Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T09:56:41.412Z Has data issue: false hasContentIssue false

Part VI - Applied Perception

Published online by Cambridge University Press:  20 December 2018

Ehsan Samei
Affiliation:
Duke University Medical Center, Durham
Elizabeth A. Krupinski
Affiliation:
Emory University, Atlanta
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Antonuk, L.E., El-Mohri, Y., Siewerdsen, J.H., et al. (1997). Empirical investigation of the signal performance of a high-resolution, indirect detection, active matrix flat-panel imager (AMFPI) for fluoroscopic and radiographic operation. Med Phys, 24(1), 5170.CrossRefGoogle ScholarPubMed
Antonuk, L.E., Jee, K.W., El-Mohri, Y., et al. (2000). Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic X-ray applications. Med Phys, 27(2), 289306.CrossRefGoogle ScholarPubMed
Antonuk, L.E., Zhao, Q., Su, Z., et al. (2004). Systematic development of input-quantum-limited fluoroscopic imagers based on active-matrix flat-panel technology. Proc SPIE Med Imag, 5368, 127138.CrossRefGoogle Scholar
Bachar, G., Siewerdsen, J.H., Daly, M.J., Jaffray, D.A., Irish, J.C. (2007). Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery. Med Phys, 34(12), 46644677.CrossRefGoogle ScholarPubMed
Badano, A., Kyprianou, I.S., Jennings, R.J., Sempau, J. (2007). Anisotropic imaging performance in breast tomosynthesis. Med Phys, 34(11), 40764091.CrossRefGoogle ScholarPubMed
Barten, P.G.J. (1999). Contrast Sensitivity of the Human Eye and its Effect on Image Quality. Bellingham, WA: SPIE Publications.Google Scholar
Bartling, S.H., Majdani, O., Gupta, R., et al. (2007). Large scan field, high spatial resolution flat-panel detector based volumetric CT of the whole human skull base and for maxillofacial imaging, Dentomaxillofac Radiol, 36(6), 317327.CrossRefGoogle ScholarPubMed
Bissonnette, J.P., Cunningham, I.A., Jaffray, D.A., Fenster, A., Munro, P. (1997). A quantum accounting and detective quantum efficiency analysis for video-based portal imaging. Med Phys, 24(6), 815826.CrossRefGoogle ScholarPubMed
Boone, J.M., Lindfors, K.K. (2006). Breast CT: potential for breast cancer screening and diagnosis. Future Oncol, 2(3), 351356.CrossRefGoogle ScholarPubMed
Boone, J.M., Seibert, J.A. (1997). An accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV. Med Phys, 24(11), 16611670.CrossRefGoogle Scholar
Boyce, S.J., Chawla, A., Samei, E. (2005). Physical evaluation of a high frame rate, extended dynamic range flat panel detector for real-time cone beam computed tomography applications. Proc SPIE Med Imag, 5745, 591598.Google Scholar
Burgess, A.E. (1994). Statistically defined backgrounds: performance of a modified nonprewhitening observer model. J Opt Soc Am A, 11(4), 12371242.CrossRefGoogle ScholarPubMed
Burgess, A.E., Jacobson, F.L., Judy, P.F. (2001). Human observer detection experiments with mammograms and power-law noise. Med Phys, 28(4), 419437.Google Scholar
Bushberg, J.T., Seibert, J.A., Leidholdt, E.M., Boone, J.M. (2002). The Essential Physics of Medical Imaging. Hagerstown, MD: Lippincott Williams and Wilkins.Google Scholar
Cahn, R.N., Cederstrom, B., Danielsson, M., et al. (1999). Detective quantum efficiency dependence on X-ray energy weighting in mammography. Med Phys, 26(12), 26802683.CrossRefGoogle ScholarPubMed
