. Jossey-Bass.Google Scholar
Sels, L., Cabrieto, J., Butler, E., Reis, H., Ceulemans, E., and Kuppens, P. (2020). The occurrence and correlates of emotional interdependence in romantic relationships. Journal of Personality and Social Psychology, 119(1), 136158.CrossRefGoogle ScholarPubMed
Shaver, P. R., and Mikulincer, M. (2002). Attachment-related psychodynamics. Attachment & Human Development, 4(2), 133161.CrossRefGoogle ScholarPubMed
Shiffman, S., Stone, A. A., and Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 132.CrossRefGoogle ScholarPubMed
Shrout, P. E., Stadler, G., Lane, S. P., McClure, M. J., Jackson, G. L., Clavél, F. D., … Bolger, N. (2018). Initial elevation bias in subjective reports. Proceedings of the National Academy of Sciences, 115(1), E15E23.CrossRefGoogle ScholarPubMed
Silvia, P. J., Kwapil, T. R., Eddington, K. M., and Brown, L. H. (2013). Missed beeps and missing data: Dispositional and situational predictors of nonresponse in experience sampling research. Social Science Computer Review, 31(4), 471481.CrossRefGoogle Scholar
Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2016). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22, 13591366.CrossRefGoogle Scholar
Skowronski, J. J., Betz, A. L., Thompson, C. P., and Shannon, L. (1991). Social memory in everyday life: Recall of self-events and other-events. Journal of Personality and Social Psychology, 60, 831843.CrossRefGoogle Scholar
Snijders, T. A., and Bosker, R. J. (2011). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage.Google Scholar
Snippe, E., Simons, C. J. P., Hartmann, J. A., Menne-Lothmann, C., Kramer, I., Booij, S. H.Wichers, M. (2016). Change in daily life behaviors and depression: Within-person and between-person associations. Health Psychology, 35(5), 433441.CrossRefGoogle ScholarPubMed
Sprecher, S. (1999). “I love you more today than yesterday”: Romantic partners’ perceptions of changes in love and related affect over time. Journal of Personality and Social Psychology, 76, 4653.CrossRefGoogle ScholarPubMed
Stachi, C., Au, Q., Schoedel, R., Gosling, S. D., Harari, G. M., Buschek, D., … Hussmann, H. (2020). Predicting personality from patterns of behavior collected with smartphones. Proceedings of the National Academy of Sciences, 117, 1768017687.CrossRefGoogle Scholar
Stone, A. A., Kessler, R. C., and Haythornthwaite, J. A. (1991). Measuring daily events and experiences: Decisions for the researcher. Journal of Personality, 59, 575607.CrossRefGoogle ScholarPubMed
Stone, A. A., Neale, J. M., and Shiffman, S. (1993). Daily assessments of stress and coping and their association with mood. Annals of Behavioral Medicine, 15, 816.CrossRefGoogle Scholar
Stone, A. A., Schneider, S., and Harter, J. K. (2012). Day-of-week mood patterns in the United States: On the existence of “Blue Monday”, “Thank God it’s Friday” and weekend effects. Journal of Positive Psychology, 7(4), 306314.CrossRefGoogle Scholar
Stone, A. A., Schneider, S., and Smyth, J. M. (2023). Evaluation of pressing issues in ecological momentary assessment. Annual Review of Clinical Psychology, 19, 107131.CrossRefGoogle ScholarPubMed
Stone, A. A., Schwartz, J. E., Neale, J. M., Shiffman, S., Marco, C. A., Hickcox, M., … Cruise, L. J. (1998). A comparison of coping assessed by ecological momentary assessment and retrospective recall. Journal of Personality and Social Psychology, 74, 16701680.CrossRefGoogle ScholarPubMed
Stone, A. A., and Turkkan, J. S. (2000). Preface. In Stone, A. A., Turkkan, J. S., Bachrach, C. A., Jobe, J. B., Kurtzman, H. S., and Cain, V. S. (eds.) The Science of Self-Report: Implications for Research and Practice. Lawrence Erlbaum Associates.Google Scholar
Sun, J., Rhemtulla, M., and Vazire, S. (2021). Eavesdropping on missing data: What are university students doing when they miss experience sampling reports? Personality and Social Psychology Bulletin, 47(11), 15351549.CrossRefGoogle ScholarPubMed
Timmons, A. C., Margolin, G., and Saxbe, D. E. (2015). Physiological linkage in couples and its implications for individual and interpersonal functioning: A literature review. Journal of Family Psychology, 29(5), 720731.CrossRefGoogle ScholarPubMed
Totenhagen, C. J., Randall, A. K., and Lloyd, K. (2018). Stress and relationship functioning in same‐sex couples: The vulnerabilities of internalized homophobia and outness. Family Relations, 67(3), 399413.CrossRefGoogle Scholar
Vachon, H., Viechtbauer, W., Rintala, A., and Myin-Germeys, I. (2019). Compliance and retention with the experience sampling method over the continuum of severe mental disorders: Meta-analysis and recommendations. Journal of Medical Internet Research, 21(12), e14475.CrossRefGoogle ScholarPubMed
Walz, L. C., Nauta, M. H., and aan het Rot, M. (2014). Experience sampling and ecological momentary assessment for studying the daily lives of patients with anxiety disorders: A systematic review. Journal of Anxiety Disorders, 28(8), 925937.CrossRefGoogle ScholarPubMed
Webb, E. J., Campbell, D. T., Schwartz, R. D., and Sechrest, L. (1966). Unobtrusive Measures. Rand McNally.Google Scholar
Wentland, E. J. (1993). Survey Responses: An Evaluation of Their Validity. Academic Press.Google Scholar
West, S. G., Cham, H., and Liu, Y. (2014). Causal inference and generalization in field settings. In Reis, H. T. and Judd, C. M. (eds.) Handbook of Research Methods in Social and Personality Psychology. Cambridge University Press.Google Scholar
Wheeler, L., and Miyake, K. (1992). Social comparison in everyday life. Journal of Personality and Social Psychology, 62, 760773.CrossRefGoogle Scholar
Wheeler, L., and Nezlek, J. B. (1977). Sex differences in social participation. Journal of Personality and Social Psychology, 35, 742754.CrossRefGoogle Scholar
Wheeler, L., and Reis, H. T. (1991). Self-recording of everyday life events: Origins, types, and uses. Journal of Personality, 59, 339354.CrossRefGoogle Scholar
Wheeler, L., Reis, H. T., and Nezlek, J. (1983). Loneliness, social interaction, and sex roles. Journal of Personality and Social Psychology, 45, 943953.CrossRefGoogle ScholarPubMed
Williams, K. J., Suls, J., Alliger, G. M., Learner, S. M., and Wan, C. K. (1991). Multiple role juggling and daily mood states in working mothers: An experience sampling study. Journal of Applied Psychology, 76, 664674.CrossRefGoogle ScholarPubMed
Wong, M. M., and Csikszentmihalyi, M. (1991). Affiliation motivation and daily experience: Some issues on gender differences. Journal of Personality and Social Psychology, 60, 154164.CrossRefGoogle Scholar
Wrzus, C., and Neubauer, A. B. (2022). Ecological momentary assessment: a meta-analysis on designs, samples, and compliance across research fields. Assessment, 10731911211067538.Google Scholar
Zee, K. S., Bolger, N., and Higgins, E. T. (2020). Regulatory effectiveness of social support. Journal of Personality and Social Psychology, 119(6), 13161358.CrossRefGoogle ScholarPubMed

References

Adib, F., Mao, H., Kabelac, Z., Katabi, D., and Miller, R. C. (2015). Smart homes that monitor breathing and heart rate. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 837846, https://doi.org/10.1145/2702123.2702200.CrossRefGoogle Scholar
Altini, M., and Kinnunen, H. (2021). The promise of sleep: A multi-sensor approach for accurate sleep stage detection using the Oura Ring. Sensors, 21(13), 4302. https://doi.org/10.3390/s21134302.CrossRefGoogle ScholarPubMed
Baumeister, R. F., Vohs, K. D., and Funder, D. C. (2007). Psychology as the science of self-reports and finger movements: Whatever happened to actual behavior? Perspectives on Psychological Science, 2(4), 396403.CrossRefGoogle ScholarPubMed
Beierle, F., Probst, T., Allemand, M., Zimmermann, J., Pryss, R., Neff, P., Schlee, W., Stieger, S., and Budimir, S. (2020). Frequency and Duration of daily smartphone usage in relation to personality traits. Digital Psychology, 1(1), 2028.CrossRefGoogle Scholar
Bemmann, F., and Buschek, D. (2020). LanguageLogger: A mobile keyboard application for studying language use in everyday text communication in the wild. Proceedings of the ACM on Human–Computer Interaction, 4, 124.CrossRefGoogle Scholar
Bolger, N., Davis, A., and Rafaeli, E. (2003). Diary methods: capturing life as it is lived. Annual Review of Psychology, 54(1), 579616.CrossRefGoogle ScholarPubMed
Brinberg, M., Ram, N., Yang, X., Cho, M.-J., Sundar, S. S., Robinson, T. N., and Reeves, B. (2021). The idiosyncrasies of everyday digital lives: Using the Human Screenome Project to study user behavior on smartphones. Computers in Human Behavior, 114, 106570, https://doi.org/10.1016/j.chb.2020.106570.CrossRefGoogle ScholarPubMed
Brown, N. A., Blake, A. B., and Sherman, R. A. (2017). A snapshot of the life as lived: Wearable cameras in social and personality psychological science. Social Psychological and Personality Science, 8(5), 592600.CrossRefGoogle Scholar
Conner, T. S., and Mehl, M. R. (2015). Ambulatory assessment: Methods for studying everyday life. In Scott, R. A. and Kosslyn, S. M. (eds.) Emerging Trends in the Social and Behavioral Sciences, 1st ed. Wiley.Google Scholar
Conner, T. S., Tennen, H., Fleeson, W., and Barrett, L. F. (2009). Experience sampling methods: A modern idiographic approach to personality research: Experience sampling methods. Social and Personality Psychology Compass, 3(3), 292313.CrossRefGoogle ScholarPubMed
Cornet, V. P., and Holden, R. J. (2018). Systematic review of smartphone-based passive sensing for health and wellbeing. Journal of Biomedical Informatics, 77, 120132.CrossRefGoogle ScholarPubMed
daSilva, A. W., Huckins, J. F., Wang, W., Wang, R., Campbell, A. T., and Meyer, M. L. (2021). Daily perceived stress predicts less next day social interaction: Evidence from a naturalistic mobile sensing study. Emotion, 21(8), 17601770.CrossRefGoogle ScholarPubMed
Dubey, H., Mehl, M. R., and Mankodiya, K. (2016). BigEAR: Inferring the ambient and emotional correlates from smartphone-based acoustic big data. 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 7883, https://doi.org/10.1109/CHASE.2016.46.CrossRefGoogle Scholar
Eisele, G., Vachon, H., Lafit, G., Tuyaerts, D., Houben, M., Kuppens, P., … Viechtbauer, W. (2023). A mixed-method investigation into measurement reactivity to the experience sampling method: The role of sampling protocol and individual characteristics. Psychological Assessment, 35(1), 6881.CrossRefGoogle Scholar
Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., Buote, R., van Heerden, D., Luan, H., Cullen, K., Slade, L., and Taylor, N. G. A. (2020). Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: Systematic review. JMIR MHealth and UHealth, 8(9), e18694, https://doi.org/10.2196/18694.CrossRefGoogle ScholarPubMed
Harari, G. M., Gosling, S. D., Wang, R., and Campbell, A. T. (2015). Capturing situational information with smartphones and mobile sensing methods. European Journal of Personality, 29(5), 509511.CrossRefGoogle Scholar
Harari, G. M., Lane, N. D., Wang, R., Crosier, B. S., Campbell, A. T., and Gosling, S. D. (2016). Using smartphones to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. Perspectives on Psychological Science, 11(6), 838854.CrossRefGoogle Scholar
Harari, G. M., Müller, S. R., Aung, M. S., and Rentfrow, P. J. (2017). Smartphone sensing methods for studying behavior in everyday life. Current Opinion in Behavioral Sciences, 18, 8390.CrossRefGoogle Scholar
Harari, G. M., Müller, S. R., and Gosling, S. D. (2020). Naturalistic assessment of situations using mobile sensing methods. In Rauthmann, J. F., Sherman, R. A., and Funder, D. C. (eds.) The Oxford Handbook of Psychological Situations. Oxford University Press.Google Scholar
Harari, G. M., Müller, S. R., Stachl, C., Wang, R., Wang, W., Bühner, M., Rentfrow, P. J., Campbell, A. T., and Gosling, S. D. (2020). Sensing sociability: Individual differences in young adults’ conversation, calling, texting, and app use behaviors in daily life. Journal of Personality and Social Psychology, 119(1), 204228.CrossRefGoogle ScholarPubMed
Harari, G. M., Vaid, S. S., Müller, S. R., Stachl, C., Marrero, Z., Schoedel, R., Bühner, M., and Gosling, S. D. (2020). Personality sensing for theory development and assessment in the digital age. European Journal of Personality, 34(5), 649669.CrossRefGoogle Scholar
Hebbar, R., Papadopoulos, P., Reyes, R., Danvers, A. F., Polsinelli, A. J., Moseley, S. A., Sbarra, D. A., Mehl, M. R., and Narayanan, S. (2021). Deep multiple instance learning for foreground speech localization in ambient audio from wearable devices. EURASIP Journal on Audio, Speech, and Music Processing, 2021(1), 7, https://doi.org/10.1186/s13636-020-00194-0.CrossRefGoogle ScholarPubMed
Henrich, J., Heine, S. J., and Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183.CrossRefGoogle ScholarPubMed
Huckins, J. F., daSilva, A. W., Wang, W., Hedlund, E., Rogers, C., Nepal, S. K., Wu, J., Obuchi, M., Murphy, E. I., Meyer, M. L., Wagner, D. D., Holtzheimer, P. E., and Campbell, A. T. (2020). Mental health and behavior of college students during the early phases of the COVID-19 pandemic: Longitudinal smartphone and ecological momentary assessment study. Journal of Medical Internet Research, 22(6), e20185, https://doi.org/10.2196/20185.CrossRefGoogle ScholarPubMed
Jensen, C. L., Rodriguez, K. E., MacLean, E. L., Abdul Wahab, A. H., Sabbaghi, A., and O’Haire, M. E. (2022). Characterizing veteran and PTSD service dog teams: Exploring potential mechanisms of symptom change and canine predictors of efficacy. PLOS ONE, 17(7), e0269186, https://doi.org/10.1371/journal.pone.0269186.CrossRefGoogle ScholarPubMed
Kaplan, D. M., Rentscher, K. E., Lim, M., Reyes, R., Keating, D., Romero, J., Shah, A., Smith, A. D., York, K. A., Milek, A., Tackman, A. M., and Mehl, M. R. (2020). Best practices for electronically activated recorder (EAR) research: A practical guide to coding and processing EAR data. Behavior Research Methods, 52(4), 15381551.CrossRefGoogle ScholarPubMed
Kemp, S. (2022, January 27). DIGITAL 2021: Global Overview Report. DATAREPORTAL, https://datareportal.com/reports/digital-2021-global-overview-report.Google Scholar
Keusch, F., Bähr, S., Haas, G.-C., Kreuter, F., and Trappmann, M. (2020). Coverage error in data collection combining mobile surveys with passive measurement using apps: Data from a German national survey. Sociological Methods & Research, 52(2), 004912412091492. https://doi.org/10.1177/0049124120914924.Google Scholar
Keusch, F., Struminskaya, B., Antoun, C., Couper, M. P., and Kreuter, F. (2019). Willingness to participate in passive mobile data collection. Public Opinion Quarterly, 83(S1), 210235.CrossRefGoogle ScholarPubMed
Krämer, M. D., Roos, Y., Schoedel, R., Wrzus, C., and Richter, D. (2023). Social dynamics and affect: Investigating within-person associations in daily life using experience sampling and mobile Sensing. Emotion, https://doi.org/10.1037/emo0001309.CrossRefGoogle Scholar
Kreuter, F., Haas, G. C., Keusch, F., Bähr, S., and Trappmann, M. (2020). Collecting survey and smartphone sensor data with an app: Opportunities and challenges around privacy and informed consent. Social Science Computer Review, 38(5), 533549.CrossRefGoogle Scholar
Krumm, J. (ed.). (2010). Ubiquitous Computing Fundamentals. Chapman & Hall/CRC Press.Google Scholar
Mack, D. L., DaSilva, A. W., Rogers, C., Hedlund, E., Murphy, E. I., Vojdanovski, V., Plomp, J., Wang, W., Nepal, S. K., Holtzheimer, P. E., Wagner, D. D., Jacobson, N. C., Meyer, M. L., Campbell, A. T., and Huckins, J. F. (2021). Mental health and behavior of college students during the COVID-19 pandemic: Longitudinal mobile smartphone and ecological momentary assessment study, part II. Journal of Medical Internet Research, 23(6), e28892, https://doi.org/10.2196/28892.CrossRefGoogle ScholarPubMed
Marciano, L., Driver, C. C., Schulz, P. J., and Camerini, A.-L. (2022). Dynamics of adolescents’ smartphone use and well-being are positive but ephemeral. Scientific Reports, 12(1), 1316, https://doi.org/10.1038/s41598-022-05291-y.CrossRefGoogle ScholarPubMed
Mason, A. E., Hecht, F. M., Davis, S. K., Natale, J. L., Hartogensis, W., Damaso, N., Claypool, K. T., Dilchert, S., Dasgupta, S., Purawat, S., Viswanath, V. K., Klein, A., Chowdhary, A., Fisher, S. M., Anglo, C., Puldon, K. Y., Veasna, D., Prather, J. G., Pandya, L. S., … Smarr, B. L. (2022). Detection of COVID-19 using multimodal data from a wearable device: Results from the first TemPredict study. Scientific Reports, 12(1), 3463, https://doi.org/10.1038/s41598-022-07314-0.CrossRefGoogle ScholarPubMed
Mehl, M. R. (2017). The electronically activated recorder (EAR): A method for the naturalistic observation of daily social Behavior. Current Directions in Psychological Science, 26(2), 184190.CrossRefGoogle Scholar
Mehl, M. R., Eid, M., Wrzus, C., Harari, G., and Ebner-Priemer, U. (2024). Handbook of Mobile Sensing in Psychology: Methods and Applications.Google Scholar
Mehl, M. R., Raison, C. L., Pace, T. W. W., Arevalo, J. M. G., and Cole, S. W. (2017). Natural language indicators of differential gene regulation in the human immune system. Proceedings of the National Academy of Sciences, 114(47), 1255412559.CrossRefGoogle ScholarPubMed
Mehl, M. R., Vazire, S., Holleran, S. E., and Clark, C. S. (2010). Eavesdropping on happiness: Well-being is related to having less small talk and more substantive conversations. Psychological Science, 21(4), 539541.CrossRefGoogle ScholarPubMed
Mehl, M. R., Vazire, S., Ramírez-Esparza, N., Slatcher, R. B., and Pennebaker, J. W. (2007). Are women really more talkative than men? Science, 317(5834), 82. https://doi.org/10.1126/science.1139940.CrossRefGoogle ScholarPubMed
Milek, A., Butler, E. A., Tackman, A. M., Kaplan, D. M., Raison, C. L., Sbarra, D. A., Vazire, S., and Mehl, M. R. (2018). “Eavesdropping on happiness” revisited: A pooled, multisample replication of the association between life satisfaction and observed daily conversation quantity and quality. Psychological Science, 29(9), 14511462.CrossRefGoogle ScholarPubMed
Miller, G. (2012). The smartphone psychology manifesto. Perspectives on Psychological Science, 7(3), 221237.CrossRefGoogle ScholarPubMed
Mohr, D. C., Zhang, M., and Schueller, S. M. (2017). Personal sensing: Understanding mental health using ubiquitous sensors and machine learning. Annual Review of Clinical Psychology, 13(1), 2347.CrossRefGoogle ScholarPubMed
