Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T00:41:59.182Z Has data issue: false hasContentIssue false

16 - Functional Genomic Approaches to Psychophysiology

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, A. R., Baldwin, D., Ma, Y., Ouyang, W., Gurney, A., Martin, F., … & Clark, H. F. (2005). Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes and Immunity, 6: 319331.Google Scholar
Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014). The Molecular Biology of the Cell. London: Garland.Google Scholar
Antoni, M. H., Lutgendorf, S. K., Blomberg, B., Stagl, J., Carver, C. S., Lechner, S., & Diaz, A. (2012). Transcriptional modulation of human leukocytes by cognitive-behavioral stress management in women undergoing treatment for breast cancer. Biological Psychiatry, 71: 366372.Google Scholar
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25: 2529.Google Scholar
Beissbarth, T. & Speed, T. P. (2004). GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics, 20: 14641465.Google Scholar
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57: 289300.Google Scholar
Bergen, A. W., Mallick, A., Nishita, D., Wei, X., Michel, M., Wacholder, A., … & Andrews, J. A. (2012). Chronic psychosocial stressors and salivary biomarkers in emerging adults. Psychoneuroendocrinology, 37: 11581170.CrossRefGoogle ScholarPubMed
Black, D. S., Cole, S. W., Irwin, M. R., Breen, E., St Cyr, N. M., Nazarian, N., … & Lavretsky, H. (2012). Yogic meditation reverses NF-kappaB and IRF-related transcriptome dynamics in leukocytes of family dementia caregivers in a randomized controlled trial. Psychoneuroendocrinology, 38: 348355.Google Scholar
Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19: 185193.Google Scholar
Bower, J. E., Ganz, P. A., Irwin, M. R., Arevalo, J. M., & Cole, S. W. (2011). Fatigue and gene expression in human leukocytes: increased NF-kappaB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue. Brain, Behavior, and Immunity, 25: 147150.Google Scholar
Bower, J. E., Greendale, G., Crosswell, A. D., Garet, D., Sternlieb, B., Ganz, P. A., … & Cole, S. W. (2014). Yoga reduces inflammatory signaling in fatigued breast cancer survivors: a randomized controlled trial. Psychoneuroendocrinology, 43: 2029.Google Scholar
Cao, J. & Zhang, S. (2014). Multiple comparison procedures. Journal of the American Medical Association, 312: 543544.CrossRefGoogle ScholarPubMed
Capitanio, J. P. & Cole, S. W. (2015). Social instability and immunity in rhesus monkeys: the role of the sympathetic nervous system. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370. doi: 10.1098/rstb.2014.0104Google Scholar
Carey, M. & Smale, S. T. (2001). Transcriptional Regulation in Eukaryotes: Concepts, Strategies, and Techniques. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Chikina, M., Zaslavsky, E., & Sealfon, S. C. (2015). CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations. Bioinformatics, 31: 15841591.Google Scholar
Clark, D. P. & Russell, L. D. (2005). Molecular Biology: Made Simple and Fun. St. Louis, MO: Cache River Press.Google Scholar
Cole, S. W. (2010). Elevating the perspective on human stress genomics. Psychoneuroendocrinology, 35: 955962.Google Scholar
Cole, S. W. (2013). Social regulation of human gene expression: mechanisms and implications for public health. American Journal of Public Health, 103: S84S92.CrossRefGoogle ScholarPubMed
Cole, S. W. (2014). Human social genomics. PLoS Genetics, 10: e1004601.Google Scholar
Cole, S. W., Arevalo, J. M., Ruggerio, A. M., Heckman, J. J., & Suomi, S. (2012). Transcriptional modulation of the developing immune system by early life social adversity. Proceedings of the National Academy of Sciences of the USA, 109: 2057820583.Google Scholar