Cunningham, I.A., Westmore, M.S., Fenster, A. (1994). A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems. Med Phys, 21(3), 417427.CrossRefGoogle ScholarPubMed
del Risco Norrlid, L., Edling, F., Fransson, K., et al. (2005). Simulation of the detective quantum efficiency for a hybrid pixel detector. Nucl Inst Meth Phys Res A, 543, 528536.Google Scholar
Dobbins, J.T., III, Godfrey, D.J. (2003). Digital X-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol, 48(19), R65–R106.CrossRefGoogle ScholarPubMed
Fahrig, R., Holdsworth, D.W. (2000). Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: image-based correction of gantry motion nonidealities. Med Phys, 27 (1), 3038.CrossRefGoogle ScholarPubMed
Feldkamp, L.A., Davis, L.C., Kress, J.W. (1984). Practical cone-beam algorithm. J Opt Soc Am A, 1, 612619.CrossRefGoogle Scholar
Fewell, T.R., Shuping, R.E. (1977). Photon energy distribution of some typical diagnostic X-ray beams. Med Phys, 4(3), 187197.Google Scholar
Fujita, H., Tsai, D., Itoh, T., et al. (1992). A simple method for determining the modulation transfer function in digital radiography. IEEE Trans Med Imag, 11(1), 3439.Google Scholar
Gallas, B.D., Boswell, J.S., Badano, A., Gagne, R.M., Myers, K.J. (2004). An energy- and depth-dependent model for X-ray imaging. Med Phys, 31(11), 31323149.CrossRefGoogle ScholarPubMed
Ganguly, A., Rudin, S., Bednarek, D.R., Hoffmann, K.R. (2003). Micro-angiography for neuro-vascular imaging. II. Cascade model analysis. Med Phys, 30(11), 30293039.CrossRefGoogle ScholarPubMed
Hanson, K.M. (1979). Detectability in computed tomographic images. Med Phys, 6(5), 441451.CrossRefGoogle ScholarPubMed
Hendee, W.R., Ritenour, E.R. (2002). Medical Imaging Physics, 4th ed. Hoboken, NJ: John Wiley.Google Scholar
Hunt, D.C., Kirby, S.S., Rowlands, J.A. (2002). X-ray imaging with amorphous selenium: X-ray to charge conversion gain and avalanche multiplication gain. Med Phys, 29(11), 24642471.Google Scholar
ICRU. (1996). ICRU Report 54. Medical Imaging – The Assessment of Image Quality. Bethesda, MD: International Commission on Radiation Units and Measurements.Google Scholar
IEC Committee 62B. (2003). IEC 62220–1 Medical Electrical Equipment Characteristics of Digital X-Ray Imaging Devices: Part 1. Determination of the Detective Quantum Efficiency. Geneva, Switzerland: IEC.Google Scholar
Jaffray, D.A., Siewerdsen, J.H., Wong, J.W., Martinez, A.A. (2002). Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys, 53(5), 13371349.Google Scholar
Jarry, G., Graham, S.A., Moseley, D.J., et al. (2006). Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys, 33(11), 43204329.CrossRefGoogle ScholarPubMed
Johns, H.E., Cunningham, J.R. (1983). The Physics of Radiology, 4th ed. Springfield, IL: Charles C. Thomas.Google Scholar
Johns, P.C., Yaffe, M.J. (1985). Theoretical optimization of dual-energy X-ray imaging with application to mammography. Med Phys, 12(3), 289296.Google Scholar
Kalender, W., Klotz, E., Kostaridou, L. (1988). An algorithm for noise suppression in dual-energy CT material density images. IEEE Trans Med Imag, 7, 218224.CrossRefGoogle ScholarPubMed
Maidment, A.D.A., Ullberg, C., Lindman, K., et al. (2006). Evaluation of a photon-counting breast tomosynthesis imaging system. Proc SPIE Phys Med Imag, 6142, 61420B-1–61420B-11.Google Scholar
Metheany, K., Boone, J.M., Abbey, C.K., Packard, N. (2007). A comparison of anatomical noise properties between breast CT and projection breast imaging. Med Phys, 34(6), 2563.CrossRefGoogle Scholar
