Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T09:29:34.314Z Has data issue: false hasContentIssue false

30 - Display Optimization from a Perception Perspective

from Part VI - Applied Perception

Published online by Cambridge University Press:  20 December 2018

Ehsan Samei
Affiliation:
Duke University Medical Center, Durham
Elizabeth A. Krupinski
Affiliation:
Emory University, Atlanta
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abboud, S., Weiss, F., Siegel, E., Jeudy, J. (2013). TB or not TB: interreader and intrareader variability in screening diagnosis on an iPad versus a traditional display. J Am Coll Radiol, 10(1), 4244.Google Scholar
Abdullah, B.J., Ng, K.H. (2001). In the eyes of the beholder: what we see is not what we get. Br J Radiol, 74(884), 675676.CrossRefGoogle Scholar
ACR. (1999). ACR Mammography Quality Control Manual. Reston, VA: ACR. Available at: www.acraccreditation.org/~/media/ACRAccreditation/Documents/Mammography/Clinical_Image_SECTION_1999MammoQC.pdf?la=en (accessed January 8, 2018).Google Scholar
ACR. (2001). ACR Practice Guideline for the Performance of Whole Breast Digital Mammography (Res. 7). Reston, VA: ACR.Google Scholar
Ardito, M. (1994). Studies of the influence of display size and picture brightness on the preferred viewing distance for HDTV programs. SMPTE J, 103(8), 517522.Google Scholar
Badano, A. (2017). Considerations for the use of handheld image viewers: a report of AAPM task group 260. In: Chen, P.H., Prevedello, L.M.S. (eds.) SIIM 2017 Scientific Session Productivity and Workflow. Pittsburg, PA: SIIM, pp. 1–2.Google Scholar
Badano, A., Flynn, M.J., Kanicki, J. (2004). High-Fidelity Medical Imaging Displays (Vol. 63). Bellingham, WA: SPIE Press, pp. 1011.CrossRefGoogle Scholar
Barten, P.G. (1999). Contrast Sensitivity of the Human Eye and its Effects on Image Quality (Vol. 72). Bellingham, WA: SPIE Press.Google Scholar
Berglund, B., Lindvall, T., Schwela, D.H. (2000). New WHO guidelines for community noise. Noise Vibrat Worldwide, 31(4), 2429.Google Scholar
Bessho, Y., Yamaguchi, M., Fujita, H., Azuma, M. (2009). Usefulness of reduced image display size in softcopy reading. Acad Radiol, 16(8), 940946.Google Scholar
Bevins, N.B., Flynn, M.J., Silosky, M.S., Walz-Flannigan, A.I. (2017). Display quality assurance: a report of AAPM task group 270. AAPM. Available at: www.aapm.org/eval/m/Quiz.aspx?sid=7117&mid=127 (accessed January 8, 2018).Google Scholar
Bick, U., Diekmann, F. (2010). Digital Mammography. Heidelberg, Germany: Springer Science and Business Media.Google Scholar
Boonn, W.W., Flanders, A.E. (2005). Informatics in radiology (infoRAD): survey of personal digital assistant use in radiology. Radiographics, 25(2), 537541.Google Scholar
Brennan, P.C., McEntee, M., Evanoff, M., Phillips, P., O’Connor, W.T., Manning, D.J. (2007). Ambient lighting: effect of illumination on soft-copy viewing of radiographs of the wrist. AJR, 188(2), W177–W180.Google Scholar
Brennan, P.C., Ryan, J., Evanoff, M., Toomey, R.J., O’Beirne, A., Manning, D., McEntee, M. (2008). The impact of acoustic noise found within clinical departments on radiology performance. Acad Radiol, 15(4), 472476.Google Scholar
Broadbent, D.E. (1958). Perception and Communication. Oxford, England: Pergamon Press.Google Scholar
Burkitt, H.G., Young, B., Heath, J.W. (1994). Wheater’s Functional Histology – A Text and Colour Atlas, 3rd ed. Edinburgh: Churchill Livingstone, pp. 376386.Google Scholar