Mønsted, B., Mollgaard, A., and Mathiesen, J. (2018). Phone-based metric as a predictor for basic personality traits. Journal of Research in Personality, 74, 1622.CrossRefGoogle Scholar
Montag, C., Błaszkiewicz, K., Lachmann, B., Andone, I., Sariyska, R., Trendafilov, B., Reuter, M., and Markowetz, A. (2014). Correlating personality and actual phone usage: Evidence from psychoinformatics. Journal of Individual Differences, 35(3), 158165.CrossRefGoogle Scholar
Moshe, I., Terhorst, Y., Opoku Asare, K., Sander, L. B., Ferreira, D., Baumeister, H., Mohr, D. C., and Pulkki-Råback, L. (2021). Predicting symptoms of depression and anxiety using smartphone and wearable data. Frontiers in Psychiatry, 12, 625247, https://doi.org/10.3389/fpsyt.2021.625247.CrossRefGoogle ScholarPubMed
Müller, S. R., Bayer, J. B., Ross, M. Q., Mount, J., Stachl, C., Harari, G. M., Chang, Y.-J., and Le, H. T. K. (2022). Analyzing GPS data for psychological research: A tutorial. Advances in Methods and Practices in Psychological Science, 5(2), 251524592210826, https://doi.org/10.1177/25152459221082680.CrossRefGoogle Scholar
Müller, S. R., Peters, H., Matz, S. C., Wang, W., and Harari, G. M. (2020). Investigating the relationships between mobility behaviours and indicators of subjective well-being using smartphone-based experience sampling and GPS tracking. European Journal of Personality, 34(5), 714732.CrossRefGoogle Scholar
Ozer, D. J., and Benet-Martínez, V. (2006). Personality and the prediction of consequential outcomes. Annual Review of Psychology, 57(1), 401421.CrossRefGoogle ScholarPubMed
Paulhus, D. L., and Vazire, S. (2007). The self-report method. In Robins, R. W., Fraley, R. C., and Krueger, R. F. (eds.) Handbook of Research Methods in Personality Psychology. Guilford Press.Google Scholar
Phan, L. V., Modersitzki, N., Gloystein, K. K., and Müller, S. (2022). Mobile sensing around the globe: Considerations for cross-cultural research (preprint). PsyArXiv, https://doi.org/10.31234/osf.io/q8c7y.CrossRefGoogle Scholar
Rauthmann, J. F., and Sherman, R. A. (2021). Conceptualizing and measuring the psychological situation. In Wood, D., Read, S. J., Harms, P. D., and Slaughter, A. (eds.) Measuring and Modeling Persons and Situations. Elsevier.Google Scholar
Reis, H. T. (2010). How we got here from there: A brief history of social psychology. In Baumeister, R. F. and Finkel, E. J. (eds.) Advanced Social Psychology: The State of the Science. Oxford University Press.Google Scholar
Reis, H. T. (2018). Why researchers should think “real-world.” In Reis, H. T. (ed.) Relationships, Well-Being and Behaviour: Selected Works of Harry T. Reis, 1st ed. Routledge.CrossRefGoogle Scholar
Renner, K., Klee, S., and von Oertzen, T. (2020). Bringing back the person into behavioural personality science using big data. European Journal of Personality, 34(5), 670686.CrossRefGoogle Scholar
Rüegger, D., Stieger, M., Nißen, M., Allemand, M., Fleisch, E., and Kowatsch, T. (2020). How are personality states associated with smartphone data? European Journal of Personality, 34(5), 687713.CrossRefGoogle Scholar
Sadeh, A. (2015). III. Sleep assessment methods: Sleep assessment. Monographs of the Society for Research in Child Development, 80(1), 3348.CrossRefGoogle ScholarPubMed
Sandstrom, G. M., Lathia, N., Mascolo, C., and Rentfrow, P. J. (2017). Putting mood in context: Using smartphones to examine how people feel in different locations. Journal of Research in Personality, 69, 96101.CrossRefGoogle Scholar
Schindler, D., Spors, S., Demiray, B., and Krüger, F. (2022). Automatic behavior assessment from uncontrolled everyday audio recordings by deep learning. Sensors, 22(22), 8617, https://doi.org/10.3390/s22228617.CrossRefGoogle ScholarPubMed
Schoedel, R., Au, Q., Völkel, S. T., Lehmann, F., Becker, D., Bühner, M., Bischl, B., Hussmann, H., and Stachl, C. (2018). Digital footprints of sensation seeking: A traditional concept in the big data era. Zeitschrift für Psychologie, 226(4), 232245.CrossRefGoogle Scholar
Schoedel, R., Kunz, F., Bergmann, M., Bemmann, F., Bühner, M., and Sust, L. (2023). Snapshots of daily life: Situations investigated through the lens of smartphone sensing. Journal of Personality and Social Psychology, 125(6), 14421471.CrossRefGoogle ScholarPubMed
Schoedel, R., Oldemeier, M., Bonauer, L., and Sust, L. (2022). Systematic categorisation of 3,091 smartphone applications from a large-scale smartphone sensing dataset. Journal of Open Psychology Data, 10(1), 7, https://doi.org/10.5334/jopd.59.CrossRefGoogle Scholar
Schoedel, R., Pargent, F., Au, Q., Völkel, S. T., Schuwerk, T., Bühner, M., and Stachl, C. (2020). To challenge the morning lark and the night owl: Using smartphone sensing data to investigate day–night behaviour patterns. European Journal of Personality, 34(5), 733752.CrossRefGoogle Scholar
Schwarz, N. (2007). Retrospective and concurrent self-reports: The rationale for real-time data capture. In Stone, A. A. (ed.) The Science of Real-Time Data Capture: Self-Reports in Health Research. Oxford University Press.Google Scholar
Servia-Rodríguez, S., Rachuri, K. K., Mascolo, C., Rentfrow, P. J., Lathia, N., and Sandstrom, G. M. (2017). Mobile sensing at the service of mental well-being: A large-scale longitudinal study. Proceedings of the 26th International Conference on World Wide Web, 103112, https://doi.org/10.1145/3038912.3052618.CrossRefGoogle Scholar
Shaw, H., Taylor, P. J., Ellis, D. A., and Conchie, S. M. (2022). Behavioral consistency in the digital age. Psychological Science, 33(3), 364370.CrossRefGoogle ScholarPubMed
Stachl, C., Au, Q., Schoedel, R., Gosling, S. D., Harari, G. M., Buschek, D., Völkel, S. T., Schuwerk, T., Oldemeier, M., Ullmann, T., Hussmann, H., Bischl, B., and Bühner, M. (2020). Predicting personality from patterns of behavior collected with smartphones. Proceedings of the National Academy of Sciences, 117(30), 1768017687.CrossRefGoogle ScholarPubMed
Stachl, C., Hilbert, S., Au, J., Buschek, D., De Luca, A., Bischl, B., Hussmann, H., and Bühner, M. (2017). Personality traits predict smartphone usage. European Journal of Personality, 31(6), 701722.CrossRefGoogle Scholar
Tausczik, Y. R., and Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29(1), 2454.CrossRefGoogle Scholar
Taylor, P. (2023, January 18). Number of Smartphone Subscriptions Worldwide from 2016 to 2021, with Forecasts from 2022 to 2027. Statista, www.statista.com/statistics/330695/number-of-smartphone-users-worldwide.Google Scholar
Trull, T. J., and Ebner-Priemer, U. W. (2020). Ambulatory assessment in psychopathology research: A review of recommended reporting guidelines and current practices. Journal of Abnormal Psychology, 129(1), 5663.CrossRefGoogle ScholarPubMed
Wac, K. (2018). From quantified self to quality of life. In Rivas, H. and Wac, K. (eds.) Digital Health. Springer International Publishing, https://doi.org/10.1007/978-3-319-61446-5_7.Google Scholar
Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., and Campbell, A. T. (2014). StudentLife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 314, https://doi.org/10.1145/2632048.2632054.CrossRefGoogle Scholar
Wang, R., Harari, G., Hao, P., Zhou, X., and Campbell, A. T. (2015). SmartGPA: How smartphones can assess and predict academic performance of college students. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous ComputingUbiComp ’15, 295306, https://doi.org/10.1145/2750858.2804251.CrossRefGoogle Scholar
Wang, R., Wang, W., daSilva, A., Huckins, J. F., Kelley, W. M., Heatherton, T. F., and Campbell, A. T. (2018). Tracking depression dynamics in college students using mobile phone and wearable sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1), 126.Google ScholarPubMed
Wang, W., Nepal, S., Huckins, J. F., Hernandez, L., Vojdanovski, V., Mack, D., Plomp, J., Pillai, A., Obuchi, M., daSilva, A., Murphy, E., Hedlund, E., Rogers, C., Meyer, M., and Campbell, A. (2022). First-gen lens: Assessing mental health of first-generation students across their first year at college using mobile sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(2), 132.Google ScholarPubMed
Watanabe, J., Matsuda, S., and Yano, K. (2013). Using wearable sensor badges to improve scholastic performance. Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, 139142, https://doi.org/10.1145/2494091.2494137.CrossRefGoogle Scholar
Wrzus, C., and Schoedel, R. (2023). Transparency and reproducibility in mobile sensing research. In Mehl, M. R., Eid, M., Wrzus, C., Harari, G. M., and Ebner-Priemer, U. W. (eds.) Mobile Sensing in Psychology: Methods and Applications, Guilford Press.Google Scholar
Wu, C., Fritz, H., Bastami, S., Maestre, J. P., Thomaz, E., Julien, C., Castelli, D. M., de Barbaro, K., Bearman, S. K., Harari, G. M., Cameron Craddock, R., Kinney, K. A., Gosling, S. D., Schnyer, D. M., and Nagy, Z. (2021). Multi-modal data collection for measuring health, behavior, and living environment of large-scale participant cohorts. GigaScience, 10(6), giab044, https://doi.org/10.1093/gigascience/giab044.CrossRefGoogle ScholarPubMed

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S. and Avila, R. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.Google Scholar
Acker, A., and Kreisberg, A. (2020). Social media data archives in an API-driven world. Archival Science, 20, 105123.CrossRefGoogle Scholar
Adams, K. (2022). SALLEE documentation. Online Receptiviti Inc. documentation, at https://docs.receptiviti.com/frameworks/emotions.Google Scholar
Agnew, C. R., van Lange, P. A., Rusbult, C. E., and Langston, C. A. (1998). Cognitive interdependence: Commitment and the mental representation of close relationships. Journal of Personality and Social Psychology, 74(4), 939954.CrossRefGoogle Scholar
Allport, G. W. (1953). The psychological nature of personality. The Personalist, 34(4), 347357.Google Scholar
Allport, G. W., and Odbert, H. S. (1936). Trait-names: A psycho-lexical study. Psychological Monographs, 47(1), i171.CrossRefGoogle Scholar
Ashokkumar, A., and Pennebaker, J. W. (2022). Social media conversations reveal large psychological shifts caused by COVID-19’s onset across US cities. Science Advances, 7(39), eabg7843, https://www.science.org/doi/10.1126/sciadv.abg7843.CrossRefGoogle Scholar
Back, M. D., Küfner, A. C., and Egloff, B. (2010). The emotional timeline of September 11, 2001. Psychological Science, 21, 14171419.CrossRefGoogle ScholarPubMed
Back, M. D., Küfner, A. C., and Egloff, B. (2011). “Automatic or the people?” Anger on September 11, 2001, and lessons learned for the analysis of large digital data sets. Psychological Science, 22, 837838.CrossRefGoogle Scholar
Baddeley, J. L., Pennebaker, J. W., and Beevers, C. G. (2013). Everyday social behavior during a major depressive episode. Social Psychological and Personality Science, 4, 445452.CrossRefGoogle Scholar
Badr, H., Milbury, K., Majeed, N., Carmack, C. L., Ahmad, Z., and Gritz, E. R. (2016). Natural language use and couples’ adjustment to head and neck cancer. Health Psychology, 35(10), 10691080.CrossRefGoogle ScholarPubMed
Bauer, J. J., and McAdams, D. P. (2010). Eudaimonic growth: Narrative growth goals predict increases in ego development and subjective well-being 3 years later. Developmental Psychology, 46(4), 761772.CrossRefGoogle ScholarPubMed
Bell, A., Brenier, J. M., Gregory, M., Girand, C., and Jurafsky, D. (2009). Predictability effects on durations of content and function words in conversational English. Journal of Memory and Language, 60(1), 92111.CrossRefGoogle Scholar
Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289300.CrossRefGoogle Scholar
Berger, J., and Packard, G. (2018). Are atypical things more popular? Psychological Science, 29(7), 11781184.CrossRefGoogle ScholarPubMed
Bhatia, S. (2017). The semantic representation of prejudice and stereotypes. Cognition, 164, 4660.CrossRefGoogle ScholarPubMed
Bhatt, A. M., Goldberg, A., and Srivastava, S. B. (2021). A language-based method for assessing symbolic boundary maintenance between social groups. Sociological Methods & Research, 51(4), 00491241221099555.Google Scholar
Biderman, M. D., Nguyen, N. T., Cunningham, C. J., and Ghorbani, N. (2011). The ubiquity of common method variance: The case of the Big Five. Journal of Research in Personality, 45, 417429.CrossRefGoogle Scholar
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 9931022.Google Scholar
Bock, J. K. (1986). Syntactic persistence in language production. Cognitive Psychology, 18, 355387.CrossRefGoogle Scholar
Bowen, J. D., Winczewski, L. A., and Collins, N. L. (2017). Language style matching in romantic partners’ conflict and support interactions. Journal of Language and Social Psychology, 36, 263286.CrossRefGoogle Scholar
Boyd, R. L., Ashokkumar, A., Seraj, S., and Pennebaker, J. W. (2022). The Development and Psychometric Properties of LIWC-22. University of Texas at Austin.Google Scholar
Boyd, R. L., Blackburn, K. G., and Pennebaker, J. W. (2020). The narrative arc: Revealing core narrative structures through text analysis. Science Advances, 6, eaba2196.CrossRefGoogle ScholarPubMed
Boyd, R. L., and Pennebaker, J. W. (2015). A way with words: Using language for psychological science in the modern era. In Dimofte, C. V., Haugtvedt, C. P., and Yalch, R. F. (eds.) Consumer Psychology in a Social Media World. Routledge.Google Scholar
Boyd, R. L., and Pennebaker, J. W. (2017). Language-based personality: A new approach to personality in a digital world. Current Opinion in Behavioral Sciences, 18, 6368.CrossRefGoogle Scholar
Boyd, R. L., and Schwartz, H. A. (2021). Natural language analysis and the psychology of verbal behavior: The past, present, and future states of the field. Journal of Language and Social Psychology, 40, 2141.CrossRefGoogle ScholarPubMed
Brinberg, M., and Ram, N. (2021). Do new romantic couples use more similar language over time? Evidence from intensive longitudinal text messages. Journal of Communication, 71, 454477.CrossRefGoogle ScholarPubMed
Brown, P., and Levinson, S. C. (1987). Politeness: Some Universals in Language Usage. Cambridge University Press.CrossRefGoogle Scholar
Bruno, J. H., Jarvis, E. D., Liberman, M., and Tchernichovski, O. (2021). Birdsong learning and culture: analogies with human spoken language. Annual Review of Linguistics, 7(1), 449472.CrossRefGoogle Scholar
Byrne, M. L., Lind, M. N., Horn, S. R., Mills, K. L., Nelson, B. W., Barnes, M. L., … Allen, N. B. (2021). Using mobile sensing data to assess stress: Associations with perceived and lifetime stress, mental health, sleep, and inflammation. Digital Health, 7, 20552076211037227.CrossRefGoogle ScholarPubMed
Campbell, D. T., and Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait–multimethod matrix. Psychological Bulletin, 56, 81105.CrossRefGoogle ScholarPubMed
Charlesworth, T. E., Caliskan, A., and Banaji, M. R. (2022). Historical representations of social groups across 200 years of word embeddings from Google Books. Proceedings of the National Academy of Sciences, 119, e2121798119.CrossRefGoogle ScholarPubMed
Chung, C. K., and Pennebaker, J. W. (2008). Revealing dimensions of thinking in open-ended self-descriptions: An automated meaning extraction method for natural language. Journal of Research in Personality, 42, 96132.CrossRefGoogle Scholar
Chung, C. K., Rentfrow, P. J., and Pennebaker, J. W. (2014). Finding values in words: Using natural language to detect regional variations in personal concerns. In Rentfrow, P. J. (ed.) Geographical Psychology: Exploring the Interaction of Environment and Behavior. American Psychological Association.Google Scholar
Christie, A. (1936). The ABC Murders. Collins Crime Club.Google Scholar
Coppersmith, G., Fine, A., Crutchley, P., and Carroll, J. (2021). Individual differences in the movement–mood relationship in digital life data. In Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology, 2531.CrossRefGoogle Scholar
Cutler, A., and Condon, D. M. (2022). Deep lexical hypothesis: Identifying personality structure in natural language. Journal of Personality and Social Psychology. Advance online publication, https://doi.org/10.1037/pspp0000443.Google Scholar
Danescu-Niculescu-Mizil, C., West, R., Jurafsky, D., Leskovec, J., and Potts, C. (2013, May). No country for old members: User lifecycle and linguistic change in online communities. In Proceedings of the 22nd international conference on World Wide Web, 307318.CrossRefGoogle Scholar
Davies, M. (2008). Word frequency data (www.wordfrequency.info). From the Corpus of Contemporary American English (COCA), www.english-corpora.org/coca/.Google Scholar
Davies, M. (2022). Google Books (BYU/Advanced): American English, www.english-corpora.org/googlebooks/#Google Scholar
Davis, T., and Goldwater, M. (2021). Using model-based neuroimaging to adjudicate structured and continuous representational accounts in same–different categorization and beyond. Current Opinion in Behavioral Sciences, 37, 103108.CrossRefGoogle Scholar
DeFranza, D., Mishra, H., and Mishra, A. (2020). How language shapes prejudice against women: An examination across 45 world languages. Journal of Personality and Social Psychology, 119, 722.CrossRefGoogle ScholarPubMed
Deters, F. G., and Mehl, M. R. (2013). Does posting Facebook status updates increase or decrease loneliness? An online social networking experiment. Social Psychological and Personality Science, 4, 579586.CrossRefGoogle ScholarPubMed
Devlin, J., Chang, M. W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.Google Scholar
Dolcos, S., and Albarracin, D. (2014). The inner speech of behavioral regulation: Intentions and task performance strengthen when you talk to yourself as a You. European Journal of Social Psychology, 44, 636642.CrossRefGoogle Scholar
Doré, B. P., and Morris, R. R. (2018). Linguistic synchrony predicts the immediate and lasting impact of text-based emotional support. Psychological Science, 29, 17161723.CrossRefGoogle ScholarPubMed
Durrheim, K., Schuld, M., Mafunda, M., and Mazibuko, S. (2022). Using word embeddings to investigate cultural biases. British Journal of Social Psychology, 62(4), DOI:10.1111/bjso.12560.Google ScholarPubMed
