Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T20:44:07.017Z Has data issue: false hasContentIssue false

21 - Perception of Volumetric Data

from Part IV - Clinical Performance Assessment

Published online by Cambridge University Press:  20 December 2018

Ehsan Samei
Affiliation:
Duke University Medical Center, Durham
Elizabeth A. Krupinski
Affiliation:
Emory University, Atlanta
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altmann, E.M., Trafton, J.G. (2004). Task interruption: resumption lag and the role of cues. Proc Ann Mtg Cog Sci Soc, 26. Available online at: https://escholarship.org/uc/item/18b4r66 (accessed November 16, 2017).Google Scholar
Andriole, K.P., Wolfe, J.M., Khorasani, R., Treves, S.T., Getty, D.J., Jacobson, F.L., Steigner, M.L., Pan, J.J., Sitek, A., Seltzer, S.E. (2011). Optimizing analysis, visualization, and navigation of large image data sets: one 5000-section CT scan can ruin your whole day. Radiology, 259(2), 346362.CrossRefGoogle ScholarPubMed
Balint, B.J., Steenburg, S.D., Lin, H., Shen, C., Steele, J.L., Gunderman, R.B. (2014). Do telephone call interruptions have an impact on radiology resident diagnostic accuracy? Acad Radiol, 21(12), 16231628.Google Scholar
Ball, K.K., Beard, B.L., Roenker, D.L., Miller, R.L., Griggs, D.S. (1988). Age and visual search: expanding the useful field, J Opt Soc Am, 5, 110.Google Scholar
Bertram, R., Kaakinen, J., Bensch, F., Helle, L., Lantto, E., Niemi, P., Lundbom, N. (2016). Eye movements of radiologists reflect expertise in CT study interpretation: a potential tool to measure resident development. Radiology, 281(3), 805815.Google Scholar
Beyer, F., Zierott, L., Fallenberg, E.M., Juergens, K.U., Stoeckel, J., Heindel, W., Wormanns, D. (2007). Comparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader. Eur Radiol, 17(11), 2941–2947.CrossRefGoogle ScholarPubMed
Burling, D., Halligan, S., Altman, D.G., Atkin, W., Bartram, C., Fenlon, H., Laghi, A., Stoker, J., Taylor, S., Frost, R., Dessey, G., De Villiers, M., Florie, J., Foley, S., Honeyfield, L., Iannaccone, R., Gallo, T., Kay, C., Lefere, P., Lowe, A., Mangiapane, F., Marrannes, J., Neri, E., Nieddu, G., Nicholson, D., O Hare, A., Ori, S., Politi, B., Poulus, M., Regge, D., Renaut, L., Rudralingham, V., Signoretta, S., Vagli, P., Van der Hulst, V., Williams-Butt, J. (2006). CT colonography interpretation times: effect of reader experience, fatigue, and scan findings in a multi-centre setting. Eur Radiol, 16(8), 17451749.Google Scholar
Cavanagh, P. (1987). Reconstructing the third dimension: interactions between color, texture, motion, binocular disparity, and shape. Comput Vision, Graph Image Process, 37(2), 171195.Google Scholar
Cooper, L., Gale, A., Darker, I., Toms, A., Saada, J. (2009). Radiology image perception and observer performance: how does expertise and clinical information alter interpretation? Stroke detection explored through eye-tracking. Proc SPIE Med Imag, 7263, 72630K.CrossRefGoogle Scholar
Coughlin, B.F., Seltzer, S.E., Swensson, R.G., Judy, P.F. (1992). Practices and attitudes about cathode-ray tube-based and film-based image interpretation. J Digit Imag, 5(1), 5053.CrossRefGoogle ScholarPubMed
Diaz, I., Schmidt, S., Verdun, F.R., Bochud, F.O. (2015). Eye-tracking of nodule detection in lung CT volumetric data. Med Phys, 42(6), 29252932.Google Scholar
Dreizin, D., Munera, F. (2012). Blunt polytrauma: evaluation with 64-section whole-body CT angiography. Radiographics, 32(3), 609631.CrossRefGoogle ScholarPubMed