Metz, C.E. (1978). Basic principles of ROC analysis. Semin Nucl Med, 8(4), 283298.Google Scholar
Nishikawa, R.M., Engstrom, E., Reiser, I. (2007). Comparison of the breast tissue power spectrum for mammograms, tomosynthesis projection images, and tomosynthesis reconstruction images. Annual Meeting of the Radiological Society of North America (RSNA).Google Scholar
Rafferty, E.A. (2007). Digital mammography: novel applications. Radiol Clin N Am, 45(5), 831843, vii.CrossRefGoogle ScholarPubMed
Rafferty, M.A., Siewerdsen, J.H., Chan, Y., et al. (2006). Intraoperative cone-beam CT for guidance of temporal bone surgery. Otolaryngol Head Neck Surg, 134 (5), 801808.CrossRefGoogle ScholarPubMed
Richard, S., Siewerdsen, J.H. (2007). Optimization of dual-energy imaging systems using generalized NEQ and imaging task. Med Phys, 34(1), 127139.CrossRefGoogle ScholarPubMed
Richard, S., Siewerdsen, J.H., Jaffray, D., Moseley, D.J., Bakhtiar, B. (2005a). Generalized DQE analysis of radiographic and dual-energy imaging using flat-panel detectors. Med Phys, 32, 13971413.CrossRefGoogle ScholarPubMed
Richard, S., Siewerdsen, J.H., Jaffray, D.A., Moseley, D.J., Bakhtiar, B. (2005b). Generalized DQE analysis of dual-energy imaging using flat-panel detectors. Proc SPIE Phys Med Imag, 5745, 519528.CrossRefGoogle Scholar
Riederer, S.J., Pelc, N.J., Chesler, D.A. (1978). The noise power spectrum in computed X-ray tomography. Phys Med Biol, 23(3), 446454.CrossRefGoogle ScholarPubMed
Roehrig, H., Fajardo, L.L., Yu, T., Schempp, W.S. (1994). Signal, noise and detective quantum efficiency in CCD based X-ray imaging systems for use in mammography. Proc SPIE Phys Med Imag, 2163, 320332.CrossRefGoogle Scholar
Rose, A. (1948). The sensitivity performance of the human eye on an absolute scale. J Opt Soc Am, 38, 196208.Google Scholar
Rowlands, J.A. (1996). Digital X-ray systems based on amorphous selenium. AJR Am J Roentgenol, 167(2), 409411.Google Scholar
Sawant, A., Antonuk, L.E., El-Mohri, Y., et al. (2006). Segmented crystalline scintillators: empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(Tl) detector. Med Phys, 33, 10531066.Google Scholar
Shkumat, N.A., Siewerdsen, J.H., Dhanantwari, A.C., et al. (2007). Optimization of image acquisition techniques for dual-energy imaging of the chest. Med Phys, 34(10), 586601.Google Scholar
Siewerdsen, J.H., Antonuk, L.E. (1998). DQE and system optimization for indirect-detection flat-panel imagers in diagnostic radiology. Proc SPIE Phys Med Imag, 3336, 546555.CrossRefGoogle Scholar
Siewerdsen, J.H., Jaffray, D.A. (2000a). Cone-beam CT with a flat-panel imager: noise considerations for fully 3D computed tomography. Proc SPIE Phys Med Imag, 3977, 408416.CrossRefGoogle Scholar
Siewerdsen, J.H., Jaffray, D.A. (2000b). Optimization of X-ray imaging geometry (with specific application to flat-panel cone-beam computed tomography). Med Phys, 27(8), 19031914.Google Scholar
Siewerdsen, J.H., Jaffray, D.A. (2001). Cone-beam computed tomography with a flat-panel imager: magnitude and effects of X-ray scatter. Med Phys, 28(2), 220231.CrossRefGoogle ScholarPubMed
Siewerdsen, J.H., Jaffray, D.A. (2003). Three-dimensional NEQ transfer characteristics of volume CT using direct and indirect-detection flat-panel imagers. Proc SPIE Phys Med Imag, 29(11), 26552671.Google Scholar