Eichstaedt, J. C., Kern, M. L., Yaden, D. B., Schwartz, H. A., Giorgi, S., Park, G., Hagan, C. A., Tobolsky, V. A., Smith, L. K., Buffone, A., Iwry, J., Seligman, M. E. P., and Ungar, L. H. (2021). Closed- and open-vocabulary approaches to text analysis: A review, quantitative comparison, and recommendations. Psychological Methods, 26, 398427.CrossRefGoogle ScholarPubMed
Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P., Preoţiuc-Pietro, D., Asch, D. A., and Schwartz, H. A. (2018). Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences, 115, 1120311208.CrossRefGoogle ScholarPubMed
Esper, E. (1935). Language. In Murchison, C. (ed.) A Handbook of Social Psychology. Clark University Press.Google Scholar
Evangelopoulos, N. E. (2013). Latent semantic analysis. Wiley Interdisciplinary Reviews: Cognitive Science, 4, 683692.Google ScholarPubMed
Fast, E., Chen, B., and Bernstein, M. S. (2016, May). Empath: Understanding topic signals in large-scale text. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 46474657.CrossRefGoogle Scholar
Finkel, E. J., and Eastwick, P. W. (2008). Speed-dating. Current Directions in Psychological Science, 17, 193197.CrossRefGoogle Scholar
Foltz, P. W. (1996). Latent semantic analysis for text-based research. Behavior Research Methods, Instruments, & Computers, 28, 197202.CrossRefGoogle Scholar
Francis, M. E., and Pennebaker, J. W. (1992). Putting stress into words: The impact of writing on physiological, absentee, and self-reported emotional well-being measures. American Journal of Health Promotion, 6(4), 280287.CrossRefGoogle ScholarPubMed
Freud, S. (1960). The Psychopathology of Everyday Life: Forgetting, Slips of the Tongue, Bungled Actions, Superstitions and Errors (1901). In The Standard Edition of the Complete Psychological Works of Sigmund Freud, vol. 6, trans. and ed. James Strachey. The Hogarth Press.Google Scholar
Frimer, J., Haidt, J., Graham, J. Dehgani, M., and Boghrati, R. (2017). Moral foundations dictionaries for linguistic analyses, 2.0. Unpublished manuscript, www.jeremyfrimer.com/uploads/2/1/2/7/21278832/summary.pdf (accessed October 24, 2022).Google Scholar
Frost, D. M. (2013). The narrative construction of intimacy and affect in relationship stories: Implications for relationship quality, stability, and mental health. Journal of Social and Personal Relationships, 30(3), 247269.CrossRefGoogle Scholar
Furnham, A. (1990). Language and personality. In Giles, H. and Robinson, W. P. (eds.) Handbook of Language and Social Psychology. John Wiley & Sons.Google Scholar
Garten, J., Hoover, J., Johnson, K. M., Boghrati, R., Iskiwitch, C., and Dehghani, M. (2018). Dictionaries and distributions: Combining expert knowledge and large scale textual data content analysis. Behavior Research Methods, 50, 344361.CrossRefGoogle ScholarPubMed
Gelfand, M. J., Severance, L., Lee, T., Bruss, C. B., Lun, J., Abdel‐Latif, A. H., … Moustafa Ahmed, S. (2015). Culture and getting to yes: The linguistic signature of creative agreements in the United States and Egypt. Journal of Organizational Behavior, 36, 967989.CrossRefGoogle Scholar
Gendron, M., Lindquist, K. A., Barsalou, L., and Barrett, L. F. (2012). Emotion words shape emotion percepts. Emotion, 12, 314325.CrossRefGoogle ScholarPubMed
Gerlach, M., and Font-Clos, F. (2020). A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics. Entropy, 22, 126.CrossRefGoogle Scholar
Ghai, B., Hoque, M. N., and Mueller, K. (2021, May). WordBias: An interactive visual tool for discovering intersectional biases encoded in word embeddings. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 17.CrossRefGoogle Scholar
Giles, H. (1971). Teacher’s attitudes towards accent usage and change. Educational Review, 24, 1125.CrossRefGoogle Scholar
Gottman, J. M., and Levenson, R. W. (2000). The timing of divorce: Predicting when a couple will divorce over a 14-year period. Journal of Marriage and Family, 62, 737745.CrossRefGoogle Scholar
Gottschalk, L. A. (1974). The application of a method of content analysis to psychotherapy research. American Journal of Psychotherapy, 28, 488499.CrossRefGoogle ScholarPubMed
Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W., and Hesse, F. W. (2018). Advancing the science of collaborative problem solving. Psychological Science in the Public Interest, 19, 5992.CrossRefGoogle ScholarPubMed
Graham, J., Haidt, J., and Nosek, B. A. (2009). Liberals and conservatives rely on different sets of moral foundations. Journal of Personality and Social Psychology, 96, 10291046.CrossRefGoogle ScholarPubMed
Hart, R. P. (1984). Systematic analysis of political discourse: The development of DICTION. Political Communication Yearbook, 1, 97134.Google Scholar
Hewstone, M. (1983). The role of language in attribution processes. In Jaspars, J., Fincham, F. D., and Hewstone, M. (eds.), Attribution Theory and Research: Conceptual, Developmental and Social Dimensions. Academic Press.Google Scholar
Hirsh, J. B., and Peterson, J. B. (2009). Personality and language use in self-narratives. Journal of Research in Personality, 43, 524527.CrossRefGoogle Scholar
Ho, S. M., and Hancock, J. T. (2019). Context in a bottle: Language-action cues in spontaneous computer-mediated deception. Computers in Human Behavior, 91, 3341.CrossRefGoogle Scholar
Hobson, R. P., Lee, A., and Hobson, J. A. (2010). Personal pronouns and communicative engagement in autism. Journal of Autism and Developmental Disorders, 40, 653664.CrossRefGoogle ScholarPubMed
Holtzman, N. S., Tackman, A. M., Carey, A. L., Brucks, M. S., Küfner, A. C., Deters, F. G., … Mehl, M. R. (2019). Linguistic markers of grandiose narcissism: A LIWC analysis of 15 samples. Journal of Language and Social Psychology, 38, 773786.CrossRefGoogle Scholar
Hopp, F. R., Fisher, J. T., Cornell, D., Huskey, R., and Weber, R. (2021). The extended Moral Foundations Dictionary (eMFD): Development and applications of a crowd-sourced approach to extracting moral intuitions from text. Behavior Research Methods, 53, 232246.CrossRefGoogle Scholar
Hovy, D., and Prabhumoye, S. (2021). Five sources of bias in natural language processing. Language and Linguistics Compass, 15, e12432.CrossRefGoogle ScholarPubMed
Hutto, C., and Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the International AAAI Conference on Web and Social Media, 216225.CrossRefGoogle Scholar
Iliev, R., Hoover, J., Dehghani, M., and Axelrod, R. (2016). Linguistic positivity in historical texts reflects dynamic environmental and psychological factors. Proceedings of the National Academy of Sciences, 113(49), E7871E7879.CrossRefGoogle ScholarPubMed
Ireland, M. E., and Henderson, M. D. (2014). Language style matching, engagement, and impasse in negotiations. Negotiation and conflict management research, 7, 116.CrossRefGoogle Scholar
Ireland, M. E., and Mehl, M. R. (2014). Natural language use as a marker of personality. In Holtgraves, T. M. (ed.), The Oxford Handbook of Language and Social Psychology. Oxford University Press.Google Scholar
Ireland, M. E., and Nalabandian, T. (2022). Language coordination in writing and conversation. In Boyd, R. and Dehghani, M. (eds.) Handbook of Language Analysis in Psychology. Guilford Press.Google Scholar
Ireland, M. E., and Pennebaker, J. W. (2010). Language style matching in writing: synchrony in essays, correspondence, and poetry. Journal of Personality and Social Psychology, 99, 549571.CrossRefGoogle ScholarPubMed
Ireland, M. E., Slatcher, R. B., Eastwick, P. W., Scissors, L. E., Finkel, E. J., and Pennebaker, J. W. (2011). Language style matching predicts relationship initiation and stability. Psychological science, 22, 3944.CrossRefGoogle ScholarPubMed
Iserman, M. (2022). lingmatch: Linguistic matching and accommodation. R package version 1.0.4, https://CRAN.R-project.org/package=lingmatch.Google Scholar
Jaidka, K., Giorgi, S., Schwartz, H. A., Kern, M. L., Ungar, L. H., and Eichstaedt, J. C. (2020). Estimating geographic subjective well-being from Twitter: A comparison of dictionary and data-driven language methods. Proceedings of the National Academy of Sciences, 117, 1016510171.CrossRefGoogle ScholarPubMed
Jeblick, K., Schachtner, B., Dexl, J., Mittermeier, A., Stüber, A. T., Topalis, J., Weber, T., Wesp, P., Sabel, B., Ricke, J., and Ingrisch, M. (2022). ChatGPT makes medicine easy to swallow: An exploratory case study on simplified radiology reports. arXiv preprint arXiv:2212.14882.Google Scholar
Jordan, K. N., Sterling, J., Pennebaker, J. W., and Boyd, R. L. (2019). Examining long-term trends in politics and culture through language of political leaders and cultural institutions. Proceedings of the National Academy of Sciences, 116, 34763481.CrossRefGoogle ScholarPubMed
Kacewicz, E., Pennebaker, J. W., Davis, M., Jeon, M., and Graesser, A. C. (2014). Pronoun use reflects standings in social hierarchies. Journal of Language and Social Psychology, 33, 125143.CrossRefGoogle Scholar
Karadeniz, T., and Dogdu, E. (2018, December). Improvement of general inquirer features with quantity analysis. In 2018 IEEE International Conference on Big Data (Big Data). IEEE.Google Scholar
Kashy, D. A., and Kenny, D. A. (2000). The analysis of data from dyads and groups. In Reis, H. T. and Judd, C. M. (eds.) Handbook of Research Methods in Social and Personality Psychology (pp. 451477). Cambridge University Press.Google Scholar
Kintsch, W., and Mangalath, P. (2011). The construction of meaning. Topics in Cognitive Science, 3, 346370.CrossRefGoogle ScholarPubMed
Kjell, O. N., Sikström, S., Kjell, K., and Schwartz, H. A. (2022). Natural language analyzed with AI-based transformers predict traditional subjective well-being measures approaching the theoretical upper limits in accuracy. Scientific Reports, 12, 19.CrossRefGoogle ScholarPubMed
Koul, A., Becchio, C., and Cavallo, A. (2018). Cross-validation approaches for replicability in psychology. Frontiers in Psychology, 9, 1117, https://doi.org/10.3389/fpsyg.2018.01117.CrossRefGoogle ScholarPubMed
Kosinski, M., and Stillwell, D. J. (2011). myPersonality Research Wiki. myPersonality Project, http://mypersonality.org/wiki.Google Scholar
Kross, E., and Ayduk, O. (2017). Self-distancing: Theory, research, and current directions. Advances in Experimental Social Psychology, 55,81136.CrossRefGoogle Scholar
Landauer, T. K., and Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240.CrossRefGoogle Scholar
Lanning, K., Pauletti, R. E., King, L. A., and McAdams, D. P. (2018). Personality development through natural language. Nature Human Behaviour, 2, 327334.CrossRefGoogle ScholarPubMed
Linde, C., and Labov, W. (1975). Spatial networks as a site for the study of language and thought. Language, 51, 924939.CrossRefGoogle Scholar
Lindquist, K. A. (2017). The role of language in emotion: Existing evidence and future directions. Current Opinion in Psychology, 17, 135139.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Jackson, J. C., Leshin, J., Satpute, A. B., and Gendron, M. (2022). The cultural evolution of emotion. Nature Reviews Psychology, 1(11), 669681.CrossRefGoogle Scholar
Liu, T., Giorgi, S., Yadeta, K., Schwartz, H. A., Ungar, L. H., and Curtis, B. (2022a). Linguistic predictors from Facebook postings of substance use disorder treatment retention versus discontinuation. American Journal of Drug and Alcohol Abuse, 48, 573585.CrossRefGoogle ScholarPubMed
Liu, Y., Mittal, A., Yang, D., and Bruckman, A. (2022b). Will AI console me when I lose my pet? Understanding perceptions of AI-mediated email writing. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems ,113.CrossRefGoogle Scholar
McAdams, D. P. (2008). Personal narratives and the life story. In John, O. P., Robins, R. W., and Pervin, L. A. (eds.), Handbook of Personality: Theory and Research, 3rd ed. The Guilford Press.Google Scholar
McClelland, D. C., Koestner, R., and Weinberger, J. (1989). How do self-attributed and implicit motives differ? Psychological Review, 96, 690702.CrossRefGoogle Scholar
McNeilly, E. A., Mills, K., Kahn, L., Crowley, R., Pfeifer, J., and Allen, N. (2023). Adolescent social communication through smartphones: Linguistic features of internalizing symptoms and daily mood. Clinical Psychological Science, 11(6), 10901107.CrossRefGoogle ScholarPubMed
Mairesse, F., and Walker, M. (2007). PERSONAGE: Personality generation for dialogue. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL), 496503.Google Scholar
Manczak, E. M., Zapata-Gietl, C., and McAdams, D. P. (2014). Regulatory focus in the life story: Prevention and promotion as expressed in three layers of personality. Journal of Personality and Social Psychology, 106, 169181.CrossRefGoogle ScholarPubMed
Mehl, M. R. (2017). The electronically activated recorder (EAR): A method for the naturalistic observation of daily social behavior. Current Directions in Psychological Science, 26, 184190.CrossRefGoogle Scholar
Mehl, M. R., Gosling, S. D., and Pennebaker, J. W. (2006). Personality in its natural habitat: manifestations and implicit folk theories of personality in daily life. Journal of Personality and Social Psychology, 90, 862877.CrossRefGoogle ScholarPubMed
Mehl, M. R., Pennebaker, J. W., Crow, D. M., Dabbs, J., and Price, J. H. (2001). The electronically activated recorder (EAR): A device for sampling naturalistic daily activities and conversations. Behavior Research Methods, Instruments, & Computers, 33, 517523.CrossRefGoogle Scholar
Mehl, M. R., Robbins, M. L., and Große Deters, F. (2012). Naturalistic observation of health-relevant social processes: The Electronically Activated Recorder (EAR) methodology in psychosomatics. Psychosomatic Medicine, 74, 410417.CrossRefGoogle ScholarPubMed
Mehl, M. R., Robbins, M. L., and Holleran, S. E. (2012). How taking a word for a word can be problematic: Context-dependent linguistic markers of extraversion and neuroticism. Journal of Methods and Measurement in the Social Sciences, 3, 3050.CrossRefGoogle Scholar
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. Preprint, arXiv, 1301.3781.Google Scholar
Mohammad, S. M. (2016). Sentiment analysis: Detecting valence, emotions, and other affectual states from text. In Meiselman, H. L. (ed.), Emotion Measurement. Woodhead Publishing.Google Scholar
Morgan, C. D., and Murray, H. A. (1935). A method for investigating fantasies: The thematic apperception test. Archives of Neurology & Psychiatry, 34, 289306.CrossRefGoogle Scholar
Murchison, C. (ed.) (1935). A Handbook of Social Psychology. Clark University Press.Google Scholar
Nalabandian, T., and Ireland, M. E. (2019). Genre-typical narrative arcs in films are less appealing to lay audiences and professional film critics. Behavior Research Methods, 51, 16361650.CrossRefGoogle ScholarPubMed
Neff, G. (2016). Talking to bots: Symbiotic agency and the case of Tay. International Journal of Communication, 10, 49154931.Google Scholar
Newman, M. L., Pennebaker, J. W., Berry, D. S., and Richards, J. M. (2003). Lying words: Predicting deception from linguistic styles. Personality and Social Psychology Bulletin, 29, 665675.CrossRefGoogle ScholarPubMed
Niederhoffer, K. G., and Pennebaker, J. W. (2002). Linguistic style matching in social interaction. Journal of Language and Social Psychology, 21, 337360.CrossRefGoogle Scholar
Norman, W. T. (1967). 2800 Personality Trait Descriptors: Normative Operating Characteristics for a University Population. University of Michigan, Dept. of Psychology.Google Scholar
Novogrodsky, R. (2013). Subject pronoun use by children with autism spectrum disorders (ASD). Clinical Linguistics & Phonetics, 27, 8593.CrossRefGoogle ScholarPubMed
Ott, M., Choi, Y., Cardie, C., and Hancock, J. T. (2013). Finding deceptive opinion spam by any stretch of the imagination. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol 1., 309319.Google Scholar
Pang, J. S., and Schultheiss, O. C. (2005). Assessing implicit motives in US college students: Effects of picture type and position, gender and ethnicity, and cross-cultural comparisons. Journal of Personality Assessment, 85, 280294.CrossRefGoogle ScholarPubMed
Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., … Seligman, M. E. (2015). Automatic personality assessment through social media language. Journal of personality and social psychology, 108, 934952.CrossRefGoogle ScholarPubMed
Park, G., Yaden, D. B., Schwartz, H. A., Kern, M. L., Eichstaedt, J. C., Kosinski, M., … Seligman, M. E. (2016). Women are warmer but no less assertive than men: Gender and language on Facebook. PLOS ONE, 11(5), e0155885.CrossRefGoogle ScholarPubMed
Pashler, H., and Harris, C. R. (2012). Is the replicability crisis overblown? Three arguments examined. Perspectives on Psychological Science, http://dx.doi.org/10.1371/journal, pmed.0020124.CrossRefGoogle Scholar
Peabody, D. and Goldberg, L. R. (1989). Some determinants of factor structures from personality-trait descriptors. Journal of Personality and Social Psychology, 57, 552567.CrossRefGoogle ScholarPubMed
Pennebaker, J. W. (2011). The Secret Life of Pronouns: What Our Words Say about Us. Bloomsbury.CrossRefGoogle Scholar
Pennebaker, J. W. (2021). Computer-based language analysis as a paradigm shift. In Dehghani, M. and Boyd, R. L. (eds.) Handbook of Language Analysis in Psychology. Guilford.Google Scholar
Pennebaker, J. W., and Beall, S. K. (1986). Confronting a traumatic event: toward an understanding of inhibition and disease. Journal of Abnormal Psychology, 95, 274281.CrossRefGoogle ScholarPubMed
Pennebaker, J. W., Boyd, R. L., Booth, R. J., Ashokkumar, A., and Francis, M. E. (2022). Linguistic inquiry and word count: LIWC-22. Pennebaker Conglomerates, http://www.liwc.app.Google Scholar
Pennebaker, J. W., Chung, C. K., Frazee, J., Lavergne, G. M., and Beaver, D. I. (2014). When small words foretell academic success: The case of college admissions essays. PLOS ONE, 9, e115844.CrossRefGoogle ScholarPubMed
Pennebaker, J. W., and Francis, M. E. (1996). LIWC Windows Application. LEA Software and Alternative Media.Google Scholar
Pennebaker, J. W., and King, L. A. (1999). Linguistic styles: language use as an individual difference. Journal of Personality and Social Psychology, 77, 12961312.CrossRefGoogle ScholarPubMed
Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 15321543.CrossRefGoogle Scholar