Cole, S. W., Arevalo, J., Takahashi, R., Sloan, E. K., Lutgendorf, S., Sood, A. K., … & Seeman, T. E. (2010). Computational identification of gene–social environment interaction at the human IL6 locus. Proceedings of the National Academy of Sciences of the USA, 107: 56815686.Google Scholar
Cole, S. W., Capitanio, J. P., Chun, K., Arevalo, J. M. G., Ma, J., & Cacioppo, J. T. (2015a). Myeloid differentiation architecture of leukocyte transcriptome dynamics in perceived social isolation. Proceedings of the National Academy of Sciences of the USA, 112: 1514215147.CrossRefGoogle ScholarPubMed
Cole, S. W., Galic, Z., & Zack, J. A. (2003). Controlling false-negative errors in microarray differential expression analysis: a PRIM approach. Bioinformatics, 19: 18081816.Google Scholar
Cole, S. W., Hawkley, L. C., Arevalo, J. M., & Cacioppo, J. T. (2011). Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proceedings of the National Academy of Sciences of the USA, 108: 30803085.Google Scholar
Cole, S. W., Hawkley, L. C., Arevalo, J. M., Sung, C. Y., Rose, R. M., & Cacioppo, J. T. (2007). Social regulation of gene expression in human leukocytes. Genome Biology, 8: 113.Google Scholar
Cole, S. W., Levine, M. E., Arevalo, J. M., Ma, J., Weir, D. R., & Crimmins, E. M. (2015b). Loneliness, eudaimonia, and the human conserved transcriptional response to adversity. Psychoneuroendocrinology, 62: 1117.Google Scholar
Cole, S. W., Mendoza, S. P., & Capitanio, J. P. (2009). Social stress desensitizes lymphocytes to regulation by endogenous glucocorticoids: insights from in vivo cell trafficking dynamics in rhesus macaques. Psychosomatic Medicine, 71: 591597.CrossRefGoogle ScholarPubMed
Cole, S. W., Yan, W., Galic, Z., Arevalo, J., & Zack, J. A. (2005). Expression-based monitoring of transcription factor activity: the TELiS database. Bioinformatics, 21: 803810.Google Scholar
Collado-Hidalgo, A., Sung, C., & Cole, S. (2006). Adrenergic inhibition of innate anti-viral response: PKA blockade of Type I interferon gene transcription mediates catecholamine support for HIV-1 replication. Brain, Behavior, and Immunity, 20: 552563.Google Scholar
Creswell, J. D., Irwin, M. R., Burklund, L. J., Lieberman, M. D., Arevalo, J. M., Ma, J., … & Cole, S. W.(2012). Mindfulness-based stress reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial. Brain, Behavior, and Immunity, 26: 10951101.Google Scholar
Dale, D. C., Fauci, A. S., Guerry, D. I., & Wolff, S. M. (1975). Comparison of agents producing a neutrophilic leukocytosis in man: hydrocortisone, prednisone, endotoxin, and etiocholanolone. Journal of Clinical Investigation, 56: 808813.Google Scholar
Editors (2014). Honing our reading skills. Nature Biotechnology, 32: 845.Google Scholar
Efron, B. & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.Google Scholar
Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the USA, 95: 1486314868.Google Scholar
Eisenberger, N. I., Inagaki, T. K., Mashal, N. M., & Irwin, M. R. (2010). Inflammation and social experience: an inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain, Behavior, and Immunity, 24: 558563.Google Scholar
Ewens, W. J. & Grant, G. R. (2005). Statistical Methods in Bioinformatics. New York: Springer.Google Scholar
Fauci, A. S. & Dale, D. C. (1975). The effect of hydrocortisone on the kinetics of normal human lymphocytes. Blood, 46: 235243.Google Scholar
Fauci, A. S., Dale, D. C., & Balow, J. E. (1976). Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Annals of Internal Medicine, 84: 304315.Google Scholar