Siewerdsen, J.H., Antonuk, L.E., El-Mohri, Y., et al. (1997). Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology. Med Phys, 24(1), 7189.CrossRefGoogle ScholarPubMed
Siewerdsen, J.H., Moseley, D.J., Bakhtiar, B., Richard, S., Jaffray, D.A. (2004a). The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors. Med Phys, 31(12), 35063520.CrossRefGoogle ScholarPubMed
Siewerdsen, J.H., Moseley, D.J., Jaffray, D.A. (2004b). Incorporation of task in 3D imaging performance evaluation: the impact of asymmetric NPS on detectability. Proc SPIE Phys Med Imag, 5368, 8997.CrossRefGoogle Scholar
Siewerdsen, J.H., Waese, A.M., Moseley, D.J., Richard, S., Jaffray, D.A. (2004c). Spektr: a computational tool for X-ray spectral analysis and imaging system optimization. Med Phys, 31(11), 30573067.Google Scholar
Siewerdsen, J.H., Moseley, D.J., Burch, S., et al. (2005). Volume CT with a flat-panel detector on a mobile, isocentric C-arm: pre-clinical investigation in guidance of minimally invasive surgery. Med Phys, 32(1), 241254.CrossRefGoogle ScholarPubMed
Silverman, J.D., Paul, N.S., Siewerdsen, J.H. (2009). Investigation of lung nodule detectability in low-dose 320-slice computed tomography. Med Phys, 26, 17001710.Google Scholar
Spies, L., Ebert, M., Groh, B.A., Hesse, B.M., Bortfeld, T. (2001). Correction of scatter in megavoltage cone-beam CT. Phys Med Biol, 46(3), 821833.CrossRefGoogle ScholarPubMed
Swank, R.K. (1973). Absorption and noise in X-ray phosphors. J Appl Phys, 44(9), 41994203.Google Scholar
Tucker, D.M., Barnes, G.T., Chakraborty, D.P. (1991). Semiempirical model for generating tungsten target X-ray spectra. Med Phys, 18(2), 211218.CrossRefGoogle ScholarPubMed
Tutar, I.B., Managuli, R., Shamdasani, V., et al. (2003). Tomosynthesis-based localization of radioactive seeds in prostate brachytherapy. Med Phys, 30(12), 31353142.CrossRefGoogle ScholarPubMed
Vedantham, S., Karellas, A., Suryanarayanan, S. (2004). Solid-state fluoroscopic imager for high-resolution angiography: parallel-cascaded linear systems analysis. Med Phys, 31(5), 12581268.CrossRefGoogle ScholarPubMed
Warp, R.J., Dobbins, J.T., III. (2003). Quantitative evaluation of noise reduction strategies in dual-energy imaging. Med Phys, 30(2), 190198.CrossRefGoogle ScholarPubMed
Yao, J., Cunningham, I.A. (2001). Parallel cascades: new ways to describe noise transfer in medical imaging systems. Med Phys, 28(10), 20202038.CrossRefGoogle ScholarPubMed
Zhao, W., Rowlands, J.A. (1997). Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Med Phys, 24(12), 18191833.Google Scholar

References

ACR. (2017). ACR-AAPM-SIIM technical standard for electronic pratice of medical imaging. www.acr.org/~/media/ACR/Documents/PGTS/standards/ElectronicPracticeMedImg.pdf (accessed October 12, 2017).Google Scholar
Badano, A. (2009). Effect of slow display on detectabilty when browsing large image datasets. J Soc Inform Display, 17(11), 891896.Google Scholar
Badano, A., Fifadara, D. (2004). Goniometric and conoscopic measurements of angular AMLCD contrast. Med Phys, 31(12), 34523460.Google Scholar
Badano, A., Wang, J., Boynton, P., et al. (2016). Technical note: gray tracking in medical color displays – a report of task group 196. Med Phys, 43(7), 40174022.CrossRefGoogle ScholarPubMed
Barten, P.G.J. (2009). Contrast Sensitivity of the Human Eye and its Effects on Image Quality. Bellingham, WA: SPIE Press.Google Scholar