Peters, H., Marrero, Z., and Gosling, S. D. (2022). The Big Data toolkit for psychologists: Data sources and methodologies. In Matz, S. C. (ed.), The Psychology of Technology: Social Science Research in the Age of Big Data. American Psychological Association.Google Scholar
Preoţiuc-Pietro, D., Schwartz, H. A., Park, G., Eichstaedt, J., Kern, M., Ungar, L., and Shulman, E. (2016, June). Modelling valence and arousal in Facebook posts. In Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 915.CrossRefGoogle Scholar
Pury, C. L. (2011). Automation can lead to confounds in text analysis: Back, Küfner, and Egloff (2010) and the not-so-angry Americans. Psychological Science, 22, 835836.CrossRefGoogle ScholarPubMed
Rasmussen, H. F., Borelli, J. L., Smiley, P. A., Cohen, C., Cheung, R. C. M., Fox, S., Marvin, M., and Blackard, B. (2017). Mother–child language style matching predicts children’s and mothers’ emotion reactivity. Behavioural Brain Research, 325, 203213.CrossRefGoogle ScholarPubMed
Rauthmann, J. F., Gallardo-Pujol, D., Guillaume, E. M., Todd, E., Nave, C. S., Sherman, R. A., Ziegler, M., Jones, A., B., and Funder, D. C. (2014). The Situational Eight DIAMONDS: a taxonomy of major dimensions of situation characteristics. Journal of Personality and Social Psychology, 107, 677718.CrossRefGoogle ScholarPubMed
Rayner, K. (1977). Visual attention in reading: Eye movements reflect cognitive processes. Memory & Cognition, 5, 443448.CrossRefGoogle ScholarPubMed
Reece, A., Cooney, G., Bull, P., Chung, C., Dawson, B., Fitzpatrick, C., … Marin, S. (2022). Advancing an interdisciplinary science of conversation: Insights from a large multimodal corpus of human speech. Preprint, arXiv, 2203.00674.Google Scholar
Rentscher, K. E., Soriano, E. C., Rohrbaugh, M. J., Shoham, V., and Mehl, M. R. (2017). Partner pronoun use, communal coping, and abstinence during couple‐focused intervention for problematic alcohol use. Family Process, 56, 348363.CrossRefGoogle ScholarPubMed
Richardson, B. H., Taylor, P. J., Snook, B., Conchie, S. M., and Bennell, C. (2014). Language style matching and police interrogation outcomes. Law and Human Behavior, 38(4), 357366.CrossRefGoogle ScholarPubMed
Robinson, M. D., Persich, M. R., Sjoblom-Schmidt, S., and Penzel, I. B. (2020). Love stories: How language use patterns vary by relationship quality. Discourse Processes, 57, 8198.CrossRefGoogle Scholar
Rohrbaugh, M. J., Shoham, V., Skoyen, J. A., Jensen, M., and Mehl, M. R. (2012). We‐talk, communal coping, and cessation success in a couple‐focused intervention for health‐compromised smokers. Family Process, 51, 107121.CrossRefGoogle Scholar
Rorschach, H. (1921). Psychodiagnostik. Bircher.Google Scholar
Sagi, E., and Dehghani, M. (2014). Measuring moral rhetoric in text. Social Science Computer Review, 32, 132144.CrossRefGoogle Scholar
Sap, M., Jafarpour, A., Choi, Y., Smith, N. A., Pennebaker, J. W. and Horvitz, E. (2022, in press). Quantifying the narrative flow of imagined versus autobiographical stories. PNAS.CrossRefGoogle Scholar
Schaper, R., Nowotny, C., Michalek, S., Schmidt, U., and Brockmeyer, T. (2022). Language style matching and treatment outcome in anorexia nervosa. European Eating Disorders Review, 31(1), DOI:10.1002/erv.2943.Google Scholar
Schultheiss, O. C., Patalakh, M., Rawolle, M., Liening, S., and MacInnes, J. J. (2011). Referential competence is associated with motivational congruence. Journal of Research in Personality, 45, 5970.CrossRefGoogle Scholar
Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M. E., and Ungar, L. H. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PLOS ONE, 8, p.e73791.CrossRefGoogle ScholarPubMed
Schwartz, H. A., Eichstaedt, J., Kern, M., Park, G., Sap, M., Stillwell, D., … Ungar, L. (2014). Towards assessing changes in degree of depression through Facebook. In Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, 118125.CrossRefGoogle Scholar
Schwartz, H. A., Park, G., Sap, M., Weingarten, E., Eichstaedt, J., Kern, M., Stillwell, D., Kosinski, M., Berger, J., Seligman, M., and Ungar, L. (2015). Extracting human temporal orientation from Facebook language. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 409419.CrossRefGoogle Scholar
Sedoc, J., Buechel, S., Nachmany, Y., Buffone, A., and Ungar, L. (2020, May). Learning word ratings for empathy and distress from document-level user responses. In Proceedings of the 12th Language Resources and Evaluation Conference, 16641673.Google Scholar
Seraj, S., Blackburn, K. G., and Pennebaker, J. W. (2021). Language left behind on social media exposes the emotional and cognitive costs of a romantic breakup. Proceedings of the National Academy of Sciences, 118, e2017154118.CrossRefGoogle ScholarPubMed
Sharma, A., Lin, I. W., Miner, A. S., Atkins, D. C., and Althoff, T. (2023). Human–AI collaboration enables more empathic conversations in text-based peer-to-peer mental health support. Nature Machine Intelligence, 5(1), 112.CrossRefGoogle Scholar
Simmons, R. A., Gordon, P. C., and Chambless, D. L. (2005). Pronouns in marital interaction: What do “you” and “I” say about marital health? Psychological science, 16, 932936.CrossRefGoogle Scholar
Slatcher, R. B., Vazire, S., and Pennebaker, J. W. (2008). Am “I” more important than “we”? Couples’ word use in instant messages. Personal Relationships, 15, 407424.CrossRefGoogle Scholar
Smith, C. P. (2000). Content analysis and narrative analysis. In Reis, H. T. and Judd, C. M. (eds.), Handbook of Research Methods in Social and Personality Psychology. Cambridge University Press.Google Scholar
Srivastava, S. B., Goldberg, A., Manian, V. G., and Potts, C. (2018). Enculturation trajectories: Language, cultural adaptation, and individual outcomes in organizations. Management Science, 64, 13481364.CrossRefGoogle Scholar
Stewart, A. E., Vrzakova, H., Sun, C., Yonehiro, J., Stone, C. A., Duran, N. D., Shute, V. and D’Mello, S. K. (2019). I say, you say, we say: Using spoken language to model socio-cognitive processes during computer-supported collaborative problem solving. Proceedings of the ACM on Human-Computer Interaction, 3, 119.CrossRefGoogle Scholar
Stone, P. J., Bales, R. F., Namenwirth, J. Z., and Ogilvie, D. M. (1962). The General Inquirer: A computer system for content analysis and retrieval based on the sentence as a unit of information. Behavioral Science, 7, 484498.CrossRefGoogle Scholar
Sun, J., Schwartz, H. A., Son, Y., Kern, M. L., and Vazire, S. (2020). The language of well-being: Tracking fluctuations in emotion experience through everyday speech. Journal of Personality and Social Psychology, 118, 364387.CrossRefGoogle ScholarPubMed
Tackman, A. M., Baranski, E. N., Danvers, A. F., Sbarra, D. A., Raison, C. L., Moseley, S. A., … Mehl, M. R. (2020). “Personality in its natural habitat” revisited: A pooled, multi–sample examination of the relationships between the Big Five personality traits and daily behaviour and language use. European Journal of Personality, 34, 753776.CrossRefGoogle Scholar
Tackman, A. M., Sbarra, D. A., Carey, A. L., Donnellan, M. B., Horn, A. B., Holtzman, N. S., Edwards, T. M. S., Pennebaker, J. W., and Mehl, M. R. (2019). Depression, negative emotionality, and self-referential language: A multi-lab, multi-measure, and multi-language-task research synthesis. Journal of Personality and Social Psychology, 116, 817834.CrossRefGoogle Scholar
Tausczik, Y., Chung, C., and Pennebaker, J. (2016). Tracking secret-keeping in emails. In Proceedings of the International AAAI Conference on Web and Social Media, 388397.Google Scholar
Tausczik, Y. R., and Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29, 2454.CrossRefGoogle Scholar
Taylor, P. J., Dando, C. J., Ormerod, T. C., Ball, L. J., Jenkins, M. C., Sandham, A., and Menacere, T. (2013). Detecting insider threats through language change. Law and Human Behavior, 37, 267275.CrossRefGoogle ScholarPubMed
Taylor, P. J., and Thomas, S. (2008). Linguistic style matching and negotiation outcome. Negotiation and Conflict Management Research, 1, 263281.CrossRefGoogle Scholar
Thorp, H. H. (2023). ChatGPT is fun, but not an author. Science, 379, 313.CrossRefGoogle Scholar
Timmons, A. C., Han, S. C., Kim, Y., Pettit, C., Perrone, L., Power, K., Vitale, L., and Margolin, G. (2021). Fluctuations in pronoun use in everyday life: Understanding couple aggression in context. Journal of Family Psychology, 35, 149159.CrossRefGoogle ScholarPubMed
Toma, C. L., and Hancock, J. T. (2012). What lies beneath: The linguistic traces of deception in online dating profiles. Journal of Communication, 62, 7897.CrossRefGoogle Scholar
van Loon, A., Giorgi, S., Willer, R., and Eichstaedt, J. (2022, May). Negative associations in word embeddings predict anti-black bias across regions – but only via name frequency. In Proceedings of the International AAAI Conference on Web and Social Media, 14191424.CrossRefGoogle Scholar
Vine, V., Boyd, R. L., and Pennebaker, J. W. (2020). Natural emotion vocabularies as windows on distress and well-being. Nature Communications, 11, 19.CrossRefGoogle ScholarPubMed
Wei, J., Finn, K., Templeton, E., Wheatley, T., and Vosoughi, S. (2021). Linguistic complexity loss in text-based therapy. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 44504459.CrossRefGoogle Scholar
Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P. S., Cheng, M., Glaese, M., Balle, B., Kasirzadeh, A., and Kenton, Z. (2021). Ethical and social risks of harm from language models. Preprint, arXiv, 2112.04359.Google Scholar
Weidman, A. C., Sun, J., Vazire, S., Quoidbach, J., Ungar, L. H., and Dunn, E. W. (2020). (Not) hearing happiness: Predicting fluctuations in happy mood from acoustic cues using machine learning. Emotion, 20, 642658.CrossRefGoogle ScholarPubMed
Weintraub, W. (1981). Verbal Behavior: Adaptation and Psychopathology. Springer Publishing Company.Google Scholar
Weintraub, W. (1989). Verbal Behavior in Everyday Life. Springer Publishing Co.Google Scholar
Winter, D. G., and McClelland, D. C. (1978). Thematic analysis: An empirically derived measure of the effects of liberal arts education. Journal of Educational Psychology, 70, 816.CrossRefGoogle Scholar
Whorf, B. L. (1940). Science and Linguistics. Bobbs-Merrill.Google Scholar
Wierzbicka, A. (1997). Understanding Cultures through Their Key Words: English, Russian, Polish, German, and Japanese. Oxford University Press.CrossRefGoogle Scholar
Wierzbicka, A. (2016). Two levels of verbal communication, universal and culture-specific. In Rocci, A. and de Saussure, L. (eds.), Verbal Communication. De Gruyter Mouton.Google Scholar
Wittgenstein, L. (1953). Philosophical Investigations. Basil Blackwell.Google Scholar
Wood, J. M., Lilienfeld, S. O., Garb, H. N., and Nezworski, M. T. (2000). The Rorschach test in clinical diagnosis: A critical review, with a backward look at Garfield (1947). Journal of Clinical Psychology, 56, 395430.3.0.CO;2-O>CrossRefGoogle Scholar
Yarkoni, T. (2010). Personality in 100,000 words: A large-scale analysis of personality and word use among bloggers. Journal of Research in Personality, 44, 363373.CrossRefGoogle ScholarPubMed
Yeats, W. B. (1921). The Second Coming. In Yeats, W. B., Michael Robartes and the Dancer: And Other Poems. Cuala Press.Google Scholar
Youyou, W., Stillwell, D., Schwartz, H. A., and Kosinski, M. (2017). Birds of a feather do flock together: Behavior-based personality-assessment method reveals personality similarity among couples and friends. Psychological Science, 28, 276284.CrossRefGoogle Scholar

References

Bachrach, Y., Graepel, T., Kohli, P., Kosinski, M., and Stillwell, D. J. (2014). Your digital image: factors behind demographic and psychometric predictions from social network profiles. Proceedings of the 2014 International Conference on Autonomous Agents and Multiagent Systems.Google Scholar
Bakker, M., van Dijk, A., and Wicherts, J. M. (2012). The rules of the game called psychological science. Perspectives on Psychological Science, 7(6), 543554.CrossRefGoogle ScholarPubMed
Barker, R. G., and Wright, H. F. (1951). One Boy’s Day. A Specimen Record of Behavior. Harper & Row.Google Scholar
Beasley, C., and Holmes, M. (2021). Internet Dating: Intimacy and Social Change. Routledge.CrossRefGoogle Scholar
Beauchamp, N. (2022). “This candle has no smell”: Detecting the effect of COVID anosmia on Amazon reviews using Bayesian vector autoregression. In Proceedings of the International AAAI Conference on Web and Social Media, 16, 13631367.CrossRefGoogle Scholar
Bi, B., Kosinski, M., Shokouhi, M., and Graepel, T. (2013). Inferring the Demographics of Search Users Social Data Meets Search Queries. Proceedings of the International WWW Conference.Google Scholar
Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D., Marlow, C., Settle, J. E., and Fowler, J. H. (2012). A 61-million-person experiment in social influence and political mobilization. Nature, 489(7415), 295298.CrossRefGoogle ScholarPubMed
Breza, E., Stanford, F. C., Alsan, M., Alsan, B., Banerjee, A., Chandrasekhar, A. G., … Duflo, E. (2021). Effects of a large-scale social media advertising campaign on holiday travel and COVID-19 infections: A cluster randomized controlled trial. Nature Medicine, 27(9), 16221628.CrossRefGoogle ScholarPubMed
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., … Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 18771901.Google Scholar
Cadwalladr, C. (2016). Google, democracy and the truth about internet search. The Guardian, 4(12), 2016.Google Scholar
Cao, X. and Kosinski, M. (2024) Large Language Models Know How the Personality of Public Figures is Perceived by the General Public. Scientific Reports.CrossRefGoogle Scholar
Chen, E. E., and Wojcik, S. P. (2016). A practical guide to big data research in psychology. Psychological Methods, 21(4), 458474.CrossRefGoogle ScholarPubMed
Christensen, H. T. (1947). Student views on mate selection. Marriage and Family Living, 9(4), 8588.CrossRefGoogle ScholarPubMed
de Montjoye, Y. A., Hidalgo, C., Verleysen, M., Blondel, V. D. (2013). Unique in the Crowd: The privacy bounds of human mobility. Scientific Reports 3, 1376.CrossRefGoogle Scholar
Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 7887.CrossRefGoogle Scholar
Eagle, N., Pentland, A., and Lazer, D. (2009). Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106(36), 1527415278.CrossRefGoogle ScholarPubMed
Egebark, J., Ekström, M., Plug, E., and van Praag, M. (2021). Brains or beauty? Causal evidence on the returns to education and attractiveness in the online dating market. Journal of Public Economics, 196, 104372, DOI:10.1016/j.jpubeco.2021.104372.CrossRefGoogle Scholar
Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G. J., Labarthe, D. R., Merchant, R. M., … Seligman, M. E. P. (2015). Psychological language on Twitter predicts county-level heart disease mortality. Psychological Science, 26(2), 159169.CrossRefGoogle ScholarPubMed
Ellard-Gray, A., Jeffrey, N. K., Choubak, M., and Crann, S. E. (2015). Finding the hidden participant: Solutions for recruiting hidden, hard-to-reach, and vulnerable populations. International Journal of Qualitative Methods, 14(5), 1609406915621420.CrossRefGoogle Scholar
Fraley, R. C., and Marks, M. J. (2007). The null hypothesis significance testing debate and its implications for personality research. In Robins, R. W., Fraley, R. C., and Krueger, R. F. (eds.) Handbook of Research Methods in Personality Psychology. Guilford Press.Google Scholar
Gerlach, T. M., Arslan, R. C., Schultze, T., Reinhard, S. K., & Penke, L. (2019). Predictive validity and adjustment of ideal partner preferences across the transition into romantic relationships. Journal of Personality and Social Psychology, 116(2), 313.CrossRefGoogle Scholar
Gordon, A. M., and Mendes, W. B. (2021). A large-scale study of stress, emotions, and blood pressure in daily life using a digital platform. Proceedings of the National Academy of Sciences of the United States of America, 118(31), e2105573118.CrossRefGoogle ScholarPubMed
Gosling, S. D., and Mason, W. (2015). Internet research in psychology. Annual Review of Psychology, 66, 877902.CrossRefGoogle ScholarPubMed
Götz, F. M., Gosling, S. D., and Rentfrow, P. J. (2022). Small effects: The indispensable foundation for a cumulative psychological science. Perspectives on Psychological Science, 17(1), 205215.CrossRefGoogle ScholarPubMed
Graff, M. (2022). Online dating fatigue – why some people are turning to face-to-face apps first. The Conversation.Google Scholar
Hanel, P. H., and Vione, K. C. (2016). Do student samples provide an accurate estimate of the general public? PLOS ONE, 11(12), e0168354.CrossRefGoogle ScholarPubMed
Haynes, L., Goldacre, B., and Torgerson, D. (2012). Test, Learn, Adapt: Developing Public Policy with Randomised Controlled Trials. Cabinet Office Behavioural Insights Team.Google Scholar
Henrich, J., Heine, S. J., and Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183CrossRefGoogle ScholarPubMed
Hill, K. (2012, February 16). How Target figured out a teen girl was pregnant before her father did. Forbes, www.forbes.com.Google Scholar
Hinds, J., Brown, O., Smith, L. G. E., Piwek, L., Ellis, D. A., and Joinson, A. N. (2022). Integrating Insights About Human Movement Patterns From Digital Data Into Psychological Science. Current Directions in Psychological Science, 31(1), 8895.CrossRefGoogle Scholar
Hitsch, G. J., Hortaçsu, A., and Ariely, D. (2010). Matching and sorting in online dating. American Economic Review, 100(1), 130163.CrossRefGoogle Scholar
Jones, N. M., Wojcik, S. P., Sweeting, J., and Silver, R. C. (2016). Tweeting negative emotion: An investigation of Twitter data in the aftermath of violence on college campuses. Psychological Methods, 21(4), 526541.CrossRefGoogle ScholarPubMed
Kennedy, B., Ashokkumar, A., Boyd, R. L., and Dehghani, M. (2022). Text analysis for psychology: Methods, principles, and practices. In Dehghani, M. and Boyd, R. L. (eds.) The Handbook of Language Analysis in Psychology. Guilford Press.Google Scholar
Kern, M. L., Park, G. J., Eichstaedt, J. C., Schwartz, A. H., Sap, M., Smith, L. K., and Ungar, L. H. (2016). Gaining insights from social media language: Methodologies and challenges. Psychological Methods, 21(4), 507525.CrossRefGoogle ScholarPubMed
Kohavi, R., Tang, D., Xu, Y., Hemkens, L. G., and Ioannidis, J. (2020). Online randomized controlled experiments at scale: lessons and extensions to medicine. Trials, 21(1), 19.CrossRefGoogle ScholarPubMed
