Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T00:47:22.776Z Has data issue: false hasContentIssue false

7 - Application of Non-Invasive Brain Stimulation in Psychophysiology

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, W. C. & Bear, M. F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends in Neurosciences, 19: 126130.Google Scholar
Agnew, W. F. & McCreery, D. B. (1987). Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery, 20: 143147.Google Scholar
Agudelo-Toro, A. & Neef, A. (2013). Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields. Journal of Neural Engineering, 10: 026019.Google Scholar
Albert, D. J. (1966). The effects of polarizing currents on the consolidation of learning. Neuropsychologia, 4: 6577.Google Scholar
Allen, E. A., Pasley, B. N., Duong, T., & Freeman, R.D. (2007). Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science, 317: 19181921.Google Scholar
Amassian, V. E., Cracco, R. Q., Maccabee, P. J., Cracco, J. B., Rudell, A., & Eberle, L. (1989). Suppression of visual perception by magnetic coil-stimulation of human occipital cortex. Electroencephalography & Clinical Neurophysiology, 74: 458462.Google Scholar
Amassian, V. E., Maccabee, P. J., Cracco, R. Q., Cracco, J. B., Rudell, A. P., & Eberle, L. (1993). Measurement of information processing delays in human visual cortex with repetitive magnetic coil stimulation. Brain Research, 605: 317321.Google Scholar
Antal, A., Kincses, T. Z., Nitsche, M. A., Bartfai, O., Demmer, I., & Sommer, M. (2002). Pulse configuration-dependent effects of repetitive transcranial magnetic stimulation on visual perception. NeuroReport, 13: 22292233.Google Scholar
Antal, A., Nitsche, M. A., Kincses, T. Z., Lampe, C., & Paulus, W. (2003). No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study. Neuroreport, 15: 297302.Google Scholar
Awiszus, F. (2003). TMS and threshold hunting. Supplements to EEG Clinical Neurophysiology, 56: 1323.Google Scholar
Aydin-Abidin, S., Trippe, J., Funke, K., Eysel, U. T., & Benali, A. (2008). High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Experimental Brain Research, 188: 249261.Google Scholar
Bagati, D., Mittal, S., Praharaj, S. K., Sarcar, M., Kakra, M., & Kurnar, P. (2012). Repetitive transcranial magnetic stimulation safely administered after seizure. Journal of ECT, 28: 6061.Google Scholar
Balslev, D., Braet, W., McAllister, C., & Miall, R. C. (2007). Interindividual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex. Journal of Neuroscience Methods, 162: 309313.Google Scholar
Barker, A. T. (2002). The history and basic principles of magnetic nerve stimulation. In Pascual-Leone, A., Davey, N. J., Rothwell, J., Wassermann, E. M., & Puri, B. K. (eds.), Handbook of Transcranial Magnetic Stimulation (pp. 317). London: Arnold.Google Scholar
Barker, A. T., Garnham, C. W., & Freeston, I. L. (1991). Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output. Electroencephalography & Clinical Neurophysiology Supplement, 43: 227237.Google Scholar
Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1: 11061107.Google Scholar
Berardelli, A., Inghilleri, M., Gilio, F., Romeo, S., Pedace, F., Currà, A., & Manfredi, M. (1999). Effects of repetitive cortical stimulation on the silent period evoked by magnetic stimulation. Experimental Brain Research, 125: 8286.Google Scholar
Berardelli, A., Inghilleri, M., Rothwell, J. C., Romeo, S., Currà, A., Gilio, F., … & Manfredi, M. (1998). Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Experimental Brain Research, 122: 7984.Google Scholar
Bestmann, S., Thilo, K. V., Sauner, D., Siebner, H. R., & Rothwell, J.C. (2002). Parietal magnetic stimulation delays visuomotor mental rotation at increased processing demands. NeuroImage, 17: 15121520.Google Scholar
Bestmann, S. J., Baudewig, J., & Frahm, J. (2003a). On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging. Journal of Magnetic Resonance Imaging, 17: 309316.Google Scholar
Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., & Frahm, J. (2003b). Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. NeuroImage, 20: 16851696.Google Scholar
Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., & Frahm, J. (2004). Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. European Journal of Neuroscience, 19: 19501962.Google Scholar
Bijsterbosch, J. D., Barker, A. T., Lee, K.-H., & Woodruff, P. W. R. (2012). Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets. Medical Biological Engineering and Computing, 50: 671681.Google Scholar
Bikson, M., Bulow, P., Stiller, J. W., Datta, A., Battaglia, F., Karnup, S. V., & Postolache, T. T. (2008). Transcranial direct current stimulation for major depression: a general system for quantifying transcranial electrotherapy dosage. Current Treatment Options in Neurology, 10: 377385.Google Scholar
Bliss, T. V., Collingridge, G. L., & Morris, R. G. (2003) Introduction: longterm potentiation and structure of the issue. Philosophical Transactions of the Royal Society London B: Biological Sciences, 358: 607611.Google Scholar
Bliss, T. V. & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232: 331356.Google Scholar
Bohning, D. E., Shastri, A., Nahas, Z., Lorberbaum, J. P., Andersen, S. W., Dannels, W. R., … & George, M. S. (1998). Echopolar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Investigative Radiology, 33: 336340.Google Scholar
Bonato, C., Miniussi, C., & Rossini, P. M. (2006).Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study. Clinical Neurophysiology, 117: 16991707.Google Scholar
Boroojerdi, B., Battaglia, F., Muellbacher, W., & Cohen, W. G. (2001a). Mechanisms influencing stimulus-response properties of the human corticospinal system. Clinical Neurophysiology, 112: 931937.Google Scholar
Boroojerdi, B., Phipps, M., Kopylev, L., Wharton, C. M., Cohen, L. G., & Grafman, J. (2001b). Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology, 56: 526528.Google Scholar
Boroojerdi, B., Prager, A., Muellbacher, W., & Cohen, L. G. (2000). Reduction of human visual cortex excitability using 1 Hz transcranial magnetic stimulation. Neurology, 54: 15291531.Google Scholar
Brasil-Neto, J. P., McShane, L. M., Fuhr, P., Hallett, M., & Cohen, L. G. (1992). Topographic mapping of the human cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalography & Clinical Neurophysiology, 85: 916.Google Scholar
Brem, A.-K., Fried, P. J., Horvath, J. C., Robertson, E. M., & Pascual-Leone, A. (2014). Is neuroenhancement by noninvasive brain stimulation a zero-sum proposition? NeuroImage, 85: 10581068.Google Scholar
Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience, 3: 243249.Google Scholar
Bungert, A., Chambers, C. D., Phillips, M., & Evans, J. (2006). Reducing image artefacts in concurrent TMS/fMRI by passive shimming. NeuroImage, 59: 21672174.Google Scholar
Buzsaki, G. (2006). Rhythms of the Brain. Oxford University Press.Google Scholar
Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., … & Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313: 16261628.Google Scholar