Bevins, N., Flynn, M., Silosky, M. et al. (2018). Display quality assurance: a report of AAPM task group 270. (anticipated release late 2018).Google Scholar
Born, M., Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. London: Cambridge University Press.CrossRefGoogle Scholar
Bushberg, J.T. (2012). The Essential Physics of Medical Imaging. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams and Wilkins.Google Scholar
CIE. (2004). International Commission on Illumination. CIE 15:2004: Colorimetry. 3rd edition. Available at: www.cie.co.at/publ/abst/15-2004.html.Google Scholar
Eizo. (2015). Advantages of anti reflection (AR) treatment. Eizo white paper, 14-002 revision A, Q15B014-AS-10001. Available at: www.eizoglobal.com/support/db/files/technical_information/WP14-002.pdf (accessed January 4, 2018).Google Scholar
Elze, T., Tanner, T.G. (2012). Temporal properties of liquid crystal displays: implications for vision science experiments. PLoS One, 7, e44048.Google Scholar
Elze, T., Taylor, C., Bex, P.J. (2013). An evaluation of organic light emitting diode monitors for medical applications: great timing, but luminance artifacts. Med Phys, 40 (9), 092701.CrossRefGoogle ScholarPubMed
Flynn, M. (2013). mRGB: AAPM TG196 progress. 2013 ICC Meeting, Medical Imaging Working Group, Vancouver, BC. Available at: www.color.org/groups/medical/Flynn.pdf (accessed October 14, 2017).Google Scholar
Hsieh, D. (2016). Oxide is the most cost-effective TFT LCD display technology for tablet PCs. Available at: http://blog.ihs.com/oxide-is-the-most-cost-effective-tft-lcd-display-technology-for-tablet-pcs (accessed January 4, 2018).Google Scholar
ICC. (2016). Visualization of medical content on color display systems. ICC white paper, 44. Available at: www.color.org/whitepapers/ICC_White_Paper44_Visualization_of_colour_on_medical_displays.pdf (accessed January 4, 2018).Google Scholar
IEC. (1999). IEC 61966-2-1 Multimedia systems and equipment – colour measurement and management – part 2-1: colour management – default RGB colour space – sRGB. Available at: https://webstore.iec.ch/publication/6169#additionalinfo,Google Scholar
IEC. (2013). IEC 62341-5-3:2013 Organic light emitting diode (OLED) displays – part 5-3: measuring methods of image sticking and lifetime. Available at: https://webstore.iec.ch/publication/6878.Google Scholar
IEC. (2017). IEC 62341-6-1:2017. Organic light emitting diode (OLED) displays – part 6-1: measuring methods of optical and electro-optical parameters. Available at: https://webstore.iec.ch/publication/28881.Google Scholar
Kimpe, T., Xthona, A., Matthijs, P., De Paepe, L. (2005). Solution for nonuniformities and spatial noise in medical LCD displays by using pixel-based correction. J Digit Imag, 18(3), 209218.Google Scholar
Lee, J.-H., Ho, Y.-H., Chen, K.-Y., et al. (2008). Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays. Opt Exp, 16(26), 2118421190.Google Scholar
Mertens, R. (2017). Sony may be JOLED’s first customer for its 21.6″ 4K medical OLED monitors. Available at: www.oled-info.com/sony-may-be-joleds-first-customer-its-216-4k-medical-oled-monitors (accessed January 4, 2018).Google Scholar
Okutani, S., Kobayashi, M., Ibaraki, N. (2006). Quantitative evaluation of display characteristics of AMOLED displays. J Soc Inform Display, 14(12), 11191125.CrossRefGoogle Scholar