Butler, M.L., Lowe, J., Toomey, R.J., Maher, M., Evanoff, M.E., Rainford, L. (2013). The effect of viewing distance on observer performance in skeletal radiographs. In: SPIE Medical Imaging. Bellingham, WA: International Society for Optics and Photonics, pp. 867315–867315.Google Scholar
Carmichael, J.H.E., Maccia, C., Moores, B.M., Oestmann, J.W., Schibilla, H., Teunen, D., et al. (1996). European Guidelines on Quality Criteria for Diagnostic Radiographic Images. Luxembourg: ECSC-EC-EAEC.Google Scholar
CCOHS. (2017). OSH answers fact sheets. Available at: www.ccohs.ca/oshanswers/phys_agents/max_temp.html (accessed January 8, 2018).Google Scholar
Chawla, A.S., Samei, E. (2007). Ambient illumination revisited: a new adaptation-based approach for optimizing medical imaging reading environments. Med Phys, 34(1), 8190.Google Scholar
Choudhri, A.F., Carr, T.M., 3rd, Ho, C.P., Stone, J.R., Gay, S.B., Lambert, D.L. (2012). Handheld device review of abdominal CT for the evaluation of acute appendicitis. J Digit Imag, 25(4), 492496.Google Scholar
Darbyshire, J.L., Young, J.D. (2013). An investigation of sound levels on intensive care units with reference to the WHO guidelines. Crit Care, 17(5), R187.Google Scholar
Dasgupta, S., Wheeler, D., Huq, M., Khaliquzzaman, M. (2009). Improving indoor air quality for poor families: a controlled experiment in Bangladesh. Indoor Air, 19(1), 2232.Google Scholar
Dreyer, K.J., Hirschhorn, D.S., Thrall, J.H., PACS, M. (2006). A Guide to the Digital Revolution. New York: Springer.Google Scholar
Ekpo, E.U., McEntee, M.F. (2015). An evaluation of performance characteristics of primary display devices. J Digit Imag, 29(2), 175182.Google Scholar
Emoto, M., Sugawara, M. (2016). Viewers’ optimization of preferred viewing distance by spatial resolution of TV display. Displays, 45, 15.Google Scholar
Emoto, M., Sugawara, M., Nojiri, Y. (2008). Viewing angle dependency of visually-induced motion sickness in viewing wide-field images by subjective and autonomic nervous indices. Displays, 29(2), 9099.Google Scholar
European Commission. Directorate-General for Environment, Nuclear Safety, and Civil Protection, and European Commission. (1997). Radiation protection 91: criteria for acceptability of radiological (including radiotherapy) and nuclear medicine installations. Available at: https://ec.europa.eu/energy/en/radiation-protection-publications.Google Scholar
Fisher, P.D., Brauer, G.W. (1989). Impact of image size on effectiveness of digital imaging systems. J Digit Imag, 2(1), 3941.Google Scholar
Flynn, M.J., Kanicki, J., Badano, A., Eyler, W.R. (1999). High-fidelity electronic display of digital radiographs. Radiographics, 19(6), 16531669.Google Scholar
Fuchsjäger, M.H., Schaefer-Prokop, C.M., Eisenhuber, E., Homolka, P., Weber, M., Funovics, M.A., Prokop, M. (2003). Impact of ambient light and window settings on the detectability of catheters on soft-copy display of chest radiographs at bedside. AJR, 181(5), 14151421.Google Scholar
Fujita, H., Kuwahata, N., Hattori, H., Kinoshita, H., Fukuda, H. (2016). Investigation of optimal display size for viewing T1-weighted MR images of the brain using a digital contrast-detail phantom. J Appl Clin Med Phys, 17(1), 353359.Google Scholar
Geller, J. (2014). Food and Drug Administration issues final guidance on mobile medical applications. J Clin Eng, 39(1), 47.Google Scholar
Gregory, R.L. (1998). Eye and Brain: The Psychology of Seeing (5th ed.) Oxford: Oxford University Press, p, 55.Google Scholar
Gur, D., Klym, A.H., King, J.L., Maitz, G.S., Mello-Thoms, C., Rockette, H.E., Thaete, F.L. (2006). The effect of image display size on observer performance an assessment of variance components. Acad Radiol, 13(4), 409413.Google Scholar