Cantarero, G. & Celnik, P. (2015). Applications of TMS to study brain connectivity. In Reti, I. M. (ed.), Brain Stimulation: Methodologies and Interventions (pp. 191212). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Caparelli, E. C., Backus, W., Telang, F., Wang, G.-J., Maloney, T., Goldstein, R. Z., & Henn., F. (2012). Is 1 Hz rTMS always inhibitory in healthy individuals? The Open Neuroimaging Journal, 6: 6974.Google Scholar
Cardenas-Morales, L., Nowak, D. A., Kammer, T., Wolf, R. C., & Schonfeldt-Lecuona, C. (2010). Mechanisms and applications of theta-burst rTMS on the human motor cortex. Brain Topography, 22: 294306.Google Scholar
Cattaneo, Z., Rota, F., Vecchi, T., & Silvanto, J. (2008). Using state-dependency of transcranial magnetic stimulation (TMS) to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS-priming and TMS-adaptation paradigms. European Journal of Neuroscience, 28: 19241929.Google Scholar
Cattaneo, Z., Rota, F., Walsh, V., Vecchi, T., & Silvanto, J. (2009). TMS-adaptation reveals abstract letter selectivity in the left posterior parietal cortex. Cerebral Cortex, 19: 23212325.Google Scholar
Chanes, L., Quentin, R., Tallon-Baudry, C., & Valero-Cabré, A. (2013). Causal frequency-specific contributions of frontal spatiotemporal patterns induced by noninvasive neurostimulation to human visual performance. Journal of Neuroscience, 33: 50005005.Google Scholar
Cheeran, B., Talelli, P., Mori, F., Koch, G., Suppa, A., Edwards, M., … & Rothwell, J. C. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. Journal of Physiology, 586: 57175725.Google Scholar
Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z. W., Williams, L. M., … & Etkin, A. (2013). Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the USA, 110: 1994419949.Google Scholar
Chen, R. (2004). Interactions between inhibitory and excitatory circuits in the human motor cortex. Experimental Brain Research, 154: 110.Google Scholar
Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E. M., Hallett, M., & Cohen, L. G. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 13981403.CrossRefGoogle ScholarPubMed
Chervyakov, A. V., Piradov, M. A., Chernikova, L. A., Nazarova, M. A., Gnezditsky, V. V., Savitskaya, N. G., & Fedin, P. A. (2013). Capability of navigated repeated transcranial magnetic stimulation in stroke rehabilitation (randomized blind sham-controlled study). Journal of the Neurological Sciences, 333: 246247.CrossRefGoogle Scholar
Chiramberro, M., Lindberg, N., Isometsä, E., Kähkönen, S., & Appelberg, B. (2013). Repetitive transcranial magnetic stimulation induced seizures in an adolescent patient with major depression: a case report. Brain Stimulation, 6: 830831.Google Scholar
Cohen, D. & Cuffin, B. N. (1991). Developing a more focal magnetic stimulator. Part I: Some basic principles. Journal of Clinical Neurophysiology, 8: 102111.Google Scholar
Cohen, D. A., Freitas, C., Tormos, J. M., Oberman, L., Eldaief, M., & Pascual-Leone, A. (2010). Enhancing plasticity through repeated rTMS sessions: the benefits of a night of sleep. Clinical Neurophysiology, 121: 21592164.Google Scholar
Cohen Kadosh, R., Cohen Kadosh, K., Schuhmann, T., Kaas, A., Goebel, R., Henik, A., & Sack, A. T. (2007). Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Current Biology, 17: 689693.Google Scholar
Cooper, A. C. G., Humphreys, G. W., Hulleman, J., Praamstra, P., & Georgeson, M. (2004). Transcranial magnetic stimulation to right parietal cortex modifies the attentional blink. Experimental Brain Research, 155: 2429.Google Scholar
Counter, S. A., Borg, E., Lofqvist, L., & Brismar, T. (1990). Hearing loss from the acoustic artifact of the coil used in extracranial magnetic stimulation. Neurology, 40: 11591162.CrossRefGoogle ScholarPubMed
Crowther, L. J., Porzig, K., Hadimani, R. L., Brauer, H., & Jile, D. C. (2012). Calculation of Lorentz forces on coils for transcranial magnetic stimulation during magnetic resonance imaging. IEEE Transactions on Magnetics, 48: 40584061.Google Scholar
Daskalakis, Z. J., Moller, B., Christensen, B. K., Fitzgerald, P. B., Gunraj, C., & Chen, R. (2006). The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Experimental Brain Research, 174: 403412.Google Scholar
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2: 201207.Google Scholar
Davey, K. R. & Riehl, M. E. (2006). Suppressing the surface field during transcranial magnetic stimulation. IEEE Transactions on Biomedical Engineering, 53: 190194.Google Scholar
de Graaf, T. A., Jacobs, C., Roebroeck, A., & Sack, A. T. (2009). FMRI effective connectivity and TMS chronometry: complementary accounts of causality in the visuospatial judgment network. PLoS One, 4: e8307.Google Scholar
Deblieck, C., Thompson, B., Iacoboni, M., & Wu, A. D. (2008). Correlation between motor and phosphene thresholds: a transcranial magnetic stimulation study. Human Brain Mapping, 29: 662670.Google Scholar
Deng, Z.-D., Lisanby, S. H., & Peterchev, A. V. (2013). Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimulation, 6: 113.Google Scholar
Deng, Z.-D., Lisanby, S. H., & Peterchev, A. V. (2014). Coil design considerations for deep transcranial magnetic stimulation. Clinical Neurophysiology, 125: 12021212.Google Scholar
Deng, Z.-D. & Peterchev, A. V. (2011). Transcranial magnetic stimulation coil with electronically switchable active and sham modes. Conference Proceedings of the IEEE Engineering Medicine Biology Society.Google Scholar
Denslow, S., Lomarev, M., George, M. S., & Bohning, D. E. (2005). Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study. Biological Psychiatry, 57: 752760.Google Scholar
Devanne, H., Lavoie, B. A., & Capaday, C. (1997). Input–output properties and gain changes in the human corticospinal pathway. Experimental Brain Research, 114: 329338.Google Scholar
Di Lazzaro, V., Oliviero, A., Profice, P., Pennisi, M. A., Pilato, F., Zito, G., … & Tonali, P. A. (2003). Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. Journal of Physiology, 547: 485496.CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Pilato, F., Saturno, E., Oliviero, A., Dileone, M., Mazzone, P., … & Rothwell, J. (2005). Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. Journal of Physiology, 565: 945950.Google Scholar
Di Lazzaro, V., Profice, P., Ranieri, F., Capone, F., Dileone, M., Oliviero, A., & Pilato, F. (2012). I-wave origin and modulation. Brain Stimulation, 5: 512525.Google Scholar
Dmochowski, J. P., Datta, A., Bikson, M., Su, Y., & Parra, L. C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 8: 046011.Google Scholar
Edwardson, M., Fetz, E. E., & Avery, D. H. (2011). Seizure produced by 20 Hz transcranial magnetic stimulation during isometric muscle contraction in a healthy subject. Clinical Neurophysiology, 122: 23242327.Google Scholar
Ellison, A., Battelli, L., Cowey, A., & Walsh, V. (2003). The effect of expectation on facilitation of color/form conjunction tasks by TMS over area V5. Neuropsychologia, 41: 17941801.Google Scholar