Felger, J. C., Cole, S. W., Pace, T. W., Hu, F., Woolwine, B. J., Doho, G. H., … & Miller, A. H. (2012). Molecular signatures of peripheral blood mononuclear cells during chronic interferon-alpha treatment: relationship with depression and fatigue. Psychological Medicine, 42: 15911603.Google Scholar
Fredrickson, B. L., Grewen, K. M., Algoe, S. B., Firestine, A. M., Arevalo, J. M. G., Ma, J., & Cole, S. W. (2015). Psychological well-being and the human conserved transcriptional response to adversity. PLoS One, 10: e0121839.CrossRefGoogle ScholarPubMed
Fredrickson, B. L., Grewen, K. M., Coffey, K. A., Algoe, S. B., Firestine, A. M., Arevalo, J. M., … & Cole, S. W. (2013). A functional genomic perspective on human well-being. Proceedings of the National Academy of Sciences of the USA, 110: 1368413689.Google Scholar
Gaujoux, R. & Seoighe, C. (2013). CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics, 29: 22112212.Google Scholar
Gibson, G. (2008). The environmental contribution to gene expression profiles. Nature Reviews Genetics, 9: 575581.Google Scholar
Goldinger, A., Henders, A. K., McRae, A. F., Martin, N. G., Gibson, G., Montgomery, G. W., … & Powell, J. E. (2013). Genetic and nongenetic variation revealed for the principal components of human gene expression. Genetics, 195: 11171128.Google Scholar
Gray, J. D., Rubin, T. G., Hunter, R. G., & McEwen, B. S. (2014). Hippocampal gene expression changes underlying stress sensitization and recovery. Molecular Psychiatry, 19: 11711178.Google Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. New York: Springer.Google Scholar
Heidt, T., Sager, H. B., Courties, G., Dutta, P., Iwamoto, Y., Zaltsman, A., … & Nahrendorf, M. (2014). Chronic variable stress activates hematopoietic stem cells. Nature Medicine, 20: 754758.CrossRefGoogle ScholarPubMed
Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37: 113.Google Scholar
Irwin, M., Olmstead, R., Breen, E., Witarama, T., Carrillo, C., Sadeghi, N., … & Cole, S. (2014). Tai Chi, cellular inflammation, and transcriptome dynamics in breast cancer survivors with insomnia: a randomized controlled trial. Journal of the National Cancer Institute, 50: 295301.Google Scholar
Karssen, A. M., Her, S., Li, J. Z., Patel, P. D., Meng, F., Bunney, W. E. Jr., … & Lyons, D. M. (2007). Stress-induced changes in primate prefrontal profiles of gene expression. Molecular Psychiatry, 12: 10891102.Google Scholar
Kramer, A., Green, J., Pollard, J. Jr., & Tugendreich, S. (2014). Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 30: 523530.Google Scholar
Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (2004). Applied Linear Statistical Models. New York: McGraw-Hill/Irwin.Google Scholar
Lahdesmaki, H., Shmulevich, L., Dunmire, V., Yli-Harja, O., & Zhang, W. (2005). In silico microdissection of microarray data from heterogeneous cell populations. BMC Bioinformatics, 6: 54.Google Scholar
Landmark-Hoyvik, H., Reinertsen, K. V., Loge, J. H., Fossa, S. D., Borresen-Dale, A. L., & Dumeaux, V. (2009). Alterations of gene expression in blood cells associated with chronic fatigue in breast cancer survivors. Pharmacogenomics Journal, 9: 333340.Google Scholar
Langfelder, P. & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9: 559.Google Scholar
Li, S., Labaj, P. P., Zumbo, P., Sykacek, P., Shi, W., Shi, L., … & Mason, C. E. (2014a). Detecting and correcting systematic variation in large-scale RNA sequencing data. Nature Biotechnology, 32: 888895.Google Scholar
Li, S., Tighe, S. W., Nicolet, C. M., Grove, D., Levy, S., Farmerie, W., … & Mason, C. E. (2014b). Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nature Biotechnology, 32: 915925.Google Scholar
Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25: 402408.Google Scholar