Kosinski, M. (2017). Facial width-to-height ratio does not predict self-reported behavioral tendencies. Psychological Science, 28(11), 16751682.CrossRefGoogle Scholar
Kosinski, M. (2021). Facial recognition technology can expose political orientation from naturalistic facial images. Scientific Reports, 11(1), 17.Google ScholarPubMed
Kosinski, M., Bachrach, Y., Kohli, P., Stillwell, D. J., and Graepel, T. (2013). Manifestations of User Personality in Website Choice and Behaviour on Online Social Networks. Machine Learning.Google Scholar
Kosinski, M., Khambatta, P., and Wang, Y. (2024). Facial recognition technology can infer political orientation from stable facial features. American Psychologist.Google Scholar
Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., and Stillwell, D. J. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70(6), 543556.CrossRefGoogle ScholarPubMed
Kosinski, M., Stillwell, D., and Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110(15), 58025805.CrossRefGoogle ScholarPubMed
Kosinski, M., Wang, Y., Lakkaraju, H., and Leskovec, J. (2016). Mining big data to extract patterns and predict real-life outcomes. Psychological Methods, 21(4), 493506.CrossRefGoogle ScholarPubMed
Landers, R., and Behrend, T. (2015). An inconvenient truth: Arbitrary distinctions between organizational, mechanical Turk, and other convenience samples. Industrial and Organizational Psychology, 8(2), 142164.CrossRefGoogle Scholar
Landers, R. N., Brusso, R. C., Cavanaugh, K. J., and Collmus, A. B. (2016). A primer on theory-driven web scraping: Automatic extraction of big data from the Internet for use in psychological research. Psychological Methods, 21(4), 475492.CrossRefGoogle ScholarPubMed
Levy, S. (2020). Facebook: The inside story. Penguin; UK.Google ScholarPubMed
Matz, S. C., Gladstone, J. J., and Stillwell, D. J. (2016). Money buys happiness when spending fits our personality. Psychological Science, 27(5), 715725.CrossRefGoogle ScholarPubMed
Matz, S. C., Kosinski, M., Nave, G., and Stillwell, D. J. (2017). Psychological targeting as an effective approach to digital mass persuasion. Proceedings of the National Academy of Sciences, 114(48), 1271412719.CrossRefGoogle ScholarPubMed
Mehl, M. R., Eid, M., Wrzus, C., Harari, G. M., and Ebner-Priemer, U. (eds.) (2023). Handbook of Mobile Sensing in Psychology: Methods and Applications. Guilford Press.Google Scholar
Mestyán, M., Yasseri, T., and Kertész, J. (2013). Early prediction of movie box office success based on Wikipedia activity big data. PLOS ONE, 8(8), e71226.CrossRefGoogle ScholarPubMed
Meyer, G. J., Finn, S. E., Eyde, L. D., Kay, G. G., Moreland, K. L., Dies, R. R., Eisman, E. J., and Reed, G. M. (2001). Psychological testing and psychological assessment: A review of evidence and issues. American Psychologist, 56(2), 128165.CrossRefGoogle ScholarPubMed
Murphy, S. C. (2017). A hands-on guide to conducting psychological research on Twitter. Social Psychological and Personality Science, 8 (4), 396412.CrossRefGoogle Scholar
Nave, G., Minxha, J., Greenberg, D. M., Kosinski, M., Stillwell, D. J. and Rentfrow, J. (2018). Musical Preferences Predict Personality: Evidence From Active Listening and Facebook Likes. Psychological Science.CrossRefGoogle Scholar
Park, G. J., Schwartz, A. H., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., Ungar, L., Seligman, M. E. P. (2014). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934952.CrossRefGoogle ScholarPubMed
Phan, T. Q., and Airoldi, E. M. (2015). A natural experiment of social network formation and dynamics. Proceedings of the National Academy of Sciences, 112(21), 65956600.CrossRefGoogle ScholarPubMed
Quercia, D., Kosinski, M., Stillwell, D. J., and Crowcroft, J. (2011). Our Twitter Profiles, Our Selves: Predicting Personality with Twitter. Proceedings of the IEEE International Conference on Social Computing.CrossRefGoogle Scholar
Raento, M., Oulasvirta, A., and Eagle, N. (2009). Smartphones: An Emerging Tool for Social Scientists. Sociological Methods & Research, 37(3), 426454.CrossRefGoogle Scholar
Rosenfeld, M. J., Thomas, R. J., and Hausen, S. (2019). Disintermediating your friends: How online dating in the United States displaces other ways of meeting. Proceedings of the National Academy of Sciences, 116(36), 1775317758.CrossRefGoogle ScholarPubMed
Rudder, C. (2009). How your race affects the messages you get. OK Cupid blog, www.gwern.net/docs/psychology/okcupid/howyourraceaffectsthemessagesyouget.html.Google Scholar
Rust, J., Kosinski, M., and Stillwell, D. (2020). Modern Psychometrics. Routledge.CrossRefGoogle Scholar
Stachl, C., Hilbert, S., Au, J. Q., Buschek, D., De Luca, A., Bischl, B., Hussmann, H., and Bühner, M. (2017). Personality traits predict smartphone usage. European Journal of Personality, 31(6), 701722.CrossRefGoogle Scholar
Schultze, U., and Mason, R. O. (2012). Studying Cyborgs: Re-Examining Internet Studies As Human Subjects Research. Journal of Internet Technology, 27(4), 301312.Google Scholar
Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., Kosinski, M., Stillwell, D., Seligman, M. E. P., and Ungar, L. H. (2013). Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach. PLOS ONE.CrossRefGoogle Scholar
Stephens-Davidowitz, S. (2014). The cost of racial animus on a black candidate: Evidence using Google search data. Journal of Public Economics, 118, 2640.CrossRefGoogle Scholar
Sweeney, L. (1997). Weaving technology and policy together to maintain confidentiality. Journal of Law, Medicine & Ethics, 25(2–3), 98110.CrossRefGoogle ScholarPubMed
Todorov, A., Olivola, C. Y., Dotsch, R., and Mende-Siedlecki, P. (2015). Social attributions from faces: Determinants, consequences, accuracy, and functional significance. Annual Review of Psychology, 66, 519545.CrossRefGoogle ScholarPubMed
Vazire, S., and Gosling, S. D. (2004). e-Perceptions: personality impressions based on personal websites. Journal of personality and social psychology, 87(1), 123.CrossRefGoogle Scholar
Wang, Y., and Kosinski, M. (2018). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 144(2), 246257.CrossRefGoogle Scholar
Wojcik, S., and Hughes, A. (2019). Sizing up Twitter users. PEW Research Center, 24, 123.Google Scholar
Yarkoni, T. (2010). Personality in 100,000 words: A large-scale analysis of personality and word use among bloggers. Journal of research in personality, 44(3), 363373.CrossRefGoogle ScholarPubMed
Yarkoni, T., and Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 11001122.CrossRefGoogle ScholarPubMed
Youyou, W., Kosinski, M., and Stillwell, D. J. (2015). Computer-based personality judgements are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 10361040.CrossRefGoogle ScholarPubMed
Youyou, W., Stillwell, D. J., Schwartz, A. H., and Kosinski, M. (2017). Birds of a feather do flock together: Behavior-based personality-assessment method reveals personality similarity among couples and friends. Psychological Science, 28(3), 276284.CrossRefGoogle Scholar
Zebrowitz, L. A., and Montepare, J. M. (2008). Social psychological face perception: Why appearance matters. Social and Personality Psychology Compass, 2, 14971517.CrossRefGoogle ScholarPubMed

References

Adolph, K. (2016). Video as data: from transient behavior to tangible recording. APS Observer, 29(3), 2325.Google ScholarPubMed
Adolph, K., Gilmore, R. O., Staff and Databrary Admin (2013). Databrary sponsored workshops and events. Databrary, http://doi.org/10.17910/B7159Q (accessed March 3, 2023).CrossRefGoogle Scholar
Aron, A., Melinat, E., Aron, E. N., Vallone, R. D., and Bator, R. J. (1997). The experimental generation of interpersonal closeness: A procedure and some preliminary findings. Personality and Social Psychology Bulletin, 23(4), 363377.CrossRefGoogle Scholar
Back, M. D., Schmukle, S. C., and Egloff, B. (2009). Predicting actual behavior from the explicit and implicit self-concept of personality. Journal of Personality and Social Psychology, 97(3), 5335418.CrossRefGoogle ScholarPubMed
Barak, M., Lipson, A., and Lerman, S. (2006). Wireless laptops as means for promoting active learning in large lecture halls. Journal of Research on Technology in Education, 38(3), 245263.CrossRefGoogle Scholar
Bartlett, M. S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., and Movellan, J. (2005). Recognizing facial expression: Machine learning and application to spontaneous behavior. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, 568573.CrossRefGoogle Scholar
Baumeister, R. F., Vohs, K. D., and Funder, D. C. (2007). Psychology as the science of self-reports and finger movements: Whatever happened to actual behavior? Perspectives on Psychological Science, 2(4), 396403.CrossRefGoogle ScholarPubMed
Bergsieker, H. B., Shelton, J. N., and Richeson, J. A. (2010). To be liked versus respected: Divergent goals in interracial interactions. Journal of Personality and Social Psychology, 99(2), 248264.CrossRefGoogle ScholarPubMed
Black, M. P., Katsamanis, A., Baucom, B. R., Lee, C.-C., Lammert, A. C., Christensen, A., Georgiou, P. G., and Narayanan, S. S. (2013). Toward automating a human behavioral coding system for married couples’ interactions using speech acoustic features. Speech Communication, 55(1), 121.CrossRefGoogle Scholar
Bolger, N., and Shrout, P. E. (2007). Accounting for statistical dependency in longitudinal data on dyads. In Little, T. D., Bovaird, J. A., and Card, N. A. (eds.) Modeling Contextual Effects in Longitudinal Studies. Lawrence Erlbaum Associates Publishers.Google Scholar
Boyd, R. L., and Schwarz, H. A. (2021). Natural language analysis and the psychology of verbal behavior: The past, present, and future states of the field. Journal of Language and Social Psychology, 40(1), https://journals.sagepub.com/doi/full/10.1177/0261927X20967028.CrossRefGoogle ScholarPubMed
Brady, W. J., McLoughlin, K., Doan, T. N., and Crockett, M. J. (2021). How social learning amplifies moral outrage expression in online social networks. Science Advances, 7, DOI:10.31234/osf.io/gf7t5.CrossRefGoogle ScholarPubMed
Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology. Psychological Review, 62, 193217.CrossRefGoogle Scholar
Capps, K. P., Updegraff, J. A., Foust, J. L., O’Brien, A. G., and Taber, J. M. (2022). Field experiment of signs promoting hand hygiene during the COVID-19 pandemic. Health Psychology, 41, 826832.CrossRefGoogle ScholarPubMed
Carcone, A. I., Hasan, M., Alexander, G. L., Dong, M., Eggly, S., Brogan Hartlieb, K., Naar, S., MacDonell, K., and Kotov, A. (2019). Developing machine learning models for behavioral coding. Journal of Pediatric Psychology, 44(3), 289299.CrossRefGoogle Scholar
Carter, N. T., Carter, D. R., and DeChurch, L. A. (2018). Implications of observability for the theory and measurement of emergent team phenomena. Journal of Management, 44(4), 13981425.CrossRefGoogle Scholar
Chakravarthula, S. N., Baucom, B. R. W., Narayanan, S., and Georgiou, P. (2021). An analysis of observation length requirements for machine understanding of human behaviors from spoken language. Computer Speech & Language, 66, 101162, https://doi.org/10.1016/j.csl.2020.101162.CrossRefGoogle Scholar
Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6, 284290.CrossRefGoogle Scholar
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 3746.CrossRefGoogle Scholar
Cronbach, L. J., Gleser, G. C., Nanda, H., and Rajaratnam, N. (1972). The Dependability of Behavioral Measurements: Theory of Generalizability for Scores and Profiles. John Wiley & Sons Inc.Google Scholar
de Mast, J. (2007). Agreement and kappa-type indices. American Statistician, 61(2), 148153.CrossRefGoogle Scholar
Dittmann, A. G., Stephens, N. M., and Townsend, S. S. M. (2020). Achievement is not class-neutral: Working together benefits people from working-class contexts. Journal of Personality and Social Psychology, 119, 517539.CrossRefGoogle Scholar
Dovidio, J. F., Kawakami, K., Johnson, C., Johnson, B., and Howard, A. (1997). On the nature of prejudice: Automatic and controlled processes. Journal of Experimental Social Psychology, 33(5), 510540.CrossRefGoogle Scholar
Dumitru, O. D., Thorson, K. R., and West, T. V. (2022). Investigating gender differences among tutors and students during STEM peer tutoring: Women are as behaviorally engaged as men but experience more negative affect. Contemporary Educational Psychology, 70, 102088, https://doi.org/10.1016/j.cedpsych.2022.102088.CrossRefGoogle Scholar
Elfenbein, H. A., and Luckman, E. A. (2016). Interpersonal accuracy in relation to culture and ethnicity. In Hall, J. A., Schmid Mast, M., and West, T. V. (eds.) The Social Psychology of Perceiving Others Accurately, 1st ed. Cambridge University Press.Google Scholar
Feldman, R., Gordon, I., and Zagoory-Sharon, O. (2011). Maternal and paternal plasma, salivary, and urinary oxytocin and parent–infant synchrony: Considering stress and affiliation components of human bonding. Developmental Science, 14(4), 752761.CrossRefGoogle ScholarPubMed
Fisher, P. H., Dobbs-Oates, J., Doctoroff, G. L., and Arnold, D. H. (2012). Early math interest and the development of math skills. Journal of Educational Psychology, 104(3), 673681.CrossRefGoogle Scholar
Freeman, J. B., Stolier, R. M., and Brooks, J. A. (2020). Dynamic interactive theory as a domain-general account of social perception. Advances in Experimental Social Psychology, 61, 237287.CrossRefGoogle ScholarPubMed
Funder, D. C. (1995). On the accuracy of personality judgment: A realistic approach. Psychological Review, 10(4), 652670.CrossRefGoogle Scholar
Furr, R. M. (2009). Personality psychology as a truly behavioural science. European Journal of Personality, 23(5), 369401.CrossRefGoogle Scholar
Gaither, S. E., Babbitt, L. G., and Sommers, S. R. (2018). Resolving racial ambiguity in social interactions. Journal of Experimental Social Psychology, 76, 259269.CrossRefGoogle Scholar
Gordon, A. M., and Chen, S. (2016). Do you get where I’m coming from? Perceived understanding buffers against the negative impact of conflict on relationship satisfaction. Journal of Personality and Social Psychology, 110(2), 239260.CrossRefGoogle Scholar
Gosling, S. D., John, O. P., Craik, K. H., and Robins, R. W. (1998). Do people know how they behave? Self-reported act frequencies compared with on-line codings by observers. Journal of Personality and Social Psychology, 74, 13371349.CrossRefGoogle ScholarPubMed
Haghani, P., Narayanan, A., Bacchiani, M., Chuang, G., Gaur, N., Moreno, P., Prabhavalkar, R., Qu, Z., and Waters, A. (2018). From audio to semantics: Approaches to end-to-end spoken language understanding. 2018 IEEE Spoken Language Technology Workshop (SLT), 720–726, https://doi.org/10.1109/SLT.2018.8639043.CrossRefGoogle Scholar
Haines, N., Southward, M. W., Cheavens, J. S., Beauchaine, T., and Ahn, W.-Y. (2019). Using computer-vision and machine learning to automate facial coding of positive and negative affect intensity. PLOS ONE, 14(2), e0211735, https://doi.org/10.1371/journal.pone.0211735.CrossRefGoogle ScholarPubMed
Hall, J. A., Gunnery, S. D., and Horgan, T. G. (2016). Gender differences in interpersonal accuracy. In Hall, J. A., Schmid Mast, M., and West, T. V. (eds.) The Social Psychology of Perceiving Others Accurately, 1st ed. Cambridge University Press.CrossRefGoogle Scholar
Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: An overview and tutorial. Tutorials in Quantitative Methods for Psychology, 8(1), 2334.CrossRefGoogle ScholarPubMed
Hansen, P. G., Larsen, E. G., and Gundersen, C. D. (2022). Reporting on one’s behavior: A survey experiment on the nonvalidity of self-reported COVID-19 hygiene-relevant routine behaviors. Behavioural Public Policy, 6(1), 3451.CrossRefGoogle Scholar
Harari, G. M., Lane, N. D., Wang, R., Crosier, B. S., Campbell, A. T., and Gosling, S. D. (2016). Using smartphones to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 11(6), 838854.CrossRefGoogle Scholar
Härdelin, G., Holding, B. C., Reess, T., Geranmayeh, A., Axelsson, J., and Sundelin, T. (2021). Do mothers have worse sleep than fathers? Sleep imbalance, parental stress, and relationship satisfaction in working parents. Nature and Science of Sleep, 13, 19551966.Google Scholar
Heavey, C. L., Christensen, A., and Malamuth, N. M. (1995). The longitudinal impact of demand and withdrawal during marital conflict. Journal of Consulting and Clinical Psychology, 63(5), 797801.CrossRefGoogle ScholarPubMed
Heyman, R. E., Lorber, M. F., Eddy, J. M., and West, T. V. (2014). Behavioral observation and coding. In Reis, H. T. and Judd, C. M. (eds.) Handbook of Research Methods in Social and Personality Psychology, 2nd ed. Cambridge University Press.Google Scholar
Huckins, J. F., daSilva, A. W., Wang, W., Hedlund, E., Rogers, C., Nepal, S. K., Wu, J., Obuchi, M., Murphy, E. I., Meyer, M. L., Wagner, D. D., Holtzheimer, P. E., and Campbell, A. T. (2020). Mental health and behavior of college students during the early phases of the COVID-19 pandemic: Longitudinal smartphone and ecological momentary assessment study. Journal of Medical Internet Research, 22(6), e20185, https://doi.org/10.2196/20185.CrossRefGoogle ScholarPubMed
Hughes, B. T., Flournoy, J. C., and Srivastava, S. (2021). Is perceived similarity more than assumed similarity? An interpersonal path to seeing similarity between self and others. Journal of Personality and Social Psychology, 121, 184200.CrossRefGoogle ScholarPubMed
Karremans, J. C., and Verwijmeren, T. (2008). Mimicking attractive opposite-sex others: The role of romantic relationship status. Personality and Social Psychology Bulletin, 34(7), 939950.CrossRefGoogle ScholarPubMed
Kenny, D. A., Mohr, C. D., and Levesque, M. J. (2001). A social relations variance partitioning of dyadic behavior. Psychological Bulletin, 127, 128141.CrossRefGoogle ScholarPubMed
Landis, J. R., and Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159174.CrossRefGoogle ScholarPubMed
Latu, I. M., and Schmid Mast, M. (2016). Male interviewers’ nonverbal dominance predicts lower evaluations of female applicants in simulated job interviews. Journal of Personnel Psychology, 15(3), 116, https://doi.org/10.1027/1866-5888/a000159CrossRefGoogle Scholar
McGraw, K. O., and Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 3046.CrossRefGoogle Scholar