Ruuge, A., Mahmood, U., Erdi, Y. E. (2016) The assessment and characterization of the built-in internal photometer of primary diagnostic monitors. J Appl Clin Med Phys, 18(2), 170175.Google Scholar
Samei, E., Badano, A., Chakraborty, D., et al. (2005). Assessment of display performance for medical imaging systems. Online only report no. OR03 – report of AAPM task group 18, 2005. Available at: www.aapm.org/pubs/reports/OR_03.pdf (accessed January 4, 2018).Google Scholar
Silosky, M., Marsh, R.M. (2013). Constancy of built-in luminance meter measurements in diagnostic displays. Med Phys, 40(12), 121902.CrossRefGoogle ScholarPubMed
Walz-Flannigan, A., Stekel, S., Weber, H., et al. (2011) Aging and quality control of color LCDs for radiologic imaging. J Digit Imag, 24(5): 828–832.CrossRefGoogle ScholarPubMed
Yamazaki, A. (2013). image quality characteristics of handheld display devices for medical imaging. PLoS One, 8, e79243.CrossRefGoogle ScholarPubMed

References

Abboud, S., Weiss, F., Siegel, E., Jeudy, J. (2013). TB or not TB: interreader and intrareader variability in screening diagnosis on an iPad versus a traditional display. J Am Coll Radiol, 10(1), 4244.Google Scholar
Abdullah, B.J., Ng, K.H. (2001). In the eyes of the beholder: what we see is not what we get. Br J Radiol, 74(884), 675676.CrossRefGoogle Scholar
ACR. (1999). ACR Mammography Quality Control Manual. Reston, VA: ACR. Available at: www.acraccreditation.org/~/media/ACRAccreditation/Documents/Mammography/Clinical_Image_SECTION_1999MammoQC.pdf?la=en (accessed January 8, 2018).Google Scholar
ACR. (2001). ACR Practice Guideline for the Performance of Whole Breast Digital Mammography (Res. 7). Reston, VA: ACR.Google Scholar
Ardito, M. (1994). Studies of the influence of display size and picture brightness on the preferred viewing distance for HDTV programs. SMPTE J, 103(8), 517522.CrossRefGoogle Scholar
Badano, A. (2017). Considerations for the use of handheld image viewers: a report of AAPM task group 260. In: Chen, P.H., Prevedello, L.M.S. (eds.) SIIM 2017 Scientific Session Productivity and Workflow. Pittsburg, PA: SIIM, pp. 1–2.Google Scholar
Badano, A., Flynn, M.J., Kanicki, J. (2004). High-Fidelity Medical Imaging Displays (Vol. 63). Bellingham, WA: SPIE Press, pp. 1011.Google Scholar
Barten, P.G. (1999). Contrast Sensitivity of the Human Eye and its Effects on Image Quality (Vol. 72). Bellingham, WA: SPIE Press.CrossRefGoogle Scholar
Berglund, B., Lindvall, T., Schwela, D.H. (2000). New WHO guidelines for community noise. Noise Vibrat Worldwide, 31(4), 2429.Google Scholar
Bessho, Y., Yamaguchi, M., Fujita, H., Azuma, M. (2009). Usefulness of reduced image display size in softcopy reading. Acad Radiol, 16(8), 940946.CrossRefGoogle ScholarPubMed
Bevins, N.B., Flynn, M.J., Silosky, M.S., Walz-Flannigan, A.I. (2017). Display quality assurance: a report of AAPM task group 270. AAPM. Available at: www.aapm.org/eval/m/Quiz.aspx?sid=7117&mid=127 (accessed January 8, 2018).Google Scholar
Bick, U., Diekmann, F. (2010). Digital Mammography. Heidelberg, Germany: Springer Science and Business Media.Google Scholar
Boonn, W.W., Flanders, A.E. (2005). Informatics in radiology (infoRAD): survey of personal digital assistant use in radiology. Radiographics, 25(2), 537541.CrossRefGoogle ScholarPubMed