Drew, T., Evans, K., , M.L.-H., Jacobson, F.L., Wolfe, J.M. (2013a). Informatics in radiology: what can you see in a single glance and how might this guide visual search in medical images? Radiographics, 33(1), 263274.Google Scholar
Drew, T., Vo, M.L.-H., Olwal, A., Jacobson, F., Seltzer, S.E., Wolfe, J.M. (2013b). Scanners and drillers: characterizing expert visual search through volumetric images. J Vision, 13(10), 113.Google Scholar
Drew, T., , M.L.-H., Wolfe, J.M. (2013c). The invisible gorilla strikes again: sustained inattentional blindness in expert observers. Psychol Sci, 24(9), 18481853.Google Scholar
Duncan, J., Humphreys, G.W. (1989). Visual-search and stimulus similarity. Psychol Rev, 96(3), 433458.Google Scholar
Ebner, L., Tall, M., Choudhury, K.R., Ly, D.L., Roos, J.E., Napel, S., Rubin, G.D. (2017). Variations in the functional visual field for detection of lung nodules on chest computed tomography: impact of nodule size, distance, and local lung complexity. Med Phys, 44(7), 34833490.CrossRefGoogle ScholarPubMed
Edelman, R.R. (2014). The history of MR imaging as seen through the pages of radiology. Radiology, 273(2 Suppl), S181–S200.Google Scholar
Ellis, S.M., Hu, X., Dempere-Marco, L., Yang, G.Z., Wells, A.U., Hansell, D.M. (2006). Thin-section CT of the lungs: eye-tracking analysis of the visual approach to reading tiled and stacked display formats. Eur J Radiol, 59(2), 257264.Google Scholar
Evans, K.K., Birdwell, R.L., Wolfe, J.M. (2013). If you don’t find it often, you often don’t find it: why some cancers are missed in breast cancer screening. PLoS One, 8(5), e64366.Google Scholar
Fishman, E.K., Ney, D.R., Heath, D.G., Corl, F.M., Horton, K.M., Johnson, P.T. (2006). Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. RadioGraphics, 26(3), 905922.Google Scholar
Ghekiere, O., Lesnik, A., Millet, I., Hoa, D., Guillon, F., Taourel, P. (2007). Direct visualization of perforation sites in patients with a non-traumatic free pneumoperitoneum: added diagnostic value of thin transverse slices and coronal and sagittal reformations for multi-detector CT. Eur Radiol, 17(9), 23022309.Google Scholar
Godoy, M.C.B., Kim, T.J., White, C.S., Bogoni, L., de Groot, P., Florin, C., Obuchowski, N., Babb, J.S., Salganicoff, M., Naidich, D.P., Anand, V., Park, S., Vlahos, I., Ko, J.P. (2013). Benefit of computer-aided detection analysis for the detection of subsolid and solid lung nodules on thin- and thick-section CT. AJR, 200(1), 7483.CrossRefGoogle ScholarPubMed
Halligan, S., Mallett, S., Altman, D.G., McQuillan, J., Proud, M., Beddoe, G., Honeyfield, L., Taylor, S.A. (2011). Incremental benefit of computer-aided detection when used as a second and concurrent reader of CT colonographic data: multiobserver study. Radiology, 258(2), 469476.Google Scholar
Helbren, E., Halligan, S., Phillips, P., Boone, D., Fanshawe, T.R., Taylor, S.A., Manning, D., Gale, A., Altman, D.G., Mallett, S. (2014). Towards a framework for analysis of eye-tracking studies in the three dimensional environment: a study of visual search by experienced readers of endoluminal CT colonography. Br J Radiol, 87(1037), 20130614.Google Scholar
Helbren, E., Fanshawe, T.R., Phillips, P., Mallett, S., Boone, D., Gale, A., Altman, D.G., Taylor, S.A., Manning, D., Halligan, S. (2015). The effect of computer-aided detection markers on visual search and reader performance during concurrent reading of CT colonography. Eur Radiol, 25(6), 15701578.Google Scholar
Horowitz, T.S. (2017). Prevalence in visual search: from the clinic to the lab and back again. Jpn Psychol Res, 59(2), 65108.CrossRefGoogle Scholar