Harisinghani, M.G., Blake, M.A., Saksena, M., Hahn, P.F., Gervais, D., Zalis, M., et al. (2004). Importance and effects of altered workplace ergonomics in modern radiology suites. Radiographics, 24(2), 615627.CrossRefGoogle ScholarPubMed
Hirschorn, D.S., Krupinski, E.A., Flynn, M.J. (2014). PACS displays: how to select the right display technology. J Am Coll Radiol, 11(12), 12701276.Google Scholar
Ichinohe, K., Takahashi, M., Tooyama, N. (2003). Treatment delay and radiological errors in patients with bone metastases. Braz J Med Biol Res, 36(10), 14191424.Google Scholar
Jaschtnski-Kruza, W. (1990). On the preferred viewing distances to screen and document at VDU workplaces. Ergonomics, 33(8), 10551063.Google Scholar
John, S., Poh, A.C.C., Lim, T.C.C., Chan, E.H.Y., Chong, L.R. (2012). The iPad tablet computer for mobile on-call radiology diagnosis? Auditing discrepancy in CT and MRI reporting. J Digit Imag 25(5), 628634.Google Scholar
Kalyanpur, A., Panughpath, S. (2012). Radiology and the mobile device: radiology in motion. Ind J Radiol Imag, 22(4), 246.Google Scholar
Kanal, K.M., Krupinski, E., Berns, E.A., Geiser, W.R., Karellas, A., Mainiero, M.B., et al. (2012). ACR–AAPM–SIIM practice guideline for determinants of image quality in digital mammography. J Digit Imag, 26(1), 1025.Google Scholar
Kelsey, C.A., Moseley, R.D., Jr, Mettler, F.A., Jr, Briscoe, D.E. (1981). Observer performance as a function of viewing distance. Invest Radiol, 16(5), 435437.CrossRefGoogle ScholarPubMed
Khademi, G., Roudi, M., Shah Farhat, A., Shahabian, M. (2011). Noise pollution in intensive care units and emergency wards. Iran J Otorhinolaryngol, 23(65), 141148.Google Scholar
Kim, J.-P., Kim, J.-P., Kim, D.H., Kim, S.-J. (2005). Design of software architecture for mobile devices supporting interworking between CDMA and WiBro. In The 7th International Conference on Advanced Communication Technology, 2005, ICACT 2005. Available at: https://doi.org/10.1109/icact.2005.246003 (accessed January 8, 2018).Google Scholar
Kim, Y.S.K., Park, J. J., Kim, S.H. (2007). PDA-phone-based instant transmission of radiological images over a CDMA network by combining the PACS screen with a Bluetooth-interfaced local wireless link. J Digit Imag, 20(2), 131139.Google Scholar
Kim, C.J.-W., Lee, S.-S., Huh, K.-H., Yi, W.-J., Heo, M.-S., Choi, S.-C. (2011). Effect of LCD monitor type and observer experience on diagnostic performance in soft-copy interpretations of the maxillary sinus on panoramic radiographs. Imag Sci Dent, 41(1), 1116.Google Scholar
Kim, C., Kang, B., Choi, H.J., Park, J.B. (2015). A feasibility study of real-time remote CT reading for suspected acute appendicitis using an iPhone. J Digit Imag, 28(4), 399406.Google Scholar
Krupinski, E.A. (2000). Practical applications of perceptual research. In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) Handbook of Medical Imaging: Physics and Psychophysics. Bellingham, WA: SPIE, p. 905.Google Scholar
Krupinski, E.A. (2014). Human factors and human-computer considerations in teleradiology and telepathology. Healthcare (Basel, Switz), 2(1), 94114.Google Scholar
Lee, K.S. (2005). Ergonomics in total quality management: how can we sell ergonomics to management? Ergonomics, 48(5), 547558.Google Scholar
Liukkonen, E., Jartti, A., Haapea, M., Oikarinen, H., Ahvenjärvi, L., Mattila, S., et al. (2016). Effect of display type and room illuminance in chest radiographs. Eur Radiol, 26(9), 31713179.Google Scholar