Emara, T. H., Moustafa, R. R., Elnahas, N. M., Elganzoury, A. M., Abdo, T. A., Mohamed, S. A., & Eletribi, M. A. (2010). Repetitive transcranial magnetic stimulation at 1 Hz and 5 Hz produces sustained improvement in motor function and disability after ischaemic stroke. European Journal of Neurology, 17: 12031209.Google Scholar
Esser, S. K., Hill, S. L., & Tononi, G. (2005). Modeling the effects of transcranial magnetic stimulation on cortical units. Journal of Neurophysiology, 94: 622639.Google Scholar
Esser, S. K., Huber, R., Massimini, M., Peterson, M. J., Ferrarelli, F., & Tononi, G. (2006). A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Research Bulletin, 69: 8694.Google Scholar
Feredoes, E., Tononi, G., & Postle, B. R. (2007). The neural bases of the short-term storage of verbal information are anatomically variable across individuals. Journal of Neuroscience, 27: 1100311008.Google Scholar
Ferreri, F. & Rossini, P. M. (2013). TMS and TMS–EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex. Reviews in the Neurosciences, 24: 431442.Google Scholar
Fitzgerald, P. B., Fountain, S., & Daskalakis, Z. J. (2006). A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clinical Neurophysiology, 117: 25842596.Google Scholar
Fox, J. J. & Schroeder, C. E. (2005). The case for feedforward multisensory convergence during early cortical processing. Neuroreport, 16: 419423.Google Scholar
Fox, M. D., Liu, H., & Pascual-Leone, A. (2012). Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage, 66: 151160.Google Scholar
Fox, P., Ingham, R., George, M. S., Mayberg, H., Ingham, J., Roby, J., … & Jerabek, P. (1997). Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport, 8: 27872791.Google Scholar
Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., & Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain Research, 1375: 93102.Google Scholar
Fridlund, A. J. & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23: 567589.Google Scholar
Fuggetta, G., Pavone, E. F., Fiaschi, A., & Manganotti, P. (2008). Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: a combined EEG and TMS study. Human Brain Mapping, 29: 113.Google Scholar
Gangitano, M., Valero-Cabré, A., Tormos, J. M., Mottaghy, F. M., Romero, J. R., & Pascual-Leone, A. (2002). Modulation of input–output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clinical Neurophysiology, 113: 12491257.Google Scholar
George, M. S., Short, E. B., Kerns, S. E., Li, X., Hanlon, C., Pelic, C., … & Fox, J. (2015). Therapeutic applications of rTMS for psychiatric and neurological conditions. In Reti, I. M. (ed.), Brain Stimulation: Methodologies and Interventions (pp. 213232). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Goetz, S. M., Luber, B., Lisanby, S. H., Murphy, D. L., Kozyrkov, I. C., Grill, W., & Peterchev, A. V. (2016). Enhancement of rTMS neuromodulatory effects with novel waveforms demonstrated via controllable pulse parameter TMS. Brain Stimulation 9: 3947.Google Scholar
Goetz, S. M., Luber, B., Lisanby, S. H., & Peterchev, A. V. (2014). A novel model incorporating two variability sources for describing motor evoked potentials. Brain Stimulation, 7: 541552.Google Scholar
Goetz, S. M., Pfaeffl, M., Huber, J., Singer, M., Marquardt, R., & Weyh, T. (2012). Circuit topology and control principle for a first magnetic stimulator with fully controllable waveform. Conference Proceedings of IEEE Engineering Medical Biology Society.Google Scholar
Goetz, S. M., Whiting, P. A., & Peterchev, A. V. (2011). Threshold estimation with transcranial magnetic stimulation: algorithm comparison. Clinical Neurophysiology, 122: S197.Google Scholar
Gómez, L., Morales, L., Trápaga, O., & Morales, H. (2011). Seizure induced by sub-threshold 10-Hz rTMS in a patient with multiple risk factors. Clinical Neurophysiology, 122: 10571058.Google Scholar
Grefkes, C., Nowak, D. A., Wang, L. E., Dafotakis, M., Eickhoff, S. B., & Fink, G. R. (2010). Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage, 50: 233242.Google Scholar
Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L. G., Mall, V., … & Siebner, H. R. (2012). A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clinical Neurophysiology, 123: 858882.Google Scholar
Grosbras, M. H. & Paus, T. (2002). Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. Journal of Cognitive Neuroscience, 14: 11091120.Google Scholar
Grosbras, M. H. & Paus, T. (2003). Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. European Journal of Neuroscience, 18: 31213126.Google Scholar
Hamada, M., Hanajima, R., Terao, Y., Arai, N., Furubayashi, T., Inomata-Terada, S., … & Ugawa, Y. (2007). Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex. Clinical Neurophysiology, 118: 26722682.Google Scholar
Hamada, M., Strigaro, G., Murase, N., Sadnicka, A., Galea, J. M., Edwards, M. J., & Rothwell, J. C. (2012). Cerebellar modulation of human associative plasticity. Journal of Physiology, 590: 23652374.Google Scholar
Hamada, M., Terao, Y., Hanajima, R., Shirota, Y., Nakatani-Enomoto, S., Furubayashi, T., … & Ugawa, Y. (2008). Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. Journal of Physiology, 586: 39273947.Google Scholar
Hamada, M. & Ugawa, Y. (2010). Quadripulse stimulation:a new patterned rTMS. Restorative Neurology and Neuroscience, 28: 419424.Google Scholar
Hamidi, M., Johnson, J. S., Feredoes, E., & Postle, B. R. (2011). Does high-frequency repetitive transcranial magnetic stimulation produce residual and/or cumulative effects within an experimental session? Brain Topography, 23: 355367.Google Scholar
Hamidi, M., Slagter, H. A., Tononi, G., & Postle, B. R. (2009). Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Frontiers in Integrative Neuroscience, 3. doi: 10.3389/neuro.07.014.2009.Google Scholar
Hannula, H., Neuvonen, T., Savolainen, P., Hiltunen, J., Ma, Y.-Y., Antila, H., … & Pertovaara, A. (2010). Increasing top-down suppression from prefrontal cortex facilitates tactile working memory. NeuroImage, 49: 10911098.Google Scholar
Harel, E. V., Zangen, A., Roth, Y., Reti, I., Braw, Y., & Levkovitz, Y. (2011). H-coil repetitive transcranial magnetic stimulation for the treatment of bipolar depression: an add-on, safety and feasibility study. World Journal of Biological Psychiatry, 12: 119126.Google Scholar
Harris, J. A., Clifford, C. W. G., & Miniussi, C. (2008). The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? Journal of Cognitive Neuroscience, 20: 734740.Google Scholar
Haug, B. A., Schönle, P. W., Knobloch, C., & Köhne, M. (1992). Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalography & Clinical Neurophysiology, 85: 158160.Google Scholar
Heller, L. & van Hulsteyn, D. B. (1992). Brain stimulation using electromagnetic sources: theoretical aspects. Biophysical Journal, 63: 129138.Google Scholar
Herwig, U., Abler, B., Schonfeldt-Lecuona, C., Wunderlich, A., Grothe, J., Spitzer, M., & Walter, H. (2003a). Verbal storage in a premotor-parietal network: evidence from fMRI-guided magnetic stimulation. NeuroImage, 20: 10321041.Google Scholar
Herwig, U., Satrapi, P., & Schonfeldt-Lecuona, C. (2003b). Using the International 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16: 9599.CrossRefGoogle ScholarPubMed