Maner, J. K. (2016). Into the wild: Field research can increase both replicability and real-world impact. Journal of Experimental Social Psychology, 66, 100106.CrossRefGoogle Scholar
Mehl, M. R. (2017). The electronically activated recorder (EAR): A method for the naturalistic observation of daily social behavior. Current Directions in Psychological Science, 26(2), 184190.CrossRefGoogle Scholar
Mendes, W. B., and Koslov, K. (2013). Brittle smiles: Positive biases toward stigmatized and outgroup targets. Journal of Experimental Psychology: General, 142, 923933.CrossRefGoogle ScholarPubMed
Moskowitz, D. S. (1988). Cross-situational generality in the laboratory: Dominance and friendliness. Journal of Personality and Social Psychology, 54(5), 829839.CrossRefGoogle Scholar
Murphy, N. A., and Hall, J. A. (2021). Capturing behavior in small doses: A review of comparative research in evaluating thin slices for behavioral measurement. Frontiers in Psychology, 12, www.frontiersin.org/articles/10.3389/fpsyg.2021.667326.CrossRefGoogle ScholarPubMed
Murphy, N. A., Hall, J. A., Ruben, M. A., Frauendorfer, D., Schmid Mast, M., Johnson, K. E., and Nguyen, L. (2019). Predictive validity of thin-slice nonverbal behavior from social interactions. Personality and Social Psychology Bulletin, 45(7), https://journals.sagepub.com/doi/10.1177/0146167218802834.CrossRefGoogle ScholarPubMed
Murphy, N. A., Hall, J. A., Schmid Mast, M., Ruben, M. A., Frauendorfer, D., Blanch-Hartigan, D., Roter, D. L., and Nguyen, L. (2015). Reliability and validity of nonverbal thin slices in social interactions. Personality and Social Psychology Bulletin, 41(2), 199213.CrossRefGoogle ScholarPubMed
Myaskovsky, L., Unikel, E., and Dew, M. A. (2005). Effects of gender diversity on performance and interpersonal behavior in small work groups. Sex Roles, 52(9), 645657.CrossRefGoogle Scholar
Nils, F., and Rimé, B. (2012). Beyond the myth of venting: Social sharing modes determine the benefits of emotional disclosure. European Journal of Social Psychology, 42(6), 672681.CrossRefGoogle Scholar
Paluck, E. L., and Cialdini, R. B. (2014). Field research methods. In Reis, H. T. and Judd, C. M. (eds.) Handbook of Research Methods in Social and Personality Psychology, 2nd ed. Cambridge University Press.Google Scholar
Park, J., Woolley, J., and Mendes, W. B. (2022). The effects of intranasal oxytocin on black participants’ responses to outgroup acceptance and rejection. Frontiers in Psychology, 13, 916305, https://doi.org/10.3389/fpsyg.2022.916305.CrossRefGoogle ScholarPubMed
Patterson, G. R. (1982). Coercive Family Process. Castalia.Google Scholar
Poole, K. L., and Henderson, H. A. (2022). Shyness, self-focused attention, and behavioral mimicry during social interaction. Journal of Research in Personality, 98, 104225, https://doi.org/10.1016/j.jrp.2022.104225.CrossRefGoogle Scholar
Rapuano, M., Sbordone, F. L., Borrelli, L. O., Ruggiero, G., and Iachini, T. (2021). The effect of facial expressions on interpersonal space: A gender study in immersive virtual reality. In Esposito, A., Faundez-Zanuy, M., Morabito, F. C., and Pasero, E. (eds.), Progresses in Artificial Intelligence and Neural Systems. Springer.Google Scholar
Sandstrom, G. M., and Boothby, E. J. (2021). Why do people avoid talking to strangers? A mini meta-analysis of predicted fears and actual experiences talking to a stranger. Self and Identity, 20(1), 4771.CrossRefGoogle Scholar
Schmid Mast, M., Gatica-Perez, D., Frauendorfer, D., Nguyen, L., and Choudhury, T. (2015). Social sensing for psychology: Automated interpersonal behavior assessment. Current Directions in Psychological Science, 24(2), 154160.CrossRefGoogle Scholar
Schroeder, J., Risen, J. L., Gino, F., and Norton, M. I. (2019). Handshaking promotes deal-making by signaling cooperative intent. Journal of Personality and Social Psychology, 116(5), 743–768.CrossRefGoogle ScholarPubMed
Shavelson, R. J., and Webb, N. M. (2006). Generalizability theory. In Green, J. L., Camilli, G., and Elmore, P. B. (eds.), Handbook of Complementary Methods in Education Research, 3rd ed. Routledge.Google Scholar
Shrout, P. E., and Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420428.CrossRefGoogle ScholarPubMed
Shrout, P. E., and Lane, S. P. (2012). Psychometrics. In Mehl, M. R. and Conner, T. S. (eds.) Handbook of Research Methods for Studying Daily Life. Guilford Press.Google Scholar
Tausczik, Y. R., and Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29(1), 2454.CrossRefGoogle Scholar
ten Hove, D., Jorgensen, T. D., and van der Ark, L. A. (2021). Interrater reliability for multilevel data: A generalizability theory approach. Psychological Methods, 27(4), 650666.CrossRefGoogle Scholar
Thorson, K. R., Forbes, C. E., Magerman, A. B., and West, T. V. (2019). Under threat but engaged: Stereotype threat leads women to engage with female but not male partners in math. Contemporary Educational Psychology, 58, 243259.CrossRefGoogle Scholar
Thorson, K. R., Ketay, S., Roy, A. R. K., and Welker, K. M. (2021). Self-disclosure is associated with adrenocortical attunement between new acquaintances. Psychoneuroendocrinology, 132, 105323, https://doi.org/10.1016/j.psyneuen.2021.105323.CrossRefGoogle ScholarPubMed
Thorson, K. R., Mendes, W. B., and West, T. V. (2020). Controlling the uncontrolled: Are there incidental experimenter effects on physiologic responding?Psychophysiology, 57(3), e13500, https://doi.org/10.1111/psyp.13500.CrossRefGoogle ScholarPubMed
Traupman, E. K., Smith, T. W., Florsheim, P., Berg, C. A., and Uchino, B. N. (2011). Appraisals of spouse affiliation and control during marital conflict: Common and specific cognitive correlates among facets of negative affectivity. Cognitive Therapy and Research, 35(3), 187198.CrossRefGoogle Scholar
Wang, M., Chen, K., and Hall, J. (2021). Predictive validity of thin slices of verbal and nonverbal behaviors: Comparison of slice lengths and rating methodologies. Journal of Nonverbal Behavior, 45, 114.CrossRefGoogle Scholar
West, T. V., Koslov, K., Page-Gould, E., Major, B., and Mendes, W. B. (2017). Contagious anxiety: Anxious European Americans can transmit their physiological reactivity to African Americans. Psychological Science, 28(12), 17961806.CrossRefGoogle ScholarPubMed
West, T. V., Pearson, A. R., and Stern, C. (2014). Anxiety perseverance in intergroup interaction: When incidental explanations backfire. Journal of Personality and Social Psychology, 107(5), 825843.CrossRefGoogle ScholarPubMed
Witkower, Z., Tracy, J. L., Cheng, J. T., and Henrich, J. (2020). Two signals of social rank: Prestige and dominance are associated with distinct nonverbal displays. Journal of Personality and Social Psychology, 118(1), 89120.CrossRefGoogle ScholarPubMed
Xu, S., and Lorber, M. F. (2014). Interrater agreement statistics with skewed data: Evaluation of alternatives to Cohen’s kappa. Journal of Consulting and Clinical Psychology, 82, 12191227.CrossRefGoogle ScholarPubMed
Yilmaz, G. (2016). What you do and how you speak matter: Behavioral and linguistic determinants of performance in virtual teams. Journal of Language and Social Psychology, 35(1), 7697.CrossRefGoogle Scholar
Zee, K. S., and Bolger, N. (2022). Physiological coregulation during social support discussions. Emotion, 23(3), 825843.CrossRefGoogle ScholarPubMed

References

Asendorpf, J. B., Banse, R., and Mücke, D. (2002). Double dissociation between explicit and implicit personality self-concept: The case of shy behavior. Journal of Personality and Social Psychology, 83, 380393.CrossRefGoogle ScholarPubMed
Banaji, M. R., and Hardin, C. D. (1996). Automatic stereotyping. Psychological Science, 7, 136141.CrossRefGoogle Scholar
Banse, R., Gawronski, B., Rebetez, C., Gutt, H., and Morton, J. B. (2010). The development of spontaneous gender stereotyping in childhood: Relations to stereotype knowledge and stereotype flexibility. Developmental Science, 13, 298306.CrossRefGoogle ScholarPubMed
Bar-Anan, Y., and Nosek, B. A. (2012). Reporting intentional rating of the primes predicts priming effects in the affective misattribution procedure. Personality and Social Psychology Bulletin, 38, 11941208.CrossRefGoogle ScholarPubMed
Bar-Anan, Y., Nosek, B. A., and Vianello, M. (2009). The sorting paired features task: A measure of association strengths. Experimental Psychology, 56, 329343.CrossRefGoogle ScholarPubMed
Bargh, J. A. (1994). The four horsemen of automaticity: Awareness, intention, efficiency, and control in social cognition. In Wyer, R. S. and Srull, T. K. (eds.) Handbook of Social Cognition. Erlbaum.Google Scholar
Bargh, J. A., Chaiken, S., Raymond, P., and Hymes, C. (1996). The automatic evaluation effect: Unconditional automatic activation with a pronunciation task. Journal of Personality and Social Psychology, 32, 104128.Google Scholar
Barnes-Holmes, D., Barnes-Holmes, Y., Stewart, I., and Boles, S. (2010). A sketch of the implicit relational assessment procedure (IRAP) and the relational elaboration and coherence (REC) model. Psychological Record, 60, 527542.CrossRefGoogle Scholar
Blair, I. V., Ma, J., and Lenton, A. (2001). Imagining stereotypes away: The moderation of implicit stereotypes through mental imagery. Journal of Personality and Social Psychology, 81, 828841.CrossRefGoogle ScholarPubMed
Bluemke, M., and Friese, M. (2006). Do irrelevant features of stimuli influence IAT effects? Journal of Experimental Social Psychology, 42, 163176.CrossRefGoogle Scholar
Brendl, C. M., Markman, A. B., and Messner, C. (2005). Indirectly measuring evaluations of several attitude objects in relation to a neutral reference point. Journal of Experimental Social Psychology, 41, 346368.CrossRefGoogle Scholar
Calanchini, J. (2020). How multinomial processing trees have advanced, and can continue to advance, research using implicit measures. Social Cognition, 38, s165s186.CrossRefGoogle Scholar
Cameron, C. D., Brown-Iannuzzi, J., and Payne, B. K. (2012). Sequential priming measures of implicit social cognition: A meta-analysis of associations with behaviors and explicit attitudes. Personality and Social Psychology Review, 16, 330350.CrossRefGoogle ScholarPubMed
Chen, M., and Bargh, J. A. (1999). Consequences of automatic evaluation: Immediate behavioral predispositions to approach or avoid the stimulus. Personality and Social Psychology Bulletin, 25, 215224.CrossRefGoogle Scholar
Conrey, F. R., Sherman, J. W., Gawronski, B., Hugenberg, K., and Groom, C. (2005). Separating multiple processes in implicit social cognition: The quad-model of implicit task performance. Journal of Personality and Social Psychology, 89, 469487.CrossRefGoogle ScholarPubMed
Corneille, O., and Hütter, M. (2020). Implicit? What do you mean? A comprehensive review of the delusive implicitness construct in attitude research. Personality and Social Psychology Review, 24, 212232.CrossRefGoogle Scholar
Correll, J., Park, B., Judd, C. M., and Wittenbrink, B. (2002). The police officer’s dilemma: Using ethnicity to disambiguate threatening individuals. Journal of Personality and Social Psychology, 83, 13141329.CrossRefGoogle ScholarPubMed
De Houwer, J. (2003a). The extrinsic affective Simon task. Experimental Psychology, 50, 7785.CrossRefGoogle ScholarPubMed
De Houwer, J. (2003b). A structural analysis of indirect measures of attitudes. In Musch, J. and Klauer, K. C. (eds.) The Psychology of Evaluation: Affective Processes in Cognition and Emotion. Erlbaum.Google Scholar
De Houwer, J., and De Bruycker, E. (2007). The identification-EAST as a valid measure of implicit attitudes toward alcohol-related stimuli. Journal of Behavior Therapy and Experimental Psychiatry, 38, 133143.CrossRefGoogle ScholarPubMed
De Houwer, J., Heider, N., Spruyt, A., Roets, A., and Hughes, S. (2015). The relational responding task: Toward a new implicit measure of beliefs. Frontiers in Psychology, 6, 319, Doi: 10.3389/fpsyg.2015.00319.CrossRefGoogle Scholar
De Houwer, J., Teige-Mocigemba, S., Spruyt, A., and Moors, A. (2009). Implicit measures: A normative analysis and review. Psychological Bulletin, 135, 347368.CrossRefGoogle Scholar
Deutsch, R., and Gawronski, B. (2009). When the method makes a difference: Antagonistic effects on “automatic evaluations” as a function of task characteristics of the measure. Journal of Experimental Social Psychology, 45, 101114.CrossRefGoogle Scholar
Dhar, R., and Gorlin, M. (2013). A dual-system framework to understand preference construction processes in choice. Journal of Consumer Psychology, 23, 528542.CrossRefGoogle Scholar
Dovidio, J. F., Kawakami, K., and Gaertner, S. L. (2002). Implicit and explicit prejudice and interracial interaction. Journal of Personality and Social Psychology, 82, 6268.CrossRefGoogle ScholarPubMed
Eder, A. B., and Rothermund, K. (2008). When do motor behaviors (mis)match affective stimuli? An evaluative coding view of approach and avoidance reactions. Journal of Experimental Psychology: General, 137, 262281.CrossRefGoogle ScholarPubMed
Fazio, R. H. (2007). Attitudes as object-evaluation associations of varying strength. Social Cognition, 25, 603637.CrossRefGoogle ScholarPubMed
Fazio, R. H., Jackson, J. R., Dunton, B. C., and Williams, C. J. (1995). Variability in automatic activation as an unobtrusive measure of racial attitudes: A bona fide pipeline? Journal of Personality and Social Psychology, 69, 10131027.CrossRefGoogle ScholarPubMed
Gawronski, B. (2013). What should we expect from a dual-process theory of preference construction in choice? Journal of Consumer Psychology, 23, 556560.CrossRefGoogle Scholar
Gawronski, B. (2019). Six lessons for a cogent science of implicit bias and its criticism. Perspectives on Psychological Science, 14, 574595.CrossRefGoogle ScholarPubMed
Gawronski, B., Balas, R., and Creighton, L. A. (2014). Can the formation of conditioned attitudes be intentionally controlled? Personality and Social Psychology Bulletin, 40, 419432.CrossRefGoogle ScholarPubMed
Gawronski, B., and Bodenhausen, G. V. (2005). Accessibility effects on implicit social cognition: The role of knowledge activation versus retrieval experiences. Journal of Personality and Social Psychology, 89, 672685.CrossRefGoogle Scholar
Gawronski, B., and Bodenhausen, G. V. (2012). Self-insight from a dual-process perspective. In Vazire, S. and Wilson, T. D. (eds.) Handbook of Self-Knowledge. Guilford Press.Google Scholar
Gawronski, B., and Creighton, L. A. (2013). Dual-process theories. In Carlston, D. E. (ed.) The Oxford Handbook of Social Cognition. Oxford University Press.Google Scholar
Gawronski, B., De Houwer, J., and Sherman, J. W. (2020). Twenty-five years of research using implicit measures. Social Cognition, 38, s1s25.CrossRefGoogle Scholar
Gawronski, B., Deutsch, R., and Banse, R. (2011). Response interference tasks as indirect measures of automatic associations. In Klauer, K. C., Voss, A., and Stahl, C. (eds.) Cognitive Methods in Social Psychology. Guilford Press.Google Scholar
Gawronski, B., Deutsch, R., LeBel, E. P., and Peters, K. R. (2008). Response interference as a mechanism underlying implicit measures: Some traps and gaps in the assessment of mental associations with experimental paradigms. European Journal of Psychological Assessment, 24, 218225.CrossRefGoogle Scholar
Gawronski, B., Geschke, D., and Banse, R. (2003). Implicit bias in impression formation: Associations influence the construal of individuating information. European Journal of Social Psychology, 33, 573589.CrossRefGoogle Scholar
Gawronski, B., Luke, D. M., and Creighton, L. A. (in press). Dual-process theories. In Carlston, D. E., Johnson, K., and Hugenberg, K. (eds.) The Oxford Handbook of Social Cognition, 2nd ed. Oxford University Press.Google Scholar
Gawronski, B., Morrison, M., Phills, C. E., and Galdi, S. (2017). Temporal stability of implicit and explicit measures: A longitudinal analysis. Personality and Social Psychology Bulletin, 43, 300312.CrossRefGoogle Scholar
Gilbert, D. T., Pelham, B. W., and Krull, D. S. (1988). On cognitive busyness: When person perceivers meet persons perceived. Journal of Personality and Social Psychology, 54, 733740.CrossRefGoogle Scholar
Green, D. M., and Swets, J. A. (1966). Signal Detection Theory and Psychophysics. Wiley.Google Scholar
Greenwald, A G., and Lai, C. K. (2020). Implicit social cognition. Annual Review of Psychology, 71, 419445.CrossRefGoogle ScholarPubMed
Greenwald, A. G., McGhee, D. E., and Schwartz, J. K. L. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74, 14641480.CrossRefGoogle ScholarPubMed
Greenwald, A. G., Nosek, B. A., and Banaji, M. R. (2003). Understanding and using the implicit association test: I. An improved scoring algorithm. Journal of Personality and Social Psychology, 85, 197216.CrossRefGoogle ScholarPubMed
Greenwald, A. G., Poehlman, T. A., Uhlmann, E., and Banaji, M. R. (2009). Understanding and using the implicit association test: III. Meta-analysis of predictive validity. Journal of Personality and Social Psychology, 97, 1741.CrossRefGoogle ScholarPubMed
Hahn, A., Judd, C. M., Hirsh, H. K., and Blair, I. V. (2014). Awareness of implicit attitudes. Journal of Experimental Psychology: General, 143, 13691392.CrossRefGoogle ScholarPubMed
Hermans, D., De Houwer, J., and Eelen, P. (2001). A time course analysis of the affective priming effect. Cognition and Emotion, 15, 143165.CrossRefGoogle Scholar
Hofmann, W., Friese, M., and Roefs, A. (2009). Three ways to resist temptation: The independent contributions of executive attention, inhibitory control, and affect regulation to the impulse control of eating behavior. Journal of Experimental Social Psychology, 45, 431435.CrossRefGoogle Scholar
Högden, F., Hütter, M., and Unkelbach, C. (2018). Does evaluative conditioning depend on awareness? Evidence from a continuous flash suppression paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 16411657.Google ScholarPubMed
Hughes, S., Barnes-Holmes, D., and De Houwer, J. (2011). The dominance of associative theorising in implicit attitude research: Propositional and behavioral alternatives. Psychological Record, 61, 465498.CrossRefGoogle Scholar
Imhoff, R., Schmidt, A. F., Bernhardt., J., Dierksmeier, A., and Banse, R. (2011). An inkblot for sexual preference: A semantic variant of the affect misattribution procedure. Cognition and Emotion, 25, 676690.CrossRefGoogle ScholarPubMed