Lutgendorf, S. K., Degeest, K., Sung, C. Y., Arevalo, J. M., Penedo, F., Lucci, J. 3rd, … & Cole, S. W. (2009). Depression, social support, and beta-adrenergic transcription control in human ovarian cancer. Brain, Behavior, and Immunity, 23: 176183.Google Scholar
Malone, J. H. & Oliver, B. (2011). Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biology, 9: 34.Google Scholar
McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2008). Generalized, Linear, and Mixed Models. Hoboken, NJ: John Wiley.Google Scholar
Miller, G., Chen, E., & Cole, S. W. (2009). Health psychology: developing biologically plausible models linking the social world and physical health. Annual Review of Psychology, 60: 501524.Google Scholar
Miller, G. E., Chen, E., Sze, J., Marin, T., Arevalo, J. M., Doll, R., … & Cole, S. W. (2008). A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-kappaB signaling. Biological Psychiatry, 64, 266272.Google Scholar
Miller, G. E. & Cole, S. W. (2010). Functional genomic approaches in behavioral medicine research. In Steptoe, A. (ed.), Handbook of Behavioral Medicine: Methods and Applications (pp. 443454). New York: Springer.Google Scholar
Miller, G. E., Murphy, M. L. M., Cashman, R., Ma, R., Ma, J., Arevalo, J. M. G., … & Cole, S. W. (2014). Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain, Behavior and Immunity, 41: 191199.Google Scholar
Miller, R. G. (1986). Beyond ANOVA: Basics of Applied Statistics. New York: John Wiley.Google Scholar
Munro, S. A., Lund, S. P., Pine, P. S., Binder, H., Clevert, D. A., Conesa, A., … & Salit, M. (2014). Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nature Communications, 5: 5125.Google Scholar
Nath, A. P., Arafat, D., & Gibson, G. (2012). Using blood informative transcripts in geographical genomics: impact of lifestyle on gene expression in Fijians. Frontiers in Genetics, 3: 243.Google Scholar
Norris, A. W. & Kahn, C. R. (2006). Analysis of gene expression in pathophysiological states: balancing false discovery and false negative rates. Proceedings of the National Academy of Sciences of the USA., 103: 649653.Google Scholar
O’Donovan, A., Sun, B., Cole, S., Rempel, H., Lenoci, M., Pulliam, L., & Neylan, T. (2011). Transcriptional control of monocyte gene expression in post-traumatic stress disorder. Disease Markers, 30: 123132.Google Scholar
Powell, N. D., Sloan, E. K., Bailey, M. T., Arevalo, J. M., Miller, G. E., Chen, E., … & Cole, S. W. (2013). Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis. Proceedings of the National Academy of Sciences of the USA, 110: 1657416579.Google Scholar
Preininger, M., Arafat, D., Kim, J., Nath, A. P., Idaghdour, Y., Brigham, K. L., & Gibson, G. (2013). Blood-informative transcripts define nine common axes of peripheral blood gene expression. PLoS Genetics, 9: e1003362.Google Scholar
Proud, D., Turner, R. B., Winther, B., Wiehler, S., Tiesman, J. P., Reichling, T. D., … & Clymer, J. W. (2008). Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. American Journal of Respiratory and Critical Care Medicine, 178: 962968.Google Scholar
QIAGEN (2015). Ingenuity Pathway Analysis.Google Scholar
Ramilo, O., Allman, W., Chung, W., Mejias, A., Ardura, M., Glaser, C., … & Chaussabel, D. (2007). Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood, 109: 20662077.Google Scholar
Richlin, V. A., Arevalo, J. M., Zack, J. A., & Cole, S. W. (2004). Stress-induced enhancement of NF-kappaB DNA-binding in the peripheral blood leukocyte pool: effects of lymphocyte redistribution. Brain, Behavior, and Immunity, 18: 231237.Google Scholar
Risso, D., Ngai, J., Speed, T. P., & Dudoit, S. (2014). Normalization of RNA-seq data using factor analysis of control genes or samples. Nature Biotechnology, 32: 896902.Google Scholar