Hoeft, F., Wu, D.-A., Hernandez, A., Glover, G. H., & Shimojo, S. (2008). Electronically switchable sham transcranial magnetic stimulation (TMS) system. PLoS One, 3: e1923.Google Scholar
Hoogendam, J. M., Ramakers, G. M. J., & Di Lazzaro, V. (2010). Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimulation, 3: 95118.Google Scholar
Horvath, J. C., Forte, J. D., & Carter, O. (2015). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia, 66: 213236.Google Scholar
Houdayer, E., Degardin, A., Cassim, F., Bocquillon, P., Derambure, P., & Devanne, H. (2008). The effects of low- and high-frequency repetitive TMS on the input/output properties of the human corticospinal pathway. Experimental Brain Research, 187: 207217.Google Scholar
Hu, S. H., Wang, S. S., Zhang, M. M., Wang, J.-W., Hu, J.-B., & Huang, M.-L. (2011). Repetitive transcranial magnetic stimulation-induced seizure of a patient with adolescent-onset depression: a case report and literature review. Journal of International Medical Research, 39: 20392044.Google Scholar
Huang, Y. Z., Chen, R. S., Rothwell, J. C., & Wen, H.-Y. (2007). The after-effect of human theta burst stimulation is NMDA receptor dependent. Clinical Neurophysiology, 118: 1028.Google Scholar
Huang, Y. Z., Edwards, M. J., Rounis, E., Bhalia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45: 201206.Google Scholar
Huang, Y.-Z., Sommer, M., Thickbroom, G., Hamada, M., Pascual-Leone, A., Paulus, W., … & Ugawa, Y. (2009). Consensus: new methodologies for brain stimulation. Brain Stimulation, 2: 213.Google Scholar
Ilmoniemi, R. J. & Kičić, D. (2010) Methodology for combined TMS and EEG. Brain Topography, 22: 233248.Google Scholar
Ilmoniemi, R. J., Virtanen, J., Ruohonen, J., Karhu, J., Aronen, H. J., Naatanen, R., & Katila, T. (1997). Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport, 8: 35373540.Google Scholar
Iriki, A., Pavlides, C., Keller, A., & Asanuma, H. (1989). Long-term potentiation in the motor cortex. Science, 245: 13851387.Google Scholar
Iyer, M. B., Schleper, N., & Wassermann, E. M. (2003). Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. Journal of Neuroscience, 23: 1086710872.Google Scholar
Jalinous, R. (2002). Principles of magnetic stimulator design. In Pascual-Leone, A., Davey, N. J., Rothwell, J., Wassermann, E. M., and Puri, B. K. (eds.), Handbook of Transcranial Magnetic Stimulation (pp. 3038). London: Arnold.Google Scholar
Janicak, P. G., O’Reardon, J. P., Sampson, S. M., Husain, M. M., Lisanby, S. H., Rado, J. T., … & Demitrack, M. A. (2008). Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. Journal of Clinical Psychiatry, 69: 222232.Google Scholar
Jennum, P., Winkel, H., & Fuglsang-Frederiksen, A. (1995). Repetitive magnetic stimulation and motor evoked potentials. Electroencephalography & Clinical Neurophysiology, 97: 96101.Google Scholar
Ji, R. R., Schlaepfer, T. E., Aizenman, C. D., Epstein, C. M., Qiu, D., Huang, J. C., & Rupp, F. (1998). Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proceedings of the National Academy of Sciences of the USA, 95: 1563515640Google Scholar
Juan, C. H. & Walsh, V. (2003). Feedback to V1: a reverse hierarchy in vision. Experimental Brain Research, 150: 259263.Google Scholar
Jung, P. & Ziemann, U. (2009). Homeostatic and nonhomeostatic modulation of learning in human motor cortex. Journal of Neuroscience, 29: 55975604.Google Scholar
Kähkönen, S., Komssi, S., Wilenius, J., & Ilmoniemi, R. J. (2005). Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. NeuroImage, 24: 955960.Google Scholar
Kähkönen, S., Wilenius, J., Komssi, S., & Ilmoniemi, R. J. (2004). Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation. Clinical Neurophysiology, 115: 583588.Google Scholar
Kaminski, J. A., Korb, F. M., Viliringer, A., & Ott, D. V. M. (2011). Transcranial magnetic stimulation intensities in cognitive paradigms. PloS One, 6: e24836.Google Scholar
Kamitani, Y. & Schimojo, S. (1999). Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex. Nature Neuroscience, 2: 767771.Google Scholar
Kammer, T., Beck, S., Thielscher, A., Laubis-Herrmann, U., & Topka, H. (2001). Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clinical Neurophysiology, 112: 250258.Google Scholar
Kammer, T. & Nusseck, H. G. (1998). Are recognition deficits following occipital lobe TMS explained by raised detection thresholds? Neuropsychologia, 36: 11611166.Google Scholar
Kammer, T., Puls, K., Erb, M., & Grodd, W. (2005). Transcranial magnetic stimulation in the visual system. II: Characterization of induced phosphenes and scotomas. Experimental Brain Research, 160: 129140.Google Scholar
Kessler, S. K., Turkeltaub, P. E., Benson, J. G., & Hamilton, R. H. (2012). Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimulation, 5: 155162.Google Scholar
Kimiskidis, V. K., Papagiannopoulos, S., Sotirakoglou, K., Kazis, D. A., Kazis, A., & Mills, K. R. (2005). Silent period to transcranial magnetic stimulation: construction and properties of stimulus–response curves in healthy volunteers. Experimental Brain Research, 163: 2131.Google Scholar
Kleim, J., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., & Cramer, S. C. (2006). BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nature Neuroscience, 9: 735737.Google Scholar
Klimesch, W., Sauseng, P., & Gerloff, C. (2003). Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. European Journal of Neuroscience, 17: 11291133.Google Scholar
Kohler, S., Paus, T., Buckner, R. L., & Milner, B. (2006). Effect of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study. Journal of Cognitive Neuroscience, 16: 178188.Google Scholar
Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Shroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94: 19041911.Google Scholar
Lang, N., Rothkegel, H., Reiber, H., Hasan, A., Sueske, E., Tergau, F., … & Paulus, W. (2011). Circadian modulation of GABA-mediated cortical inhibition. Cerebral Cortex, 21: 22992306.Google Scholar
Lang, N., Siebner, H. R., Ernst, D., Nitsche, M. A., Paulus, W., Lemon, R. N., & Rothwell, J. C. (2004). Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biological Psychiatry, 56: 634638.Google Scholar
Lang, N., Speck, S., Harms, J., Rothkegel, H., Paulus, W., & Sommer, M. (2008). Dopaminergic potentiation of rTMS induced motor cortex inhibition. Biological Psychiatry, 3: 231233.Google Scholar
Larson, J., Wong, D., & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368: 347350.Google Scholar
Levkovitz, Y., Roth, Y., Harel, E. V., Braw, Y., Sheer, A., & Zangen, A. (2007). A randomized controlled feasibility and safety study of deep transcranial magnetic stimulation. Clinical Neurophysiology, 118: 27302744.Google Scholar
Li, L. M., Uehara, K., & Hanakawa, T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Frontiers in Cellular Neuroscience, 9: article 181.Google Scholar
Lisanby, S. H., Gutman, D., Luber, B., Schroeder, C., & Sackeim, H. A. (2001). Sham TMS: intracerebral measurements of the induced electrical field and the induction of motor-evoked potentials. Biological Psychiatry, 49: 460463.Google Scholar