Hu, C.H., Kundel, H.L., Nodine, C.F., Krupinski, E.A., Toto, L.C. (1994). Searching for bone fractures: a comparison with pulmonary nodule search. Acad Radiol, 1(1), 2532.Google Scholar
Huang, H.K. (2011). Short history of PACS. Part I: USA. Eur J Radiol, 78(2), 163176.Google Scholar
Krupinski, E.A. (1996). Influence of experience on scanning strategies in mammography. Proc SPIE, 2712, 18.Google Scholar
Krupinski, E.A., Berger, W.G., Dallas, W.J., Roehrig, H. (2003). Searching for nodules: what features attract attention and influence detection? Acad Radiol, 10(8), 861868.Google Scholar
Krupinski, E.A., Tillack, A.A., Richter, L., Henderson, J.T., Bhattacharyya, A.K., Scott, K.M., Graham, A.R., Descour, M.R., Davis, J.R., Weinstein, R.S. (2006). Eye-movement study and human performance using telepathology virtual slides. Implications for medical education and differences with experience. Hum Pathol, 37(12), 15431556.Google Scholar
Kundel, H.L. (2015). Visual search and lung nodule detection on CT scans. Radiology, 274(1), 1416.Google Scholar
Kundel, H.L., Nodine, C.F. (1975). Interpreting chest radiographs without visual search. Radiology, 116(3), 527532.Google Scholar
Kundel, H.L., La Follette, P.S. (1972). Visual search patterns and experience with radiological images. Radiology, 103(3), 523528.Google Scholar
Kundel, H.L., Nodine, C.F., Carmody, D. (1978). Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Invest Radiol, 13(3), 175181.CrossRefGoogle ScholarPubMed
Kundel, H.L., Nodine, C.F., Thickman, D., Toto, L. (1987). Searching for lung nodules. A comparison of human performance with random and systematic scanning models. Invest Radiol, 22(5), 417422.Google Scholar
Kundel, H.L., Nodine, C.F., Krupinski, E.A. (1989). Searching for lung nodules. Visual dwell indicates locations of false-positive and false-negative decisions. Invest Radiol, 24(6), 472478.CrossRefGoogle ScholarPubMed
Kundel, H.L., Nodine, C.F., Conant, E.F., Weinstein, S.P. (2007) Holistic component of image perception in mammogram interpretation: gaze-tracking study 1. Radiology, 242(2), 396402.CrossRefGoogle Scholar
Larsson, L., Nystrom, M., Andersson, R., Stridh, M. (2015) Detection of fixations and smooth pursuit movements in high-speed eye-tracking data. Biomed Sig Proc Control, 18, 145152.Google Scholar
Larsson, L., Nystrom, M., Ardo, H., Astrom, K., Stridh, M. (2016). Smooth pursuit detection in binocular eye-tracking data with automatic video-based performance evaluation. J Vision, 16(15), 20.Google Scholar
Mallett, S., Phillips, P., Fanshawe, T.R., Helbren, E., Boone, D., Gale, A., Taylor, S.A., Manning, D., Altman, D.G., Halligan, S. (2014). Tracking eye gaze during interpretation of endoluminal three-dimensional CT colonography: visual perception of experienced and inexperienced readers. Radiology, 273(3), 783792.Google Scholar
Manning, D., Ethell, S., Donovan, T., Crawford, T. (2006). How do radiologists do it? The influence of experience and training on searching for chest nodules. Radiography, 12(2), 134142.Google Scholar
Matsumoto, H., Terao, Y., Yugeta, A., Fukuda, H., Emoto, M., Furubayashi, T., Okano, T., Hanajima, R., Ugawa, Y. (2011). Where do neurologists look when viewing brain CT images? An eye-tracking study involving stroke cases. PLoS One, 6(12), e28928.Google Scholar
McConkie, G.W., Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Percep Psychophys, 17(6), 578586.CrossRefGoogle Scholar
