Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T07:16:13.700Z Has data issue: false hasContentIssue false

3 - Intracellular recording

Published online by Cambridge University Press:  05 October 2012

Romain Brette
Affiliation:
Department of Cognitive Science, France
Alain Destexhe
Affiliation:
Unit for Neuroscience, France
Romain Brette
Affiliation:
Ecole Normale Supérieure, Paris
Alain Destexhe
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Introduction

Intracellular recording is the measurement of voltage or current across the membrane of a cell. It typically involves an electrode inserted in the cell and a reference electrode outside the cell. The electrodes are connected to an amplifier to measure the membrane potential, possibly in response to a current injected through the intracellular electrode (current clamp), or the current flowing through the intracellular electrode when the membrane potential is held at a fixed value (voltage clamp). Ionic and synaptic conductances can be measured indirectly with these two basic recording modes. While spike trains can be recorded with extracellular electrodes (see Chapter 4), subthreshold events in single neurons can only be recorded with intracellular electrodes. Intracellular recordings have been used for many applications: measuring membrane potential distribution in vivo (DeWeese et al., 2003), membrane potential correlations between neurons (Lampl et al., 1999), changes in effective membrane time constant with network activity (Pare et al., 1998; Leger et al., 2005), excitatory and inhibitory synaptic conductances in response to visual stimulation (Borg-Graham et al., 1998; Anderson et al., 2000; Monier et al., 2003), current–voltage relationships during spiking activity (Badel et al., 2008), the reproducibility of neuron responses (Mainen and Sejnowski, 1995) dendritic computation mechanisms (Stuart et al., 1999), gating mechanisms in thalamocortical circuits (Bal and McCormick, 1996), oscillations of membrane potential (Engel et al., 2001; Volgushev et al., 2002), stimulus-dependent modulation of the spike threshold (Azouz and Gray, 1999; Henze and Buzsaki, 2001; Wilent and Contreras, 2005), and many others.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J., Carandini, M. and Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol., 84 (2), 909.CrossRefGoogle ScholarPubMed
Azouz, R. and Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. J. Neurosci., 19 (6), 2209–2223.CrossRefGoogle ScholarPubMed
Badel, L., Lefort, S., Brette, R., Petersen, C. C. H., Gerstner, W. and Richardson, M. J. E. (2008). Dynamic I–V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J. Neurophysiol., 99 (2), 656–666.CrossRefGoogle ScholarPubMed
Bal, T. and McCormick, D. A. (1996). What stops synchronized thalamocortical oscillations?Neuron, 17 (2), 297.CrossRefGoogle ScholarPubMed
Bar-Yehuda, D. and Korngreen, A. (2008). Space-clamp problems when voltage clamping Neurons expressing voltage-gated conductances. J. Neurophysiol., 99 (3), 1127–1136.CrossRefGoogle ScholarPubMed
Bédard, C. and Destexhe, A. (2008). A modified cable formalism for modeling neuronal membranes at high frequencies. Biophys. J., 94 (4), 1133–1143.CrossRefGoogle ScholarPubMed
Bernstein, J. (1868). Ueber den zeitlichen Verlauf der negativen Schwankung des nervenstroms. Pflügers Archiv Eur. J. of Physiol., 1 (1), 173–207.CrossRefGoogle Scholar
Bernstein, J. (1912). Elektrobiologie. Braunschweig: F. Vieweg.CrossRefGoogle Scholar
Borg-Graham, L. J., Monier, C. and Fregnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature, 393 (6683), 369.CrossRefGoogle ScholarPubMed
Brennecke, R. and Lindemann, B. (1971). A chopped-current clamp for current injection and recording of membrane polarization with single electrodes of changing resistance. T-I-T-J Life Sci., 1, 53–58.Google Scholar
Brennecke, R. and Lindemann, B. (1974). Design of a fast voltage clamp for biological membranes, using discontinuous feedback. Rev. Sci. Instrum., 45 (5), 656–661.CrossRefGoogle ScholarPubMed
Brette, R., Piwkowska, Z., Monier, C., Rudolph-Lilith, M., Fournier, J., Levy, M., Frgnac, Y., Bal, T. and Destexhe, A. (2008). High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron, 59 (3), 379–391.CrossRefGoogle ScholarPubMed
Brette, R., Piwkowska, Z., Monier, C., Gomez Gonzales, J. F., Frégnac, Y., Bal, T. and Destexhe, A. (2009). Dynamic clamp with high-resistance electrodes using active electrode compensation in vitro and in vivo. In: A., Destexhe and T., Bal (editors), Dynamic-Clamp: From Principles to Applications, pp. 347–382. New York: Springer.Google Scholar
Brock, L., Coombs, J. and Eccles, J. (1952). The recording of potentials from motoneurones with an intracellular electrode. J. Physiol., 117 (4), 431–460.CrossRefGoogle ScholarPubMed
Cole, K. S. (1949). Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol., 3 (25), 3–25.Google Scholar
Cole, K. S. and Curtis, H. J. (1939). Electric impedance of the squid giant axon during activity. J. Gen. Physiol., 22 (5), 649–670.CrossRefGoogle ScholarPubMed
Dayan, P. and Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge, MA: MIT Press.Google Scholar
de Polavieja, G. G., Harsch, A., Kleppe, I., Robinson, H. P. C. and Juusola, M. (2005). Stimulus history reliably shapes action potential waveforms of cortical neurons. J. Neurosc., 25 (23), 5657–5665.CrossRefGoogle ScholarPubMed
de Sa, V. R. and MacKay, D. J. (2001). Model fitting as an aid to bridge balancing in neuronal recording. Neurocomputing, 38–40, 1651–1656.Google Scholar
Destexhe, A. and Bal, T. (editors), (2009). Dynamic-Clamp: From Principles to Applications. New York: Springer.