Lisman, J. E. & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77: 10021016.Google Scholar
Liston, C., Chen, A. C., Zebley, B. D., Drysdale, A. T., Gordon, R., Leuchter, B., … & Dubin, M. J. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76: 517526.Google Scholar
Lolas, F. (1977). Low-level electric currents and brain indicators of behavioral activation. Arquivos de Neuro-Psiquiatria, 35: 325328.Google Scholar
Loo, C., Sachdev, P., Elsayed, H., McDarmont, B., Mitchell, P., Wilkinson, M., … & Gandevia, S. (2001). Effects of a 2- to 4-week course of repetitive transcranial magnetic stimulation (rTMS) on neuropsychologic functioning, electroencephalogram, and auditory threshold in depressed patients. Biological Psychiatry, 49: 615623.Google Scholar
Lorenzano, C., Gilio, F., Inghilleri, M., & Berardelli, A. (2002). Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Experimental Brain Research, 147: 186192.Google Scholar
Luber, B. (2014). Neuroenhancement by noninvasive brain stimulation is not a net zero-sum proposition. Frontiers in Systems Neuroscience, 8: article 129.Google Scholar
Luber, B., Balsam, P., Nguyen, T., Gross, M., & Lisanby, S. H. (2007a). Classical conditioned learning using transcranial magnetic stimulation. Experimental Brain Research, 183: 361369.Google Scholar
Luber, B., Kinnunen, L. H., Rakitin, B. C., Ellsasser, R., Stern, Y., & Lisanby, S. H. (2007b). Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency and time-dependent effects. Brain Research, 1128: 120129.Google Scholar
Luber, B. & Lisanby, S. H. (2014). Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage, 85: 961970.Google Scholar
Luber, B., Stanford, A. D., Bulow, P., Nguyen, T., Rakitin, B. C., Habeck, C., … & Lisanby, S. H. (2008). Remediation of sleep-deprivation induced visual working memory impairment with fMRI-guided transcranial magnetic stimulation. Cerebral Cortex, 18: 20772085.Google Scholar
Luber, B., Steffener, J., Tucker, A., Habeck, C., Peterchev, A. V., Deng, Z.-D., … & Lisanby, S. H. (2013). Extended remediation of sleep deprivation-induced working memory deficits using fMRI-guided repetitive transcranial magnetic stimulation. Sleep, 36: 857871.Google Scholar
Maccabee, P. J., Amassian, V. E., Eberle, L. P., & Cracco, R. Q. (1993). Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. Journal of Physiology in London, 460: 210219.Google Scholar
Maccabee, P. J., Nagarajan, S. S., Amassian, V. E., Durand, D. M., Szabo, A. Z., Ahad, A. B., … & Eberle, L. P. (1998). Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve. Journal of Physiology, 513.2, 571585.Google Scholar
Maki, H. & Ilmoniemi, R. J. (2010). The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation. Neuroscience Letters, 478: 2428.Google Scholar
Mancini, M., Pellicciari, M. C., Brignani, D., Mauri, P., De Marchis, C., Miniussi, C., & Conforto, S. (2015). Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering. Conference Proceedings IEEE Engineering, Medical and Biological Society.Google Scholar
Mangia, A. L., Pirini, M., & Cappello, A. (2014). Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study. Frontiers of Human Neuroscience, 8: 601.Google Scholar
Matthews, N., Luber, B., Qian, N., & Lisanby, S. (2001). Transcranial magnetic stimulation differentially affects speed and direction judgments. Experimental Brain Research, 140: 397406.Google Scholar
McConnell, K. A., Nahas, Z., Shastri, A., Lorberbaum, J. P., Kozel, F. A., Bohning, D. E., & George, M. S. (2001). The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biological Psychiatry, 49: 454459.Google Scholar
McKinley, R. A., Bridges, N., Walters, C. M., & Nelson, J. (2012). Modulating the brain at work using noninvasive transcranial stimulation. NeuroImage, 59: 129137.Google Scholar
Mennemeier, M. S., Triggs, W., Chelette, K, C., Woods, A. J., Kimbrell, T., & Domhoffer, J. (2009). Sham transcranial magnetic stimulation using electrical stimulation of the scalp. Brain Stimulation, 2: 169173.Google Scholar
Meuller, J. K., Grigsby, E. M., Prevosto, V., Petraglia, F. W. III, Rao, H., Deng, Z.-D., … & Grill, W. M. (2014). Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates. Nature Neuroscience, 17: 11301136.Google Scholar
Mills, K. R. & Nithi, K. A. (1997). Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve, 20: 570576.Google Scholar
Miniussi, C., Harris, J. A., & Ruzzoli, M. (2013). Modeling non-invasive brain stimulation in cognitive neuroscience. Neuroscience & Biobehavioral Reviews, 37: 17021712.Google Scholar
Miniussi, C., Ruzzoli, M., & Walsh, V. (2010). The mechanism of transcranial magnetic stimulation in cognition. Cortex, 46: 128130.Google Scholar
Miranda, P. C., Hallett, M., & Basser, P. J. (2003). The electric field induced in the brain by magnetic stimulation: a 3-D finite element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Transactions on Biomedical Engineering, 50: 10741085.Google Scholar
Mishory, A., Molnar, C., Koola, J., Li, X., Kozel, F. A., Myrick, H., … & George, M. S. (2004). The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision. Journal of ECT, 20: 160165.Google Scholar
Moliadze, V., Giannikopoulos, D., Eysel, U. T., & Funke, K. (2005). Paired-pulse transcranial magnetic stimulation protocol applied to visual cortex of anaesthetized cat: effects on visually evoked single-unit activity. Journal of Physiology, 566: 955965.Google Scholar
Moliadze, V., Zhao, Y., Eysel, U., & Funke, K. (2003). Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. Journal of Physiology, 553: 665679.Google Scholar
Möller, C., Arai, N., Lücke, J., & Ziemann, U. (2009). Hysteresis effects on the input–output curve of motor evoked potentials. Clinical Neurophysiology, 120: 10031008.Google Scholar
Mottaghy, F. M., Gangitano, M., Sparing, R., & Pascual-Leone, A. (2002). Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS. Cerebral Cortex, 12: 369375.Google Scholar
Muller-Dahlhaus, F. & Ziemann, U. (2015). Metaplasticity in human cortex. The Neuroscientist, 21: 185202.Google Scholar
Muller-Dahlhaus, F., Ziemann, U., & Classen, J. (2010). Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Frontiers in Synaptic Neuroscience, 2: article 34.Google Scholar
Nagarajan, S. S., Durand, D. M., & Warman, E. N. (1993). Effects of induced electrical fields on finite neuronal structures: a simulation study. IEEE Transactions on Biomedical Engineering, 40: 11751188.Google Scholar
Nahas, Z., Li, X., Kozel, F. A., Mirzki, D., Memon, M., Miller, K., … & George, M. S. (2004). Safety and benefits of distance-adjusted prefrontal transcranial magnetic stimulation in depressed patients 55–75 years of age: a pilot study. Depression and Anxiety, 19: 249256.Google Scholar
National Research Council (1996). Possible Health Effects of Exposure to Residential Electric and Magnetic Fields. Washington, DC: National Academy Press.Google Scholar
Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., … & Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. Journal of Physiology, 553: 293301.Google Scholar