McDonald, R.J., Schwartz, K.M., Eckel, L.J., Diehn, F.E., Hunt, C.H., Bartholmai, B.J., Erickson, B.J., Kallmes, D.F. (2015) The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol, 22(9), 11911198.Google Scholar
Mital, P.K., Smith, T.J., Hill, R.L., Henderson, J.M. (2011) Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn Comput, 3(1), 524.Google Scholar
Napel, S., Rubin, G.D., Jeffrey, R.B. (1993). STS-MIP: a new reconstruction technique for CT of the chest. JCAT, 17(5), 832838.Google Scholar
Nodine, C.F., Mello-Thoms, C., Kundel, H.L., Weinstein, S.P. (2002). Time course of perception and decision making during mammographic interpretation. AJR, 179(4), 917923.Google Scholar
Paik, D.S., Beaulieu, C.F., Jeffrey, R.B., Rubin, G.D., Napel, S. (1998). Automated flight path planning for virtual endoscopy. Med Phys, 25(5), 629637.CrossRefGoogle ScholarPubMed
Phillips, P., Boone, D., Mallett, S., Taylor, S.A., Altman, D.G., Manning, D., Gale, A., Halligan, S. (2013). Method for tracking eye gaze during interpretation of endoluminal 3D CT colonography: technical description and proposed metrics for analysis. Radiology, 267(3), 924931.CrossRefGoogle ScholarPubMed
Pickhardt, P.J. (2003). Three-dimensional endoluminal CT colonography (virtual colonoscopy): comparison of three commercially available systems. AJR, 181(6), 15991606.Google Scholar
Potter, M.C. (1975). Meaning in visual search. Science, 187(4180), 965966.Google Scholar
Ratwani, R.M., Wang, E., Fong, A., Cooper, C.J. (2016). A human factors approach to understanding the types and sources of interruptions in radiology reading rooms. J Am Coll Radiol, 13(9), 11021105.Google Scholar
Rubin, G.D. (2000). Data explosion: the challenge of multidetector-row CT. Eur J Radiol, 36(2), 7480.Google Scholar
Rubin, G.D. (2003). 3-D imaging with MDCT. Eur J Radiol, 45, S37–S41.Google Scholar
Rubin, G.D. (2014). Computed tomography: revolutionizing the practice of medicine for 40 years. Radiology, 273(2 Suppl), S45–S74.Google Scholar
Rubin, G.D. (2015). Lung nodule and cancer detection in computed tomography screening. J Thorac Imag, 30(2), 130138.Google Scholar
Rubin, G.D., Krupinski, E.A. (2017). Tracking eye movements during CT interpretation: inferences of reader performance and clinical competency require clinically realistic procedures for unconstrained search. Radiology, 283(3), 920.Google Scholar
Rubin, G.D., Beaulieu, C.F., Argiro, V., Ringl, H., Norbash, A.M., Feller, J.F., Dake, M.D., Jeffrey, R.B., Napel, S. (1996). Perspective volume rendering of CT and MR images: applications for endoscopic imaging. Radiology, 199(2), 321330.Google Scholar
Rubin, G.D., Shiau, M.C., Schmidt, A.J., Fleischmann, D., Logan, L., Leung, A.N., Jeffrey, R.B., Napel, S. (1999). Computed tomographic angiography: historical perspective and new state-of-the-art using multi detector-row helical computed tomography. JCAT, 23(Suppl 1), S83–S90.Google Scholar
Rubin, G.D., Sedati, P., Wei, J.L. (2009). Postprocessing and data analysis. In: Rubin, G.D., Rofsky, M.R. (eds.) CT and MR Angiography. Philadelphia, PA: Wolters Kluwer/ Lippincott Williams and Wilkins, pp. 197251.Google Scholar
Rubin, G.D., Harrawood, B., Napel, S., Roos, J. E., Choudhury, K. R., Ebner, L. (2015a). The moment of recognition: method and analysis of gaze behavior in the search for lung nodules in CT scans. Available online at: archive.rsna.org/2015/15047526.html (accessed November 11, 2017).Google Scholar
Rubin, G.D., Roos, J.E., Tall, M., Harrawood, B., Bag, S., Ly, D.L., Seaman, D.M., Hurwitz, L.M., Napel, S., Roy Choudhury, K. (2015b). Characterizing search, recognition, and decision in the detection of lung nodules on CT scans: elucidation with eye tracking. Radiology, 274(1), 276286.Google Scholar