Destexhe, A. and Rudolph, M. (2004). Extracting information from the power spectrum of synaptic noise. J. Comput. Neurosci., 17 (3), 327–345.CrossRefGoogle ScholarPubMed
Destexhe, A., Rudolph, M., Fellous, J.M. and Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107 (1), 13.CrossRefGoogle ScholarPubMed
Destexhe, A., Rudolph, M. and Pare, D. (2003). The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci., 4 (9), 739.CrossRefGoogle ScholarPubMed
DeWeese, M. R., Wehr, M. and Zador, A. M. (2003). Binary spiking in auditory cortex. J. Neurosci., 23 (21), 7940–7949.CrossRefGoogle ScholarPubMed
Engel, A. K., Fries, P. and Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci., 2 (10), 704.CrossRefGoogle ScholarPubMed
Finkel, A. S. and Redman, S. (1984). Theory and operation of a single microelectrode voltage clamp. J. Neurosci. Methods, 11 (2), 101–127.CrossRefGoogle ScholarPubMed
Galvani, L. (1791). De viribus electricitatis in motu musculari: Commentarius. Bologna: Tip. Istituto delle Scienze.CrossRefGoogle Scholar
Goodman, D. and Brette, R. (2008). Brian: a simulator for spiking neural networks in python. Frontiers Neuroinformatics, 2, 5.CrossRefGoogle ScholarPubMed
Guillamon, A., McLaughlin, D. W. and Rinzel, J. (2006). Estimation of synaptic conductances. J. Physiol. Paris, 100 (1–3), 31–42.CrossRefGoogle ScholarPubMed
Henze, D. A. and Buzsaki, G. (2001). Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience, 105 (1), 121–30.CrossRefGoogle ScholarPubMed
Hille, B. (2001). Ion Channels of Excitable Membranes. Sinauer Associates.Google Scholar
Hodgkin, A. and Huxley, A. (1939). Action potentials recorded from inside a nerve fibre. Nature, 144 (3651), 710.CrossRefGoogle Scholar
Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London), 117, 500.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. and Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. J. of Physiol., 108 (1), 37.CrossRefGoogle ScholarPubMed
Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press.Google Scholar
Koch, C., Douglas, R. and Wehmeier, U. (1990). Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells. J. Neurosci., 10 (6), 1728–1744.CrossRefGoogle ScholarPubMed
Lampl, I., Reichova, I. and Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22 (2), 361.CrossRefGoogle ScholarPubMed
Leger, J. F., Stern, E. A., Aertsen, A. and Heck, D. (2005). Synaptic integration in rat frontal cortex shaped by network activity. J. Neurophysiol., 93 (1), 281–293.CrossRefGoogle ScholarPubMed
Lindner, B. and Longtin, A. (2011). Comment on “Characterization of subthreshold voltage fluctuations in neuronal membranes,” by M., Rudolph and A., Destexhe. Neural Comput., 18 (8), 1896–1931.Google Scholar
Ling, G. and Gerard, R. (1949). The normal membrane potential of frog sartorius fibers. J. Cell. Physiol., 34 (3), 383–96.CrossRefGoogle ScholarPubMed
Mainen, Z. and Sejnowski, T. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503.CrossRefGoogle ScholarPubMed
Mainen, Z. F., Joerges, J., Huguenard, J. R. and Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15 (6), 1427–1439.CrossRefGoogle ScholarPubMed
Marmont, G. (1949). Studies on the axon membrane: a new method. J. Cell. Physiol., 34 (3), 351–382.Google ScholarPubMed
Monier, C., Chavane, F., Baudot, P., Graham, L. J. and Fregnac, Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron, 37 (4), 663.CrossRefGoogle ScholarPubMed
Monier, C., Fournier, J. and Fregnac, Y. (2008). In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J. Neurosci. Methods, 169 (2), 323–365.CrossRefGoogle ScholarPubMed
Neher, E. and Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 260 (5554), 799–802.CrossRefGoogle ScholarPubMed