Inzlicht, M., Schmeichel, B. J., and Macrae, C. N. (2014). Why self-control seems (but may not be) limited. Trends in Cognitive Sciences, 18, 127133.CrossRefGoogle Scholar
Jacoby, L. L. (1991). A process-dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory & Language, 30, 513541.CrossRefGoogle Scholar
Karpinski, A., and Steinman, R. B. (2006). The single category implicit association test as a measure of implicit social cognition. Journal of Personality and Social Psychology, 91, 1632.CrossRefGoogle ScholarPubMed
Klauer, K. C., and Becker, M. (in press). Latent state–trait analyses for process models of implicit measures. In Krosnick, J. A., Stark, T. H., and Scott, A. L. (eds.) The Cambridge Handbook of Implicit Bias and Racism. Cambridge University Press.Google Scholar
Klauer, K. C., and Teige-Mocigemba, S. (2007). Controllability and resource dependence in automatic evaluation. Journal of Experimental Social Psychology, 43, 648655.CrossRefGoogle Scholar
Koppehele-Gossel, J., Hoffmann, L., Banse, R., and Gawronski, B. (2020). Evaluative priming as an implicit measure of evaluation: An examination of outlier-treatments for evaluative priming scores. Journal of Experimental Social Psychology, 87, 103905.CrossRefGoogle Scholar
Krieglmeyer, R., and Deutsch, R. (2010). Comparing measures of approach-avoidance behavior: The manikin task vs. two versions of the joystick task. Cognition and Emotion, 24, 810828.CrossRefGoogle Scholar
Krieglmeyer, R. and Sherman, J. W. (2012). Disentangling stereotype activation and stereotype application in the stereotype misperception task. Journal of Personality and Social Psychology, 103, 205224.CrossRefGoogle ScholarPubMed
Kurdi, B., Seitchik, A. E., Axt, J. R., Carroll, T. J., Karapetyan, A., Kaushik, N., Tomezsko, D., Greenwald, A. G., and Banaji, M. R. (2019). Relationship between the implicit association test and intergroup behavior: A meta-analysis. American Psychologist, 74, 569586.CrossRefGoogle ScholarPubMed
Moors, A., and De Houwer, J. (2006). Automaticity: A conceptual and theoretical analysis. Psychological Bulletin, 132, 297326.CrossRefGoogle Scholar
Nosek, B. A., and Banaji, M. R. (2001). The go/no-go association task. Social Cognition, 19, 625666.CrossRefGoogle Scholar
Nosek, B. A., Greenwald, A. G., and Banaji, M. R. (2005). Understanding and using the implicit association test: II. Method variables and construct validity. Personality and Social Psychology Bulletin, 31, 166180.CrossRefGoogle ScholarPubMed
Oswald, F. L., Mitchell, G., Blanton, H., Jaccard, J., and Tetlock, P. E. (2013). Predicting ethnic and racial discrimination: A meta-analysis of IAT criterion studies. Journal of Personality and Social Psychology, 105, 171192.CrossRefGoogle ScholarPubMed
Payne, B. K. (2001). Prejudice and perception: The role of automatic and controlled processes in misperceiving a weapon. Journal of Personality and Social Psychology, 81, 181192.CrossRefGoogle ScholarPubMed
Payne, B. K., Brown-Iannuzzi, J., Burkley, M., Arbuckle, N. L., Cooley, E., Cameron, C. D., and Lundberg, K .B. (2013). Intention invention and the affect misattribution procedure: Reply to Bar-Anan and Nosek (2012). Personality and Social Psychology Bulletin, 39, 375386.CrossRefGoogle ScholarPubMed
Payne, B. K., Burkley, M., and Stokes, M. B. (2008). Why do implicit and explicit attitude tests diverge? The role of structural fit. Journal of Personality and Social Psychology, 94, 1631.CrossRefGoogle ScholarPubMed
Payne, B. K., Cheng, S. M., Govorun, O., and Stewart, B. D. (2005). An inkblot for attitudes: Affect misattribution as implicit measurement. Journal of Personality and Social Psychology, 89, 277293.CrossRefGoogle ScholarPubMed
Payne, B. K., and Correll, J. (2020). Race, weapons, and the perception of threat. Advances in Experimental Social Psychology, 62, 150.CrossRefGoogle Scholar
Penke, L., Eichstaedt, J., and Asendorpf, J. B. (2006). Single attribute implicit association tests (SA-IAT) for the assessment of unipolar constructs: The case of sociosexuality. Experimental Psychology, 53, 283291.CrossRefGoogle ScholarPubMed
Peters, K. R., and Gawronski, B. (2011). Mutual influences between the implicit and explicit self-concepts: The role of memory activation and motivated reasoning. Journal of Experimental Social Psychology, 47, 436442.CrossRefGoogle Scholar
Röhner, J., Schröder-Abé, M., and Schütz, A. (2013). What do fakers actually do to fake the IAT? An investigation of faking strategies under different faking conditions. Journal of Research in Personality, 47, 330338.CrossRefGoogle Scholar
Rothermund, K., Teige-Mocigemba, S., Gast, A., and Wentura, D. (2009). Minimizing the influence of recoding in the IAT: The recoding-free implicit association test (IAT-RF). Quarterly Journal of Experimental Psychology, 62, 8498.CrossRefGoogle ScholarPubMed
Sava, F. A., Maricutoiu, L. P., Rusu, S., Macsinga, I., Virga, D., Cheng, C. M., and Payne, B. K. (2012). An inkblot for the implicit assessment of personality: The semantic misattribution procedure. European Journal of Personality, 26, 613628.CrossRefGoogle Scholar
Scherer, L. D., and Lambert, A. J. (2009). Contrast effects in priming paradigms: Implications for theory and research on implicit attitudes. Journal of Personality and Social Psychology, 97, 383403.CrossRefGoogle ScholarPubMed
Schnabel, K., Banse, R., and Asendorpf, J. B. (2006). Employing automatic approach and avoidance tendencies for the assessment of implicit personality self-concept: The implicit association procedure (IAP). Experimental Psychology, 53, 6976.CrossRefGoogle ScholarPubMed
Shanks, D. R., and St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17, 367447.CrossRefGoogle Scholar
Sherman, J. W., Klauer, K. C., and Allen, T. J. (2010). Mathematical modeling of implicit social cognition: The machine in the ghost. In Gawronski, B. and Payne, B. K. (eds.) Handbook of Implicit Social Cognition: Measurement, Theory, and Applications. Guilford Press.Google Scholar
Solarz, A. K. (1960). Latency of instrumental responses as a function of compatibility with the meaning of eliciting verbal signs. Journal of Experimental Psychology, 59, 239245.CrossRefGoogle ScholarPubMed
Spruyt, A., Hermans, D., De Houwer, J., Vandekerckhove, J., and Eelen, P. (2007). On the predictive validity of indirect attitude measures: Prediction of consumer choice behavior on the basis of affective priming in the picture–picture naming task. Journal of Experimental Social Psychology, 43, 599610.CrossRefGoogle Scholar
Sriram, N., and Greenwald, A. G. (2009). The brief implicit association test. Experimental Psychology, 56, 283294.CrossRefGoogle ScholarPubMed
Stahl, C., Haaf, J., and Corneille, O. (2016). Subliminal evaluative conditioning? Above-chance CS identification may be necessary and insufficient for attitude learning. Journal of Experimental Psychology: General, 145, 11071131.CrossRefGoogle ScholarPubMed
Teige, S., Schnabel, K., Banse, R., and Asendorpf, J. B. (2004). Assessment of multiple implicit self-concept dimensions using the extrinsic affective Simon task. European Journal of Personality, 18, 495520.CrossRefGoogle Scholar
Teige-Mocigemba, S., Klauer, K. C., and Rothermund, K. (2008). Minimizing method-specific variance in the IAT: The single block IAT. European Journal of Psychological Assessment, 24, 237245.CrossRefGoogle Scholar
Teige-Mocigemba, S., Klauer, K. C., and Sherman, J. W. (2010). A practical guide to the implicit association test and related tasks. In Gawronski, B. and Payne, B. K. (eds.) Handbook of Implicit Social Cognition: Measurement, Theory, and Applications. Guilford Press.Google Scholar
Teige-Mocigemba, S., Penzl, B., Becker, M., Henn, L., and Klauer, K. C. (2016). Controlling the “uncontrollable”: Faking effects on the affect misattribution procedure. Cognition and Emotion, 30, 14701484.CrossRefGoogle ScholarPubMed
Uleman, J. S., and Moskowitz, G. B. (1994). Unintended effects of goals on unintended inferences. Journal of Personality and Social Psychology, 66, 490501.CrossRefGoogle ScholarPubMed
Wegener, D. T., and Petty, R. E. (1997). The flexible correction model: The role of naive theories of bias in bias correction. Advances in Experimental Social Psychology, 29, 141208.CrossRefGoogle Scholar
Wilson, T. D., and Brekke, N. (1994). Mental contamination and mental correction: Unwanted influences on judgments and evaluations. Psychological Bulletin, 116, 117142.CrossRefGoogle ScholarPubMed
Wittenbrink, B., Judd, C. M., and Park, B. (1997). Evidence for racial prejudice at the implicit level and its relationships with questionnaire measures. Journal of Personality and Social Psychology, 72, 262274.CrossRefGoogle ScholarPubMed
Wolsiefer, K., Westfall, J., and Judd, C. M. (2017). Modeling stimulus variation in three common implicit attitude tasks. Behavior Research Methods, 49, 11931209.CrossRefGoogle ScholarPubMed
Ye, Y., and Gawronski, B. (2018). Validating the semantic misattribution procedure as an implicit measure of gender stereotyping. European Journal of Social Psychology, 48, 348364.CrossRefGoogle Scholar
Yzerbyt, V. Y., Coull, A., and Rocher, S. J. (1999). Fencing off the deviant: The role of cognitive resources in the maintenance of stereotypes. Journal of Personality and Social Psychology, 77, 449462.CrossRefGoogle Scholar

References

Adam, E. K., Quinn, M. E., Tavernier, R., McQuillan, M. T., Dahlke, K. A., and Gilbert, K. E. (2017). Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 83, 2541.CrossRefGoogle ScholarPubMed
Akinola, M., and Mendes, W. B. (2008). The dark side of creativity: Biological vulnerability and negative emotions lead to greater artistic creativity. Personality and Social Psychology Bulletin, 34, 16771686.CrossRefGoogle ScholarPubMed
Akinola, M. and Mendes, W. B (2014). It’s good to be the king: Neurobiological benefits of higher social standing. Social and Personality Psychological Science, 5, 4351.CrossRefGoogle Scholar
Baker, K. E., Wilson, L. M., Sharma, R., Dukhanin, V., McArthur, K., and Robinson, K. A. (2021). Hormone therapy, mental health, and quality of life among transgender people: A systematic review. Journal of the Endocrine Society, 5(4), 116.CrossRefGoogle ScholarPubMed
Bartz, J. A. (2016). Oxytocin and the pharmacological dissection of affiliation. Current Directions in Psychological Science, 25(2), 104110.CrossRefGoogle Scholar
Bateup, H. S., Booth, A., Shirtcliff, E. A., and Granger, D. A. (2002). Testosterone, cortisol, and women’s competition. Evolution and Human Behavior, 23(3), 181192.CrossRefGoogle Scholar
Blascovich, J. and Mendes, W. B. (2010). Social psychophysiology and embodiment. In Fiske, S. T., Gilbert, D. T., and Lindzey, G. (eds.) The Handbook of Social Psychology, 5th ed. John Wiley & Sons Inc.Google Scholar
Bos, P. A., Panksepp, J., Bluthé, R. M., and Van Honk, J. (2012). Acute effects of steroid hormones and neuropeptides on human social–emotional behavior: A review of single administration studies. Frontiers in Neuroendocrinology, 33(1), 1735.CrossRefGoogle ScholarPubMed
Brunnlieb, C., Nave, G., Camerer, C. F., Schosser, S., Vogt, B., Münte, T. F., and Heldmann, M. (2016). Vasopressin increases human risky cooperative behavior. Proceedings of the National Academy of Sciences, 113(8), 20512056.CrossRefGoogle ScholarPubMed
Burke, H. M., Davis, M. C., Otte, C., and Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30(9), 846856.CrossRefGoogle ScholarPubMed
Burns, J. A., Beischel, W. J., and van Anders, S. M. (2022). Hormone therapy and trans sexuality: A review. Psychology of Sexual Orientation and Gender Diversity, https://doi.org/10.1037/sgd0000588.CrossRefGoogle Scholar
Cacioppo, J. T., Tassinary, L. G., and Berntson, G. G. (2017). Strong inference in psychophysiological science. In Cacioppo, J. T., Tassinary, L. G., and Berntson, G. G. (eds.), Handbook of Psychophysiology, 4th ed. Cambridge University Press.Google Scholar
Campbell, D. T., and Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 81105.CrossRefGoogle ScholarPubMed
Carré, J., Muir, C., Belanger, J., and Putnam, S. K. (2006). Pre-competition hormonal and psychological levels of elite hockey players: Relationship to the “home advantage.” Physiology & Behavior, 89(3), 392398.CrossRefGoogle Scholar
Carré, J. M., Putnam, S. K., and McCormick, C. M. (2009). Testosterone responses to competition predict future aggressive behaviour at a cost to reward in men. Psychoneuroendocrinology, 34(4), 561570.CrossRefGoogle Scholar
Carré, J. M., and Robinson, B. A. (2020). Testosterone administration in human social neuroendocrinology: Past, present, and future. Hormones and Behavior, 122, 104754.CrossRefGoogle ScholarPubMed
Chida, Y., and Steptoe, A. (2009). Cortisol awakening response and psychosocial factors: A systematic review and meta-analysis. Biological Psychology, 80(3), 265278.CrossRefGoogle ScholarPubMed
Clark, R., Anderson, N. B., Clark, V. R., and Williams, D. R. (1999). Racism as a stressor for African Americans: A biopsychosocial model. American Psychologist, 54(10), 805816.CrossRefGoogle ScholarPubMed
Coates, J. M., and Herbert, J. (2008). Endogenous steroids and financial risk taking on a London trading floor. Proceedings of the National Academy of Sciences, 105(16), 61676172.CrossRefGoogle ScholarPubMed
Conlisk, J. (2011). Professor Zak’s empirical studies on trust and oxytocin. Journal of Economic Behavior & Organization, 78(1–2), 160166.CrossRefGoogle Scholar
Creswell, J. D., Welch, W. T., Taylor, S. E., Sherman, D. K., Gruenewald, T. L., and Mann, T. (2005). Affirmation of personal values buffers neuroendocrine and psychological stress responses. Psychological Science, 16(11), 846851.CrossRefGoogle ScholarPubMed
De Dreu, C. K., Baas, M., Roskes, M., Sligte, D. J., Ebstein, R. P., Chew, S. H., … Shamay-Tsoory, S. G. (2014). Oxytonergic circuitry sustains and enables creative cognition in humans. Social Cognitive and Affective Neuroscience, 9(8), 11591165.CrossRefGoogle ScholarPubMed
Dettenborn, L., Tietze, A., Kirschbaum, C., and Stalder, T. (2012). The assessment of cortisol in human hair: Associations with sociodemographic variables and potential confounders. Stress, 15(6), 578588.CrossRefGoogle ScholarPubMed
Dickerson, S. S., and Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355391.CrossRefGoogle ScholarPubMed
Eisenberger, N. I., and Cole, S. W. (2012). Social neuroscience and health: Neurophysiological mechanisms linking social ties with physical health. Nature Neuroscience, 15(5), 669674.CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1991). Personality, stress, and disease: An interactionist perspective. Psychological Inquiry, 2(3), 221232.CrossRefGoogle Scholar
Feldman, H. A., Johannes, C. B., Araujo, A. B., Mohr, B. A., Longcope, C., and McKinlay, J. B. (2001). Low dehydroepiandrosterone and ischemic heart disease in middle-aged men: Prospective results from the Massachusetts Male Aging Study. American Journal of Epidemiology, 153(1), 7989.CrossRefGoogle ScholarPubMed
Flinn, M. V. (2006). Evolution and ontogeny of stress response to social challenges in the human child. Developmental Review, 26(2), 138174.CrossRefGoogle Scholar
Fredrickson, B. L., Grewen, K. M., Algoe, S. B., Firestine, A. M., Arevalo, J. M., Ma, J., and Cole, S. W. (2015). Psychological well-being and the human conserved transcriptional response to adversity. PLOS ONE, 10(3), e0121839.CrossRefGoogle ScholarPubMed
Geronimus, A. T. (1992). The weathering hypothesis and the health of African-American women and infants: Evidence and speculations. Ethnicity & Disease, 2, 207221.Google ScholarPubMed
Giammanco, S., and La Guardia, M. (1979). A research on the action of testosterone propionate and of ciproterone acetate on the mouse-killing behavior of the adult rat. Archives internationales de physiologie et de biochimie, 87, 949953.CrossRefGoogle ScholarPubMed
Giammanco, M., Tabacchi, G., Giammanco, S., Di Majo, D., and La Guardia, M. (2005). Testosterone and aggressiveness. Medical Science Monitor, 11, 136145.Google ScholarPubMed
Goetz, S. M., Tang, L., Thomason, M. E., Diamond, M. P., Hariri, A. R., and Carré, J. M. (2014). Testosterone rapidly increases neural reactivity to threat in healthy men: A novel two-step pharmacological challenge paradigm. Biological Psychiatry, 76(4), 324331.CrossRefGoogle Scholar
Gray, H., Mendes, W. B., and Denny-Brown, C. (2008). An in-group advantage in detecting intergroup anxiety. Psychological Science, 19, 12331237.CrossRefGoogle ScholarPubMed
Hellhammer, D. H., Wüst, S., and Kudielka, B. M. (2009). Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology, 34(2), 163171.CrossRefGoogle ScholarPubMed
Hirano, R., Yokokawa, A., Furihata, T., and Shibasaki, H. (2021). Dried blood spots analysis of 6β‐hydroxycortisol and cortisol using liquid chromatography/tandem mass spectrometry for calculating 6β‐hydroxycortisol to cortisol ratio. Journal of Mass Spectrometry, 56(12), e4790.CrossRefGoogle ScholarPubMed
Hjortskov, N., Garde, A. H., Ørbæk, P., and Hansen, Å. M. (2004). Evaluation of salivary cortisol as a biomarker of self‐reported mental stress in field studies. Stress and Health: Journal of the International Society for the Investigation of Stress, 20(2), 9198.CrossRefGoogle Scholar
Hoyt, L. T., Zeiders, K. H., Ehrlich, K. B., and Adam, E. K. (2016). Positive upshots of cortisol in everyday life. Emotion, 16(4), 431435.CrossRefGoogle ScholarPubMed
Iovino, M., Messana, T., De Pergola, G., Iovino, E., Dicuonzo, F., Guastamacchia, E., … Triggiani, V. (2018). The role of neurohypophyseal hormones vasopressin and oxytocin in neuropsychiatric disorders. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 18(4), 341347.CrossRefGoogle ScholarPubMed
Jacobs, E. G., Holsen, L. M., Lancaster, K., Makris, N., Whitfield-Gabrieli, S., Remington, A., … Goldstein, J. M. (2015). 17β-estradiol differentially regulates stress circuitry activity in healthy and depressed women. Neuropsychopharmacology, 40(3), 566576.CrossRefGoogle ScholarPubMed
Kanabar, R., Mazur, A., Plum, A., and Schmied, J. (2022). Correlates of testosterone change as men age. The Aging Male, 25(1), 2940.CrossRefGoogle ScholarPubMed