Nitsche, M. A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527: 633639.Google Scholar
Nitsche, M. A. & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57: 18991901.Google Scholar
Nitsche, M. A. & Paulus, W. (2011). Transcranial direct current stimulation: update 2011. Restorative Neurology and Neuroscience, 29: 463492.Google Scholar
Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., … & Tergau, F. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. Journal of Physiology, 568: 291303.Google Scholar
Ogiue-Ikeda, M., Kawato, S., & Ueno, S. (2003). The effect of transcranial magnetic stimulation on long-term potentiation in rat hippocampus. IEEE Transactions in Magnetics, 39: 3390.Google Scholar
Okabe, S., Ugawa, Y., & Kanazawa, I. (2003). 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Movement Disorders, 18: 382388.Google Scholar
Opitz, A., Legon, W., Rowlands, A., Bickel, W. K., Paulus, W., & Tyler, W. J. (2013). Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. NeuroImage, 81: 253–64.Google Scholar
O’Reardon, J. P., Solvason, H. B., Janicak, P. G., Sampson, S., Isenberg, K. E., Nahas, Z., … & Sackeim, H. A. (2007). Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biological Psychiatry, 62: 12081216.Google Scholar
Parent, A. (2004). Giovanni Aldini: from animal electricity to human brain stimulation. Canadian Journal of Neurological Science, 31: 576584.Google Scholar
Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive human brain stimulation in cognitive neuroscience: a primer. Cell, 87: 932945.Google Scholar
Pascual-Leone, A., Cohen, L. G., Shotland, L. I., Dang, N., Pikus, A., Wassermann, E. M., … & Hallett, M. (1992). No evidence of hearing loss in humans due to transcranial magnetic stimulation. Neurology, 41: 647651.Google Scholar
Pascual-Leone, A., Gates, J. R., & Dhuna, A. (1991). Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology, 41: 697701.Google Scholar
Pascual-Leone, A. & Hallett, M. (1994). Induction of errors in a delayed response task by repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuroreport, 5: 25172520.Google Scholar
Pascual-Leone, A., Valls-Solé, J., Wassermann, E. M., & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117: 847858.Google Scholar
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience: virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10: 232237.Google Scholar
Pasley, B. N., Allen, E., & Freeman, R. D. (2009). State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron, 62: 291303.Google Scholar
Paulus, W., Classen, J., Cohen, L. G., Large, C. H., DiLazzaro, V., Nitsche, M., … & Ziemann, U. (2008). State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulation, 1: 151163.Google Scholar
Paus, T. (2005). Inferring causality in brain images: a perturbation approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 360: 11091114.Google Scholar
Paus, T., Jech, R., Thompson, C. J., Comeau, R., Peters, T., & Evans, A. C. (1997). Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. Journal of Neuroscience, 17: 31783184.Google Scholar
Peinemann, A., Reimer, B., Loer, C., Quartarone, A., Munchau, A., Conrad, B., & Siebner, H. R. (2004). Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clinical Neurophysiology, 115: 15191526.Google Scholar
Pell, G. S., Roth, Y., & Zangen, A. (2011). Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Progress in Neurobiology, 93: 5998.Google Scholar
Peterchev, A. V., Deng, Z.-D., & Goetz, S. M. (2015). Advances in transcranial magnetic stimulation technology. In Reti, I. M. (ed.), Brain Stimulation: Methodologies and Interventions (pp. 165189). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Peterchev, A. V., Jalinous, R., & Lisanby, S. H. (2008). A transcranial magnetic stimulator inducing near-rectangular pulses with controllable pulse width (cTMS). IEEE Transactions in Biomedical Engineering, 55: 257266.Google Scholar
Pitcher, D., Garrido, L., Duchaine, B., & Walsh, V. (2008). Transcranial magnetic stimulation disrupts the perception and embodiment of facial expressions. Journal of Neuroscience, 28: 89298933.Google Scholar
Pitcher, D., Goldhaber, T., Duchaine, B., Walsh, V., & Kanwisher, N. (2012). Two critical and functionally distinct stages of face and body perception. Journal of Neuroscience, 32: 1587715885.Google Scholar
Pitcher, J. B., Ogston, K. M., & Miles, T. S. (2003). Age and sex differences in human motor cortex input–output characteristics. Journal of Physiology, 546: 605613.Google Scholar
Plow, E. B., Cattaneo, Z., Carlson, T. A., Alvarez, G. A., Pascual-Leone, A., & Battelli, L. (2014). The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI. Frontiers in Human Neuroscience, 8: 226.Google Scholar
Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72: 208214.Google Scholar
Qi, F., Wu, A. D., & Schweighofer, N. (2011). Fast estimation of transcranial magnetic stimulation motor threshold. Brain Stimulation, 4: 5057.Google Scholar
Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2: 215228.Google Scholar
Ragert, P., Dinse, H. R., Pleger, B., Wilimzig, C., Frombach, E., Schwenkreis, P., & Tegenthoff, M. (2003). Combination of 5 Hz repetitive transcranial stimulation (rTMS) and tactile coactivation boosts tactile discrimination in humans. Neuroscience Letters, 348: 105108.Google Scholar
Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L.C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. Journal of Physiology, 591: 25632578.Google Scholar
Rahnev, D. A., Maniscalco, B., Luber, B., Lau, H., & Lisanby, S. H. (2011). Direct injection of noise to the visual cortex decreases accuracy but increases decision confidence. Journal of Neurophysiology, 107: 15561563.Google Scholar
Rauschecker, A. M., Bestman, S., Walsh, V., & Thilo, K. V. (2004). Phosphene threshold as a function of contrast of external visual stimuli. Experimental Brain Research, 157: 124127.Google Scholar
Ray, P. G., Meador, K. J., Epstein, C. M., Loring, D. W., & Day, L. J. (1998). Magnetic stimulation of the visual cortex: factors influencing the perception of phosphenes. Journal of Clinical Neurophysiology, 15: 351357.Google Scholar
Reid, A. E., Chiappa, K. H., & Cros, D. (2002). Motor threshold, facillitation and the silent period in cortical magnetic stimulation. In Pascual-Leone, A., Davey, N. J., Rothwell, J., Wassermann, E. M., & Puri, B. K. (eds.), Handbook of Transcranial Magnetic Stimulation (pp. 9711). London: Arnold.Google Scholar
Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., & Thut, G. (2008) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cerebral Cortex, 18: 20102018.Google Scholar
Romei, V., Driver, J., Schyns, P. G., & Thut, G. (2011). Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Current Biology, 21: 334337.Google Scholar
Romei, V., Gross, J., & Thut, G. (2010). On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? Journal of Neuroscience, 30: 86928697.Google Scholar