Pare, D., Shink, E., Gaudreau, H., Destexhe, A. and Lang, E. J. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol., 79 (3), 1450.CrossRefGoogle ScholarPubMed
Pospischil, M., Piwkowska, Z., Rudolph, M., Bal, T. and Destexhe, A. (2007). Calculating event-triggered average synaptic conductances from the membrane potential. J. Neurophysiol., 97 (3), 2544.CrossRefGoogle ScholarPubMed
Piwkowska, Z., Pospischil, M., Brette, R., Sliwa, J., Rudolph-Lilith, M., Bal, T. and Destexhe, A. (2008). Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation. J. Neurosci. Methods, 169 (2), 302–322.CrossRefGoogle ScholarPubMed
Pospischil, M., Piwkowska, Z., Bal, T. and Destexhe, A. (2009). Extracting synaptic conductances from single membrane potential traces. Neuroscience, 158 (2), 545–552.CrossRefGoogle ScholarPubMed
Purves, R. D. (1981). Microelectrode Methods for Intracellular Recording and Ionophoresis. New York: Academic Press.Google Scholar
Richardson, M. J. E. (2004). Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys. Rev. E, 69 (5), 051918.CrossRefGoogle ScholarPubMed
Rudolph, M. and Destexhe, A. (2003). Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Comput., 15 (11), 2577.CrossRefGoogle ScholarPubMed
Rudolph, M. and Destexhe, A. (2011). On the use of analytical expressions for the voltage distribution to analyze intracellular recordings. Neural Comput., 18 (12), 2917–2922.Google Scholar
Rudolph, M., Piwkowska, Z., Badoual, M., Bal, T. and Destexhe, A. (2004). A method to estimate synaptic conductances from membrane potential fluctuations. J. Neurophysiol., 91 (6), 2884–2896.CrossRefGoogle ScholarPubMed
Rudolph, M., Pelletier, J. G., Paré, D. and Destexhe, A. (2005). Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo. J. Neurophysiol., 94 (4), 2805–2821.CrossRefGoogle ScholarPubMed
Rudolph, M., Pospischil, M., Timofeev, I. and Destexhe, A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J. Neurosci., 27 (20), 5280–5290.CrossRefGoogle ScholarPubMed
Sakmann, B. and Neher, E. (1995). Single-Channel Recording. New York: Plenum Press.Google Scholar
Sherman-Gold, R. (1993). The Axon Guide for Electrophysiology and Biophysics: Laboratory Techniques. Foster City, CA: Axon Instruments.Google Scholar
Sigworth, F. J. and Neher, E. (1980). Single Na channel currents observed in cultured rat muscle cells. Nature, 287 (2), 447.CrossRefGoogle ScholarPubMed
Staley, K. J., Otis, T. S. and Mody, I. (1992). Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J. Neurophysiol., 67 (5), 1346–1358.CrossRefGoogle ScholarPubMed
Stuart, G., Spruston, N. and Hausser, M. (1999). Dendrites. Oxford University Press.Google Scholar
Tuckwell, H. (1988). Introduction to Theoretical Neurobiology, Vol 1: Linear Cable Theory and Dendritic Structure. Cambridge: Cambridge University Press.Google Scholar
Umrath, K. (1930). Untersuchungen über Plasma und Plasmaströmung an Characeen. Protoplasma, 9 (1), 576–597.CrossRefGoogle Scholar
Volgushev, M., Pernberg, J. and Eysel, U. (2002). A novel mechanism of response selectivity of neurons in cat visual cortex. J. Physiol., 540 (1), 307.CrossRefGoogle ScholarPubMed
Wilent, W. B. and Contreras, D. (2005). Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons. J. Neurosci., 25 (11), 2983–2991.CrossRefGoogle ScholarPubMed
Zou, Q., Rudolph, M., Roy, N., Sanchez-Vives, M., Contreras, D. and Destexhe, A. (2005). Reconstructing synaptic background activity from conductance measurements in vivo. Neurocomputing, 65–66, 673–678.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Intracellular recording
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Intracellular recording
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Intracellular recording
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.003
Available formats
×