Seltzer, S.E., Judy, P.F., Adams, D.F., Jacobson, F.L., Stark, P., Kikinis, R., Swensson, R.G., Hooton, S., Head, B., Feldman, U. (1995). Spiral CT of the chest: comparison of cine and film-based viewing. Radiology, 197(1), 7378.Google Scholar
Shen, Y.J., Jiang, Y.V. (2006). Interrupted visual searches reveal volatile search memory. J Exp Psychol Hum Percep Perform, 32(5), 12081220.Google Scholar
Simons, D.J., Chabris, C.F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception, 28(9), 10591074.Google Scholar
Solomon, J., Marin, D., Roy Choudhury, K., Patel, B., Samei, E. (2017). Effect of radiation dose reduction and reconstruction algorithm on image noise, contrast, resolution, and detectability of subtle hypoattenuating liver lesions at multidetector CT: filtered back projection versus a commercial model-based iterative reconstruction algorithm. Radiology, 284(3), 777787.Google Scholar
Straub, W.H., Gur, D., Good, W.F., Campbell, W.L., Davis, P.L., Hecht, S.T., Skolnick, M.L., Thaete, F.L., Rosenthal, M.S., Sashin, D. (1991). Primary CT diagnosis of abdominal masses in a PACS environment. Radiology, 178(3), 739743.Google Scholar
Suwa, K., Furukawa, A., Matsumoto, T., Yosue, T. (2001). Analyzing the eye movement of dentists during their reading of CT images. Odontology, 89(1), 5461.Google Scholar
Tall, M., Choudhury, K.R., Napel, S., Roos, J.E., Rubin, G.D. (2012). Accuracy of a remote eye tracker for radiologic observer studies: effects of calibration and recording environment. Acad Radiol, 19(2), 196202.Google Scholar
Trafton, J.G., Altmann, E.M., Brock, D.P. (2005). Huh, what was I doing? How people use environmental cues after an interruption. Proc Hum Fact Ergon Soc Ann Meet, 49(3), 468472.Google Scholar
Venjakob, A.C., Mello-Thoms, C.R. (2016). Review of prospects and challenges of eye tracking in volumetric imaging. J Med Imag Int Soc Optic Phot, 3(1), 011002.Google ScholarPubMed
Waite, S., Kolla, S., Jeudy, J., Legasto, A., Macknik, S.L., Martinez-Conde, S., Krupinski, E.A., Reede, D.L. (2017). Tired in the reading room: the influence of fatigue in radiology. J Am Coll Radiol, 14(2), 191197.CrossRefGoogle ScholarPubMed
Westbrook, J.I., Woods, A., Rob, M.I., Dunsmuir, W.T.M., Day, R.O. (2010). Association of interruptions with an increased risk and severity of medication administration errors. Arch Intern Med, 170(8), 683690.Google Scholar
Williams, L.H., Drew, T. (2017). Distraction in diagnostic radiology: how is search through volumetric medical images affected by interruptions? Cogn Res: Princ Implic, 2(1), 12.CrossRefGoogle Scholar
Wolfe, J.M. (1994). Guided search 2.0: a revised model of visual search. Psychon Bull Rev, 1(2), 202238.Google Scholar
Wolfe, J.M., Horowitz, T.S., Van Wert, M.J., Kenner, N.M., Place, S.S., Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. J Exp Psychol Gen, 136(4), 623638.CrossRefGoogle ScholarPubMed
Wolfe, J.M., Evans, K.K., Drew, T., Aizenman, A., Josephs, E. (2016). How do radiologists use the human search engine? Radiat Protect Dosim, 169(1–4), 2431.Google Scholar
Young, A.H., Hulleman, J. (2013). Eye movements reveal how task difficulty molds visual search. J Exp Psychol Hum Percep Perf, 39(1), 168190.Google Scholar
Yu, J.-P.J., Kansagra, A.P., Mongan, J. (2014). The radiologist’s workflow environment: evaluation of its disruptors and potential implications. J Am Coll Radiol, 11(6), 589593.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×