Romeo, S., Gileo, F., Pedace, F., Ozkaynak, S., Inghilleri, M., Manfredi, M., & Berardelli, A. (2000). Changes in the cortical silent period after repetitive magnetic stimulation of cortical motor areas. Experimental Brain Research, 135: 504510.Google Scholar
Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & The Safety of TMS Consensus Group (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120: 20082039.Google Scholar
Rossini, P. M., Barker, A. T., Berardelli, A., Caramia, M. D., Caruso, G., Cracco, R. Q., … & Tomberg, C. (1994). Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalography & Clinical Neurophysiology, 91: 7992.Google Scholar
Roth, B. J., Pascual-Leone, A., Cohen, L. G., & Hallett, M. (1992). The heating of metal electrodes during rapid-rate magnetic stimulation: a possible safety hazard. Electroencephalography & Clinical Neurophysiology, 85: 116123.Google Scholar
Rothkegel, H., Sommer, M., & Paulus, W. (2010). Breaks during 5 Hz rTMS are essential for facilitatory after effects. Clinical Neurophysiology, 121: 426430.Google Scholar
Rothwell, J. C., Hallett, M., Berardelli, A., Eisen, A., Rossini, P., & Paulus, W. (1999). Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalography & Clinical Neurophysiology Supplement, 52: 97103.Google Scholar
Roy, A., Baxter, B., & He, B. (2014). High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: a simultaneous tDCS-EEG study. IEEE Transactions in Biomedical Engineering, 61: 19671978.Google Scholar
Rudiak, D. & Marg, E. (1994). Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalography & Clinical Neurophysiology, 93: 358371.Google Scholar
Ruff, C. C., Bestmann, S., Blankenburg, F., Bjoertomt, O., Josephs, O., Weiskopf, N., … & Driver, J. (2008). Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS–fMRI. Cerebral Cortex, 18: 817827.Google Scholar
Ruff, C. C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J. D., … & Driver, J. (2006). Concurrent TMS–fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology, 16: 14791488.Google Scholar
Ruohonen, J., Ollikainen, M., Nikouline, V., Virtanen, J., & Ilmoniemi, R. (2000). Coil design for real and sham transcranial magnetic stimulation. IEEE Transactions on Biomedical Engineering, 47: 145148.Google Scholar
Sack, A. T. (2010). Does TMS need functional imaging? Cortex, 46: 131133.Google Scholar
Sack, A. T., Cohen Kadosh, R., Schuhmann, T., Moerel, M., Walsh, V., & Goebel, R. (2009). Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. Journal of Cognitive Neuroscience, 21: 207221.Google Scholar
Sakkas, P., Theleritis, C. G., Psarros, C., Papadimitriou, G. N., & Soldatos, C. R. (2008). Jacksonian seizure in a manic patient treated with rTMS. World Journal of Biological Psychiatry, 9: 159160.Google Scholar
Sale, M. V., Ridding, M. C., & Nordstrom, M. A. (2007). Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Experimental Brain Research, 181: 615626.Google Scholar
Schnitzler, A. & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6: 285296.Google Scholar
Schrader, L. M., Stern, J. M., Koski, L., Nuwer, M. R., & Engel, J. Jr. (2004). Seizure incidence during single- and paired-pulse transcranial magnetic stimulation (TMS) in individuals with epilepsy. Clinical Neurophysiology, 115: 27282737.Google Scholar
Schwarzkopf, D. S., Silvanto, J., & Rees, G. (2011). Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. Journal of Neuroscience, 31: 31433147.Google Scholar
Shastri, A., George, M. S., & Bohning, D. E. (1999). Performance of a system for interleaving transcranial magnetic stimulation with steady-state magnetic resonance imaging. Electroencephalography & Clinical Neurophysiology Supplement, 51: 5564.Google Scholar
Siebner, H. R., Hartwigsen, G., Kassuba, T., & Rothwell, J. C. (2009). How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex, 45: 10351042.Google Scholar
Siebner, H. R., Lang, N., Rizzo, V., Nitsche, M. A., Paulus, W., Lemon, R. N., & Rothwell, J. C. (2004). Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. Journal of Neuroscience, 24: 33793385.Google Scholar
Silva, S., Basser, P. J., & Miranda, P. C. (2008). Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clinical Neurophysiology, 119: 24052413.Google Scholar
Silvanto, J., Cattaneo, Z., Battelli, L., & Pascual-Leone, A. (2008a). Baseline cortical excitability determines whether TMS disrupts or facilitates behavior. Journal of Neurophysiology, 99: 27252730.Google Scholar
Silvanto, J., Lavie, N., & Walsh, V. (2006). Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. Journal of Neurophysiology, 96: 941945.Google Scholar
Silvanto, J., Muggleton, N., & Walsh, V. (2008b). State-dependency in brain stimulation studies of perception and cognition. Trends in Cognitive Sciences, 12: 447454.Google Scholar
Silvanto, J. & Pascual-Leone, A. (2012). Why the assessment of causality in brain behavior relations requires brain stimulation. Journal of Cognitive Neuroscience, 24: 775777.Google Scholar
Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsaki, G. (2009). Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron, 60: 683697.Google Scholar
Sommer, J., Jansen, A., Dräger, B., Steinsträter, O., Breitenstein, C., Deppe, M., & Knecht, S. (2006). Transcranial magnetic stimulation: a sandwich coil design for a better sham. Clinical Neurophysiology, 117: 440446.Google Scholar
Sommer, M., Lang, N., Tergau, F., & Paulus, W. (2002). Neuronal tissue polarization induced by repetitive transcranial magnetic stimulation? Neuroreport, 13: 809811.Google Scholar
Sparing, R., Hesse, M. D., & Fink, G. R. (2010). Neuronavigation for transcranial magnetic stimulation (TMS): where we are and where we are going. Cortex, 46: 118120.Google Scholar
Speer, A. M, Kimbrell, T. A., Wassermann, E. M., Repella, J. D., Willis, M. W., Herscovitch, P., & Post, R. M. (2000). Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biological Psychiatry, 48: 11331141.Google Scholar
Stefan, K., Kunesch, E., Benecke, R., Cohen, L. G., & Classen, J. (2002). Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. Journal of Physiology, 543: 699708.Google Scholar
Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R., & Classen, J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123: 572584.Google Scholar
Stewart, L. M., Walsh, V., & Rothwell, J. C. (2001). Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia, 39: 415419.Google Scholar
Stinear, C. M. & Byblow, W. D. (2003). Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability. Clinical Neurophysiology, 114: 909914.Google Scholar
Strafella, A. P. & Paus, T. (2000). Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. Neuroreport, 11: 22892292.Google Scholar
Taylor, J. L. & Loo, C. K. (2007). Stimulus waveform influences the efficacy of repetitive transcranial magnetic stimulation. Journal of Affective Disorders, 97: 271276.Google Scholar
Terao, Y. & Ugawa, Y. (2002). Basic mechanisms of TMS. Journal of Clinical Neurophysiology, 19: 322343.Google Scholar
Terao, Y., Ugawa, Y., Suzuki, M., Sakai, K., Hanajima, R., Gemba-Shimizu, K., & Kanazawa, I. (1997). Shortening of simple reaction time by peripheral electrical and submotor-threshold magnetic cortical stimulation. Experimental Brain Research, 115: 541545.Google Scholar