Marchand, G.C., Nardi, N.M., Reynolds, D., Pamoukov, S. (2014). The impact of the classroom built environment on student perceptions and learning. J Environ Psychol, 40, 187197.Google Scholar
Mazer, S.E. (2005). Hear, hear. Assessing and resolving hospital noise issues. Health Facil Manage, 18(4), 2429.Google Scholar
McEntee, M., Gafoor, S. (2009). Ambient temperature variation affects radiological diagnostic performance. In: SPIE Medical Imaging. Bellingham, WA: International Society for Optics and Photonics, pp. 72631H–72631H.Google Scholar
McLeod, T.G., Ebbert, J.O., Lymp, J.F. (2003). Survey assessment of personal digital assistant use among trainees and attending physicians. JAMIA, 10(6), 605607.Google Scholar
McNulty, J.P., Ryan, J.T., Evanoff, M.G., Rainford, L.A. (2012). Flexible image evaluation: iPad versus secondary-class monitors for review of MR spinal emergency cases, a comparative study. Acad Radiol, 19(8), 10231028.Google Scholar
National Electrical Manufacturers Association. (2007). Digital Imaging and Communications in Medicine (DICOM) Part 14: Grayscale Display Standard Function. Rosslyn, VA: National Electrical Manufacturers Association (NEMA).Google Scholar
Norweck, J.T., Anthony Seibert, J., Andriole, K.P., Clunie, D.A., Curran, B.H., Flynn, M.J., et al. (2013). ACR–AAPM–SIIM technical standard for electronic practice of medical imaging. J Digit Imag, 26(1), 3852.Google Scholar
O’Shea, R.P. (1991). Thumb’s rule tested: visual angle of thumb’s width is about 2 deg. Perception, 20(3), 415418.Google Scholar
Pollard, B.J., Chawla, A.S., Delong, D.M., Hashimoto, N., Samei, E. (2008). Object detectability at increased ambient lighting conditions. Med Phys, 35(6), 22042213.Google Scholar
Pollard, B.J., Samei, E., Chawla, A.S., Baker, J., Ghate, S., Kim, C., et al. (2009). The influence of increased ambient lighting on mass detection in mammograms. Acad Radiol, 16(3), 299304.Google Scholar
Prabhu, S.P., Gandhi, S., Goddard, P.R. (2005). Ergonomics of digital imaging. Br J Radiol, 78(931), 582586.Google Scholar
Reiner, B.I., Siegel, E.L. (2006). PACS and productivity. In: Filmless Radiology pp. 103–112. Heidelberg, Germany: Springer.Google Scholar
Riccò, M., Cattani, S., Gualerzi, G., Signorelli, C. (2016). Work with visual display units and musculoskeletal disorders: a cross-sectional study. Medycyna Pracy, 67(6), 707719.Google Scholar
Rodrigues, M.A., Visvanathan, A., Murchison, J.T., Brady, R.R. (2013). Radiology smartphone applications; current provision and cautions. Insights Imag, 4(5), 555562.Google Scholar
Samei, E., Badano, A., Chakraborty, D., Compton, K. (2005a). Assessment of Display Performance for Medical Imaging Systems, Report of the American Association of Physicists in Medicine (AAPM) Task Group 18. Bellingham, WA: AAPM.Google Scholar
Samei, E., Badano, A., Chakraborty, D., Compton, K., Cornelius, C., Corrigan, K., et al. (2005b). Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys, 32(4), 12051225.Google Scholar
Schaefer, C.M., Greene, R., Oestmann, J.W., Hall, D.A., Llewellyn, H.J., McCarthy, K.A., et al. (1990). Digital storage phosphor imaging versus conventional film radiography in CT-documented chest disease. Radiology, 174(1), 207210.Google Scholar
Schlechtweg, P.M., Kammerer, F.J., Seuss, H., Uder, M., Hammon, M. (2016). Mobile image interpretation: diagnostic performance of CT exams displayed on a tablet computer+ in detecting abdominopelvic hemorrhage. J Digit Imag, 29(2), 183188.Google Scholar
Schwela, D.H. (2001). The new World Health Organization guidelines for community noise. Noise Control Eng J, 49(4), 193.Google Scholar
Sekuler, R., Blake, R. (1994). Perception. New York, NY: McGraw-Hill.Google Scholar