Khoury, B., Sharma, M., Rush, S. E., and Fournier, C. (2015). Mindfulness-based stress reduction for healthy individuals: A meta-analysis. Journal of Psychosomatic Research, 78(6), 519528.CrossRefGoogle ScholarPubMed
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., and Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676.CrossRefGoogle ScholarPubMed
Kraus, M. W., and Mendes, W. B. (2014). Sartorial symbols: Cues of social class elicit congruent behavioral and physiological responses. Journal of Experimental Psychology: General, 143, 23302340.CrossRefGoogle Scholar
Kunz-Ebrecht, S. R., Kirschbaum, C., Marmot, M., and Steptoe, A. (2004). Differences in cortisol awakening response on work days and weekends in women and men from the Whitehall II cohort. Psychoneuroendocrinology, 29(4), 516528.CrossRefGoogle ScholarPubMed
Leventhal, H., and Patrick-Miller, L. (2000). Emotions and physical illness: Causes and indicators of vulnerability. Lewis, M. and Haviland, J. M. (eds.) Handbook of Emotions, 2nd ed. Guilford Press.Google Scholar
Lindsay, E. K., Young, S., Smyth, J. M., Brown, K. W., and Creswell, J. D. (2018). Acceptance lowers stress reactivity: Dismantling mindfulness training in a randomized controlled trial. Psychoneuroendocrinology, 87, 6373.CrossRefGoogle ScholarPubMed
Lovallo, W. R., and Buchanan, T. W. (2017). Stress hormones in psychophysiological research: emotional, behavioral, and cognitive implications. In Cacioppo, J. T., Tassinary, L. G., and Berntson, G. G. (eds.) Handbook of Psychophysiology. Cambridge University Press.Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840(1), 3344.CrossRefGoogle ScholarPubMed
Major, B., Mendes, W. B. and Dovidio, J. (2013). Intergroup relations and health disparities: A social psychological perspective. Health Psychology, 32, 514524.CrossRefGoogle ScholarPubMed
Mauss, I. B., Bunge, S. A., and Gross, J. J. (2007). Automatic emotion regulation. Social and Personality Psychology Compass, 1(1), 146167.CrossRefGoogle Scholar
Mazur, A., and Booth, A. (1998). Testosterone and dominance in men. Behavioral and Brain Sciences, 21(3), 353363.CrossRefGoogle ScholarPubMed
Mehta, P. H., Jones, A. C., and Josephs, R. A. (2008). The social endocrinology of dominance: Basal testosterone predicts cortisol changes and behavior following victory and defeat. Journal of Personality and Social Psychology, 94(6), 10781093.CrossRefGoogle ScholarPubMed
Mehta, P. H., and Josephs, R. A. (2010). Testosterone and cortisol jointly regulate dominance: Evidence for a dual-hormone hypothesis. Hormones and Behavior, 58(5), 898906.CrossRefGoogle ScholarPubMed
Mendes, W. B. (2016). Emotion and the autonomic nervous system. In Barrett, L. F., Lewis, M., and Haviland-Jones, J. (eds.) Handbook of Emotions, 4th ed. Guilford Publications, Inc.Google Scholar
Mendes, W. B., Gray, H., Mendoza-Denton, R., Major, B., and Epel, E. (2007). Why egalitarianism might be good for your health: Physiological thriving during stressful intergroup encounters. Psychological Science, 18, 991998.CrossRefGoogle ScholarPubMed
Mendes, W. B., and Koslov, K. (2013). Brittle smiles: Positive biases towards stigmatized and outgroup targets. Journal of Experimental Psychology: General, 142, 923933.CrossRefGoogle Scholar
Mendes, W. B., and Muscatell, K. A. (2018). Affective responses as mediators of the relationship between stigma and health. In Major, B., Dovidio, J., and Link, B. (eds.) The Oxford Handbook of Stigma, Discrimination, and Health. Oxford University Press.Google Scholar
Meyer, I. H. (2003). Prejudice, social stress, and mental health in lesbian, gay, and bisexual populations: Conceptual issues and research evidence. Psychological Bulletin, 129(5), 674697.CrossRefGoogle ScholarPubMed
Miller, G., Chen, E., and Cole, S. W. (2009). Health psychology: Developing biologically plausible models linking the social world and physical health. Annual Review of Psychology, 60, 501524.CrossRefGoogle ScholarPubMed
Miller, S. L., and Maner, J. K. (2010). Scent of a woman: Men’s testosterone responses to olfactory ovulation cues. Psychological Science, 21(2), 276283.CrossRefGoogle ScholarPubMed
Nakamura, Y., Walker, B. R., and Ikuta, T. (2016). Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction. Stress, 19(2), 151157.CrossRefGoogle Scholar
Nave, G., Camerer, C., and McCullough, M. (2015). Does oxytocin increase trust in humans? A critical review of research. Perspectives on Psychological Science, 10(6), 772789.CrossRefGoogle ScholarPubMed
Parikh, T. P., Stolze, B., Ozarda, Y., Jonklaas, J., Welsh, K., Masika, L., … Soldin, S. J. (2018). Diurnal variation of steroid hormones and their reference intervals using mass spectrometric analysis. Endocrine Connections, 7(12), 13541361.CrossRefGoogle ScholarPubMed
Park, J., Woolley, J., and Mendes, W. B. (2022). The effects of intranasal oxytocin on Black participants’ responses to outgroup acceptance and rejection. Frontiers in Psychology, 13, 916305–916305.CrossRefGoogle ScholarPubMed
Pascoe, E. A., and Smart Richman, L. (2009). Perceived discrimination and health: A meta-analytic review. Psychological Bulletin, 135(4), 531554.CrossRefGoogle Scholar
Peixoto, C., Grande, A. J., Mallmann, M. B., Nardi, A. E., Cardoso, A., and Veras, A. B. (2018). Dehydroepiandrosterone (DHEA) for depression: A systematic review and meta-analysis. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 17(9), 706711.Google ScholarPubMed
Prather, A. A. (2016). Neuroendocrine and neuroimmunological mechanisms of emotion. In Barrett, L. F., Lewis, M., and Haviland-Jones, J. (eds.), Handbook of Emotions, 4th ed. Guilford Publications, Inc.Google Scholar
Prather, A. A. (2023). Waking up to the importance of sleep: Opportunities for policy makers. Policy Insights from the Behavioral and Brain Sciences, 10(1), 2532.CrossRefGoogle Scholar
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., and Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28(7), 916931.CrossRefGoogle ScholarPubMed
Rasmusson, A. M., Vasek, J., Lipschitz, D. S., Vojvoda, D., Mustone, M. E., Shi, Q., … Charney, D. S. (2004). An increased capacity for adrenal DHEA release is associated with decreased avoidance and negative mood symptoms in women with PTSD. Neuropsychopharmacology, 29, 15461557.CrossRefGoogle ScholarPubMed
Ratner, K. G., Halim, M. L., and Amodio, D. M. (2013). Perceived stigmatization, ingroup pride, and immune and endocrine activity: Evidence from a community sample of Black and Latina women. Social Psychological and Personality Science, 4(1), 8291.CrossRefGoogle Scholar
Rigney, N., de Vries, G. J., Petrulis, A., and Young, L. J. (2022). Oxytocin, vasopressin, and social behavior: from neural circuits to clinical opportunities. Endocrinology, 163(9), bqac111.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (2005). The influence of social hierarchy on primate health. Science, 308(5722), 648652.CrossRefGoogle ScholarPubMed
Savineau, J. P., Marthan, R., and de la Roque, E. D. (2013). Role of DHEA in cardiovascular diseases. Biochemical Pharmacology, 85(6), 718726.CrossRefGoogle ScholarPubMed
Schultheiss, O. C., Schiepe-Tiska, A., and Rawolle, M. (2012). Hormone assays. In Cooper, H., Camic, P. M., Long, D. L., Panter, A. T., Rindskopf, D., and Sher, K. J. (eds.) APA Handbook of Research Methods in Psychology, vol. 1, Foundations, Planning, Measures, and Psychometrics. American Psychological Association.Google Scholar
Shields, G. S., Sazma, M. A., and Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neuroscience & Biobehavioral Reviews, 68, 651668.CrossRefGoogle ScholarPubMed
Stalder, T., Steudte-Schmiedgen, S., Alexander, N., Klucken, T., Vater, A., Wichmann, S., … Miller, R. (2017). Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology, 77, 261274.CrossRefGoogle ScholarPubMed
Stanton, S. J. (2011). The essential implications of gender in human behavioral endocrinology studies. Frontiers in Behavioral Neuroscience, 5, 911.CrossRefGoogle ScholarPubMed
Stetler, C., and Miller, G. E. (2011). Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosomatic Medicine, 73(2), 114126.CrossRefGoogle ScholarPubMed
Stroud, C. B., Vrshek-Shallhorn, S., Norkett, E. M., and Doane, L. D. (2019). The cortisol awakening response (CAR) interacts with acute interpersonal stress to prospectively predict depressive symptoms among early adolescent girls. Psychoneuroendocrinology, 107, 918.CrossRefGoogle ScholarPubMed
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A. R., and Updegraff, J. A. (2000). Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychological Review, 107, 411429.CrossRefGoogle Scholar
Vanman, E. J., Paul, B. Y., Ito, T. A., and Miller, N. (1997). The modern face of prejudice and structural features that moderate the effect of cooperation on affect. Journal of Personality and Social Psychology, 73(5), 941959.CrossRefGoogle ScholarPubMed
Vermeer, A. L., Krol, I., Gausterer, C., Wagner, B., Eisenegger, C., and Lamm, C. (2020). Exogenous testosterone increases status-seeking motivation in men with unstable low social status. Psychoneuroendocrinology, 113, 104552.CrossRefGoogle Scholar
Wolkowitz, O. M., Burke, H., Epel, E. S., and Reus, V. I. (2009). Glucocorticoids: Mood, memory, and mechanisms. Annals of the New York Academy of Sciences, 1179(1), 1940.CrossRefGoogle ScholarPubMed
Wolkowitz, O. M., Reus, V. I., Roberts, E., Manfredi, F., Chan, T., Raum, W. J., Otmiston, S., Johnson, R., Canick, J., Brizendine, L., and Weingartner, H. (1997). Dehydroepiandrosterone (DHEA) treatment of depression. Biological Psychiatry, 41(3), 311318.CrossRefGoogle ScholarPubMed
Wright, K. D., Ford, J. L., Perazzo, J., Jones, L. M., Mahari, S., Sullenbarger, B. A., and Laudenslager, M. L. (2018). Collecting hair samples for hair cortisol analysis in African Americans. JoVE (Journal of Visualized Experiments), 136, e57288.Google Scholar
Zak, P. J. (2012). The Moral Molecule: The Source of Love and Prosperity. E. P. DuttonGoogle Scholar
Zak, P. J., Stanton, A. A., and Ahmadi, S. (2007). Oxytocin increases generosity in humans. PLOS ONE, 2(11), e1128.CrossRefGoogle ScholarPubMed

References

Berkman, E. T., Cunningham, W. A., and Lieberman, M. D. (2014). Research methods in social and affective neuroscience. In Reis, H. T. and Judd, C. M. (eds.) Handbook of Research Methods in Social and Personality Psychology, 2nd ed. Cambridge University Press.Google Scholar
Cacioppo, J. T., and Berntson, G. G. (1992). Social psychological contributions to the decade of the brain. Doctrine of multilevel analysis. American Psychologist, 47(8), 10191028.CrossRefGoogle Scholar
Cacioppo, J. T., Berntson, G. G., Lorig, T. S., Norris, C. J., Rickett, E., and Nusbaum, H. (2003). Just because you’re imaging the brain doesn’t mean you can stop using your head: A primer and set of first principles. Journal of Personality and Social Psychology, 85(4), 650661.CrossRefGoogle Scholar
Cacioppo, S., Bolmont, M., and Monteleone, G. (2018). Spatio-temporal dynamics of the mirror neuron system during social intentions. Social Neuroscience, 13(6), 718738.CrossRefGoogle ScholarPubMed
Cacioppo, S., Weiss, R. M., Runesha, H. B., and Cacioppo, J. T. (2014). Dynamic spatiotemporal brain analyses using high performance electrical neuroimaging: Theoretical framework and validation. Journal of Neuroscience Methods, 238, 1134.CrossRefGoogle ScholarPubMed
Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A., and Wager, T. D. (2015). A sensitive and specific neural signature for picture-induced negative affect. PLOS Biology, 13(6), e1002180.CrossRefGoogle ScholarPubMed
Chavez, R. S. (2021). Tangled representations of self and others in the medial prefrontal cortex. In Gilead, M. and Ochsner, K. N. (eds.) The Neural Basis of Mentalizing. Springer International Publishing.Google Scholar
Chavez, R. S., Tovar, D. T., Stendel, M. S., and Guthrie, T. D. (2022). Generalizing effects of frontostriatal structural connectivity on self-esteem using predictive modeling. Cortex, 146, 6673.CrossRefGoogle ScholarPubMed
Coutanche, M. N., and Thompson-Schill, S. L. (2012). The advantage of brief fMRI acquisition runs for multi-voxel pattern detection across runs. Neuroimage, 61(4), 11131119.CrossRefGoogle ScholarPubMed
Davis, K. D., Aghaeepour, N., Ahn, A. H., Angst, M. S., Borsook, D., Brenton, A., Burczynski, M. E., Crean, C., Edwards, R., Gaudilliere, B., Hergenroeder, G. W., Iadarola, M. J., Iyengar, S., Jiang, Y., Kong, J.-T., Mackey, S., Saab, C. Y., Sang, C. N., Scholz, J., … Pelleymounter, M. A. (2020). Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: Challenges and opportunities. Nature Reviews Neurology, 16(7), 381400.CrossRefGoogle ScholarPubMed
Denny, B. T., Kober, H., Wager, T. D., and Ochsner, K. N. (2012). A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. Journal of Cognitive Neuroscience, 24(8), 17421752.CrossRefGoogle ScholarPubMed
Duchaine, B., and Yovel, G. (2015). A revised neural framework for face processing. Annual Review of Vision Science, 1(1), 393416.CrossRefGoogle ScholarPubMed
Eger, E., Michel, V., Thirion, B., Amadon, A., Dehaene, S., and Kleinschmidt, A. (2009). Deciphering cortical number coding from human brain activity patterns. Current Biology, 19(19), 16081615.CrossRefGoogle ScholarPubMed
Eisenberger, N. I., Lieberman, M. D., and Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290292.CrossRefGoogle ScholarPubMed
Guthrie, T. D., Benadjaoud, Y. Y., and Chavez, R. S. (2022). Social relationship strength modulates the similarity of brain-to-brain representations of group members. Cerebral Cortex, 32(11), 24692477.CrossRefGoogle ScholarPubMed
Hassabis, D., Spreng, R. N., Rusu, A. a, Robbins, C. A., Mar, R. A., and Schacter, D. L. (2014). Imagine all the people: How the brain creates and uses personality models to predict behavior. Cerebral Cortex, 24(8), 19791987.CrossRefGoogle ScholarPubMed
Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. Neuroimage, 62(2), 852855.CrossRefGoogle ScholarPubMed
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 24252430.CrossRefGoogle ScholarPubMed
Hundrieser, M., Mattes, A., and Stahl, J. (2021). Predicting participants’ attitudes from patterns of event-related potentials during the reading of morally relevant statements: An MVPA investigation. Neuropsychologia, 153, 107768.CrossRefGoogle ScholarPubMed
Jimura, K., and Poldrack, R. A. (2012). Analyses of regional-average activation and multivoxel pattern information tell complementary stories. Neuropsychologia, 50(4), 544552.CrossRefGoogle ScholarPubMed
Jolly, E., and Chang, L. J. (2021). Multivariate spatial feature selection in fMRI. Social Cognitive and Affective Neuroscience, 16(8), 795806.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 43024311.CrossRefGoogle ScholarPubMed
Kenny, D. A., and Albright, L. (1987). Accuracy in interpersonal perception: A social relations analysis. Psychological Bulletin, 102(3), 390402.CrossRefGoogle ScholarPubMed
Kragel, P. A., Koban, L., Barrett, L. F., and Wager, T. D. (2018). Representation, pattern information, and brain signatures: From neurons to neuroimaging. Neuron, 99(2), 257273.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Mur, M., and Bandettini, P. (2008). Representational similarity analysis: Connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4, 128.Google ScholarPubMed
Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., and Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 11261141.CrossRefGoogle ScholarPubMed
McIntosh, A. R. (1998). Understanding neural interactions in learning and memory using functional neuroimaging. Annals of the New York Academy of Sciences, 855(1), 556571.CrossRefGoogle ScholarPubMed
McIntosh, A. R., Bookstein, F. L., Haxby, J. V., and Grady, C. L. (1996). Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3(3), 143157.CrossRefGoogle ScholarPubMed
Mumford, J. A., Davis, T., and Poldrack, R. A. (2014). The impact of study design on pattern estimation for single-trial multivariate pattern analysis. NeuroImage, 103, 130138.CrossRefGoogle ScholarPubMed
Parkinson, C., Kleinbaum, A. M., and Wheatley, T. (2017). Spontaneous neural encoding of social network position. Nature Human Behaviour, 1(5), 0072.CrossRefGoogle Scholar
Parkinson, C., Liu, S., and Wheatley, T. (2014). A common cortical metric for spatial, temporal, and social distance. Journal of Neuroscience, 34(5), 19791987.CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: From reverse inference to large-scale decoding. Neuron, 72(5), 692697.CrossRefGoogle ScholarPubMed
Popal, H., Wang, Y., and Olson, I. R. (2019). A guide to representational similarity analysis for social neuroscience. Social Cognitive and Affective Neuroscience, 14(11), 12431253.CrossRefGoogle ScholarPubMed
Stendel, M., and Chavez, R. S. (2023). Beyond the brain localization of complex traits: Distributed white matter markers of personality. Journal of Personality, 91, 11401151.CrossRefGoogle ScholarPubMed
Stolier, R. M., and Freeman, J. B. (2016). Neural pattern similarity reveals the inherent intersection of social categories. Nature Neuroscience, 19(6), 795797.CrossRefGoogle ScholarPubMed
Thornton, M. A., and Mitchell, J. P. (2017). Consistent neural activity patterns represent personally familiar people. Journal of Cognitive Neuroscience, 29(9), 15831594.CrossRefGoogle ScholarPubMed
Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C.-W., and Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368(15), 13881397.CrossRefGoogle ScholarPubMed
Wagner, D. D., Chavez, R. S., and Broom, T. W. (2019). Decoding the neural representation of self and person knowledge with multivariate pattern analysis and data-driven approaches. WIREs Cognitive Science, 10(1), e1482.CrossRefGoogle ScholarPubMed
Weaverdyck, M. E., Lieberman, M. D., and Parkinson, C. (2020). Multivoxel pattern analysis in fMRI: A practical introduction for social and affective neuroscientists. Social Cognitive and Affective Neuroscience, 15(4), 487509.CrossRefGoogle ScholarPubMed
Woo, C.-W., Chang, L. J., Lindquist, M. A., and Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20(3), 365377.CrossRefGoogle ScholarPubMed
Woo, C. W., Koban, L., Kross, E., Lindquist, M. A., Banich, M. T., Ruzic, L., … Wager, T. D. (2014). Separate neural representations for physical pain and social rejection. Nature Communications, 5(1), 112.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×