Thickbroom, G. W. (2007). Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Experimental Brain Research, 180: 583593.Google Scholar
Thielscher, A., Opitz, A., & Windhoff, M. (2011). Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage, 54: 234243.Google Scholar
Thut, G. & Miniussi, C. (2009). New insights into rhythmic brain activity from TMS–EEG studies. Trends in Cognitive Sciences, 13: 182189.Google Scholar
Thut, G., Miniussi, C., & Gross, J. (2012). The functional importance of rhythmic activity in the brain. Current Biology, 22: R658R663.Google Scholar
Thut, G. & Pascual-Leone, A. (2009). A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topography, 22: 219232.Google Scholar
Thut, G., Schyns, P. G., & Gross, J. (2011a). Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Frontiers in Psychology, 2: 170.Google Scholar
Thut, G., Veniero, D., Romei, V., Miniussi, C., Schyns, P., & Gross, J. (2011b). Rhythmic TMS causes local entrainment of natural oscillatory signatures. Current Biology, 21: 11761185.Google Scholar
Tischler, H., Wolfus, S., Friedman, A., Perel, E., Pashut, T., Lavidor, M., … & Bar-Gad, I. (2011). Mini-coil for magnetic stimulation in the behaving primate. Journal of Neuroscience Methods, 194: 242251.Google Scholar
Touge, T., Gerschlager, W., Brown, P., & Rothwell, J. C. (2001). Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clinical Neurophysiology, 112: 21382145.Google Scholar
Tranulis, C., Guéguen, B., Pham-Scottez, A., Vacheron, M., Cabelguen, G., Costantini, A., … & Galinovski, A.(2006). Motor threshold in transcranial magnetic stimulation: comparison of three estimation methods. Clinical Neurophysiology, 36: 17.Google Scholar
Valls-Sole, J., Pascual-Leone, A., Wassermann, E. M., & Hallett, M. (1992). Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalography & Clinical Neurophysiology, 85: 355364.Google Scholar
Van Der Werf, Y. D. & Paus, T. (2006). The neural response to transcranial magnetic stimulation of the human motor cortex. I: Intracortical and cortico-cortical contributions. Experimental Brain Research, 175: 231245.Google Scholar
Virtanen, J., Ruohonen, J., Näätänen, R., & Ilmoniemi, R. J. (1999). Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Medical Biological Engineering and Computing, 37: 322326.Google Scholar
Wagner, T., Valero-Cabré, A., & Pascual-Leone, A. (2007). Noninvasive brain stimulation. Annual Review of Biomedical Engineering, 9: 527565.Google Scholar
Walsh, V., Ellison, A., Battelli, L., & Cowey, A. (1998). Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proceedings in the Biological Sciences, 265: 537543.Google Scholar
Walsh, V. & Pascual-Leone, A. (2003). Transcranial Magnetic Stimulation: A Neurochronometrics of Mind. Vol. 1. Boston, MA: MIT Press.Google Scholar
Walsh, V. & Rushworth, M. (1999). A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia, 37: 125135.Google Scholar
Wang, J. X., Rogers, L. M., Gross, E. Z., Ryals, A. J., Dokucu, M. E., Brandstatt, K. I., … & Voss, J. I. (2014). Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 345: 10541057.Google Scholar
Wassermann, E. M. (1998). Risk and safety of repetitive transcranial magnetic stimulation. Electroencephalography & Clinical Neurophysiology, 108: 116.Google Scholar
Watanabe, T., Hanajima, R., Shirota, Y., Ohminami, S., Tsutsumi, R., Terao, Y., … & Ohtomo, K. (2014). Bidirectional effects on interhemispheric resting-state functional connectivity induced by excitatory and inhibitory repetitive transcranial magnetic stimulation. Human Brain Mapping, 35: 18961905.Google Scholar
Weiss, C., Nettekoven, C., Rehme, A. K., Neuschmelting, V., Eisenbeis, A., Goldbrunner, R., & Grefkes, C. (2013). Mapping the hand, foot and face representations in the primary motor cortex: retest reliability of neuronavigated TMS versus functional MRI. NeuroImage, 66: 531542.Google Scholar
Weissman, J. D., Epstein, C. M., & Davey, K. R. (1992). Magnetic brain stimulation and brain size: relevance to animal studies. Electroencephalography & Clinical Neurophysiology, 85: 215219.Google Scholar
Weisz, N., Steidle, L., & Lorenz, I. (2012). Formerly known as inhibitory: effects of 1 Hz rTMS on auditory cortex are state-dependent. European Journal of Neuroscience, 36: 20772087.Google Scholar
Werhahn, K. J., Kunesch, E., Noachtar, S., Benecke, R., & Classen, J. (1999). Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. Journal of Physiology, 517: 591597.Google Scholar
Westin, G. G., Bassi, B. D., Lisanby, S. H., & Luber, B. (2014). Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications. Clinical Neurophysiology, 125: 142147.Google Scholar
Windhoff, M., Opitz, A., & Thielscher, A. (2013). Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Human Brain Mapping, 34: 923935.Google Scholar
Wipfli, M., Felblinger, J., Mosimann, U. P., Hess, C. W., Schlaepfer, T. E., & Muri, R. M. (2001). Double-pulse transcranial magnetic stimulation over the frontal eye field facilitates triggering of memory-guided saccades. European Journal of Neuroscience, 14: 571575.Google Scholar
Wischnewski, M. & Schutter, D. J. L. G. (2015). Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimulation, 8: 685692.Google Scholar
Wolters, A., Sandbrink, F., & Schlottmann, A. (2003). A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. Journal of Neurophysiology, 89: 23392345.Google Scholar
Yamanaka, K., Yamagata, B., Tomioka, H., Kawasaki, S., & Mimura, M. (2010). Transcranial magnetic stimulation of the parietal cortex facilitates spatial working memory: near infrared spectroscopy study. Cerebral Cortex, 20: 10371045.Google Scholar
Zangen, A., Roth, Y., Voller, B., & Hallett, M. (2005). Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clinical Neurophysiology, 116: 775779.Google Scholar
Ziemann, U. (2002). Paired pulse techniques. In Pascual-Leone, A., Davey, N. J., Rothwell, J., Wassermann, E. M., & Puri, B. K. (eds.), Handbook of Transcranial Magnetic Stimulation, vol. 1 (pp. 141159). London: Arnold.Google Scholar
Ziemann, U. (2010). TMS in cognitive neuroscience: virtual lesion and beyond. Cortex, 46: 124127.Google Scholar
Ziemann, U. (2011). Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex. The Neuroscientist, 17: 368381.Google Scholar
Ziemann, U., Lonnecker, S., Steinhoff, B. J., & Paulus, W. (1996a). The effect of lorazepam on the motor cortical excitability in man. Experimental Brain Research, 109: 127135.Google Scholar
Ziemann, U., Paulus, W., Nitsche, M. A. Pascual-Leone, A., Byblow, W. D., Berardelli, A., … & Rothwell, J. C. (2008). Consensus: motor cortex plasticity protocols. Brain Stimulation, 1: 164182.Google Scholar
Ziemann, U. & Rothwell, J. C. (2000). I-waves in motor cortex. Journal of Clinical Neurophysiology, 17: 397405.Google Scholar
Ziemann, U., Rothwell, J. C., & Ridding, M. C. (1996b). Interaction between intracortical inhibition and facilitation in human motor cortex. Journal of Physiology, 496: 873881.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×