Seltzer, S.E., Saini, S., Bramson, R.T., Kelly, P., Levine, L., Chiango, B.F., et al. (1998). Can academic radiology departments become more efficient and cost less? Radiology, 209(2), 405410.Google Scholar
Sharpe, E.E., 3rd, Kendrick, M., Strickland, C., Dodd, G.D., 3rd. (2013). The radiology resident iPad toolbox: an educational and clinical tool for radiology residents. J Am Coll Radiol, 10(7), 527532.Google Scholar
Shintaku, W.H., Scarbecz, M., Venturin, J.S. (2012). Evaluation of interproximal caries using the IPad 2 and a liquid crystal display monitor. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 113(5), e40–e44.Google Scholar
Siegel, L. (1962). Fatigue and boredom. In: Siegel, L. (ed.) Industrial Psychology. Washington, DC: American Psychological Association, pp. 193–209.Google Scholar
Siegel, R.B., Abiri, M., Chacko, A., Morin, R., Ro, D.W., et al. (2000). The filmless radiology reading room: a survey of established picture archiving and communication system sites. J Digit Imag, 13(S1), 2223.Google Scholar
Straub, W.H., Gur, D., Good, W.F., Campbell, W.L., Davis, P.L., Hecht, S.T., et al. (1991). Primary CT diagnosis of abdominal masses in a PACS environment. Radiology, 178(3), 739743.Google Scholar
Sund, P., Båth, M., Månsson, L. G. (2008). Detection of low contrast test patterns on an LCD with different luminance and illuminance settings. Proc SPIE, 6917, 69170N.Google Scholar
Tewes, S., Rodt, T., Marquardt, S., Evangelidou, E., Wacker, F.K., von Falck, C. (2013). Evaluation of the use of a tablet computer with a high-resolution display for interpreting emergency CT scans. Rofo, 185(11), 10631069.Google Scholar
Thomas, J.A., Chakrabarti, K., Kaczmarek, R.V., Maslennikov, A., Mitchell, C.A., Romanyukha, A. (2006). Optimization of reading conditions for flat panel displays. J Digit Imag, 19(2), 181187.Google Scholar
Uffmann, M., Prokop, M., Kupper, W., Mang, T., Fiedler, V., Schaefer-Prokop, C. (2005). Soft-copy reading of digital chest radiographs: effect of ambient light and automatic optimization of monitor luminance. Invest Radiol, 40(3), 180185.Google Scholar
Venjakob, A.C., Marnitz, T., Phillips, P., Mello-Thoms, C.R. (2016). Image size influences visual search and perception of hemorrhages when reading cranial CT: an eye-tracking study. Hum Factors, 58(3), 441451.Google Scholar
WHO. (1982). Quality assurance in diagnostic radiology. Available at: http://apps.who.int/iris/bitstream/10665/39095/1/9241541644.pdf (accessed January 8, 2018).Google Scholar
Witterseh, T., Wyon, D.P., Clausen, G. (2004). The effects of moderate heat stress and open-plan office noise distraction on SBS symptoms and on the performance of office work. Indoor Air, 14 Suppl 8, 3040.Google Scholar
Wyon, D.P., Wargocki, P. (2013). Room Temperature Effects on Office Work. London: Taylor & Francis, pp. 181192.Google Scholar
Yamaguchi, M., Fujita, H., Bessho, Y., Inoue, T., Asai, Y., Murase, K. (2011). Investigation of optimal display size for detecting ground-glass opacity on high resolution computed tomography using a new digital contrast-detail phantom. Eur J Radiol, 80(3), 845850.Google Scholar
Yamazaki, A., Liu, P., Cheng, W.-C., Badano, A. (2013). Image quality characteristics of handheld display devices for medical imaging. PLoS One, 8(11), e79243.Google Scholar
Zwart, C.M., He, M., Wu, T., Demaerschalk, B.M., Mitchell, J.R., Hara, A.K. (2015). Selection and pilot implementation of a mobile image viewer: a case study. JMIR mHealth and uHealth, 3(2), e45.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×