SEQC/MAQC-III Consortium (2014). A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nature Biotechnology, 32: 903914.Google Scholar
Shen-Orr, S. S. & Gaujoux, R. (2013). Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Current Opinion in Immunology, 25: 571578.Google Scholar
Shen-Orr, S. S., Tibshirani, R., Khatri, P., Bodian, D. L., Staedtler, F., Perry, N. M., … & Butte, A. J. (2010). Cell type-specific gene expression differences in complex tissues. Nature Methods, 7: 287289.Google Scholar
Shi, L., Jones, W. D., Jensen, R. V., Harris, S. C., Perkins, R. G., Goodsaid, F. M., … & Tong, W. (2008). The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinformatics, 9: S10.Google Scholar
Slavich, G. M. & Cole, S. W. (2013). The emerging field of human social genomics. Clinical Psychological Science, 1: 331348.Google Scholar
Sloan, E. K., Capitanio, J. P., & Cole, S. W. (2008). Stress-induced remodeling of lymphoid innervation. Brain, Behavior, and Immunity, 22: 1521.Google Scholar
Sloan, E. K., Capitanio, J. P., Tarara, R. P., Mendoza, S. P., Mason, W. A., & Cole, S. W. (2007). Social stress enhances sympathetic innervation of primate lymph nodes: mechanisms and implications for viral pathogenesis. Journal of Neuroscience, 27: 88578865.Google Scholar
Stone, E. A. & Ayroles, J. F. (2009). Modulated modularity clustering as an exploratory tool for functional genomic inference. PLoS Genetics, 5: e1000479.Google Scholar
Strachan, T. & Read, A. P. (2004). Human Molecular Genetics 3. London: Garland.Google Scholar
Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., … & Hogenesch, J. B. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the USA, 101: 60626067.Google Scholar
Su, Z., Fang, H., Hong, H., Shi, L., Zhang, W., Zhang, Y., … & Tong, W. (2014). An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biology, 15: 523.Google Scholar
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., … & Mesirov, P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the USA, 102: 1554515550.Google Scholar
Tabassum, R., Nath, A., Preininger, M., & Gibson, G. (2013). Geographical, environmental and pathophysiological influences on the human blood transcriptome. Current Genetic Medicine Reports, 1: 203211.Google Scholar
Tung, J., Barreiro, L. B., Johnson, Z. P., Hansen, K. D., Michopoulos, V., Toufexis, D., … & Gilad, Y. (2012). Social environment is associated with gene regulatory variation in the rhesus macaque immune system. Proceedings of the National Academy of Sciences of the USA, 109: 64906495.Google Scholar
Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Procedings of the National Academy of Sciences of the USA, 98: 51165121.CrossRefGoogle Scholar
Wang, C., Gong, B., Bushel, P. R., Thierry-Mieg, J., Thierry-Mieg, D., Xu, J., … & Tong, W. (2014). The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nature Biotechnology, 32: 926932.Google Scholar
Wingo, A. P. & Gibson, G. (2015). Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder. Brain, Behavior, and Immunity, 43: 184191.Google Scholar
Witten, D. M. & Tibshirani, R. (2007). A comparison of fold-change and the T-statistic for microarray data analysis. Stanford University.Google Scholar
Yu, J., Cliften, P. F., Juehne, T. I., Sinnwell, T. M., Sawyer, C. S., Sharma, M., … & Head, R. D. (2015). Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology. BMC Genomics, 16: 710.Google Scholar
Zhang, W., Yu, Y., Hertwig, F., Thierry-Mieg, J., Thierry-Mieg, D., Wang, J., … & Fischer, M. (2015). Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biology, 16: 133.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×