Brennan, P.C., McEntee, M., Evanoff, M., Phillips, P., O’Connor, W.T., Manning, D.J. (2007). Ambient lighting: effect of illumination on soft-copy viewing of radiographs of the wrist. AJR, 188(2), W177–W180.CrossRefGoogle ScholarPubMed
Brennan, P.C., Ryan, J., Evanoff, M., Toomey, R.J., O’Beirne, A., Manning, D., McEntee, M. (2008). The impact of acoustic noise found within clinical departments on radiology performance. Acad Radiol, 15(4), 472476.CrossRefGoogle ScholarPubMed
Broadbent, D.E. (1958). Perception and Communication. Oxford, England: Pergamon Press.CrossRefGoogle Scholar
Burkitt, H.G., Young, B., Heath, J.W. (1994). Wheater’s Functional Histology – A Text and Colour Atlas, 3rd ed. Edinburgh: Churchill Livingstone, pp. 376386.Google Scholar
Butler, M.L., Lowe, J., Toomey, R.J., Maher, M., Evanoff, M.E., Rainford, L. (2013). The effect of viewing distance on observer performance in skeletal radiographs. In: SPIE Medical Imaging. Bellingham, WA: International Society for Optics and Photonics, pp. 867315–867315.Google Scholar
Carmichael, J.H.E., Maccia, C., Moores, B.M., Oestmann, J.W., Schibilla, H., Teunen, D., et al. (1996). European Guidelines on Quality Criteria for Diagnostic Radiographic Images. Luxembourg: ECSC-EC-EAEC.Google Scholar
CCOHS. (2017). OSH answers fact sheets. Available at: www.ccohs.ca/oshanswers/phys_agents/max_temp.html (accessed January 8, 2018).Google Scholar
Chawla, A.S., Samei, E. (2007). Ambient illumination revisited: a new adaptation-based approach for optimizing medical imaging reading environments. Med Phys, 34(1), 8190.CrossRefGoogle ScholarPubMed
Choudhri, A.F., Carr, T.M., 3rd, Ho, C.P., Stone, J.R., Gay, S.B., Lambert, D.L. (2012). Handheld device review of abdominal CT for the evaluation of acute appendicitis. J Digit Imag, 25(4), 492496.CrossRefGoogle ScholarPubMed
Darbyshire, J.L., Young, J.D. (2013). An investigation of sound levels on intensive care units with reference to the WHO guidelines. Crit Care, 17(5), R187.CrossRefGoogle Scholar
Dasgupta, S., Wheeler, D., Huq, M., Khaliquzzaman, M. (2009). Improving indoor air quality for poor families: a controlled experiment in Bangladesh. Indoor Air, 19(1), 2232.Google Scholar
Dreyer, K.J., Hirschhorn, D.S., Thrall, J.H., PACS, M. (2006). A Guide to the Digital Revolution. New York: Springer.Google Scholar
Ekpo, E.U., McEntee, M.F. (2015). An evaluation of performance characteristics of primary display devices. J Digit Imag, 29(2), 175182.CrossRefGoogle Scholar
Emoto, M., Sugawara, M. (2016). Viewers’ optimization of preferred viewing distance by spatial resolution of TV display. Displays, 45, 15.CrossRefGoogle Scholar
Emoto, M., Sugawara, M., Nojiri, Y. (2008). Viewing angle dependency of visually-induced motion sickness in viewing wide-field images by subjective and autonomic nervous indices. Displays, 29(2), 9099.CrossRefGoogle Scholar
European Commission. Directorate-General for Environment, Nuclear Safety, and Civil Protection, and European Commission. (1997). Radiation protection 91: criteria for acceptability of radiological (including radiotherapy) and nuclear medicine installations. Available at: https://ec.europa.eu/energy/en/radiation-protection-publications.Google Scholar
Fisher, P.D., Brauer, G.W. (1989). Impact of image size on effectiveness of digital imaging systems. J Digit Imag, 2(1), 3941.CrossRefGoogle ScholarPubMed
Flynn, M.J., Kanicki, J., Badano, A., Eyler, W.R. (1999). High-fidelity electronic display of digital radiographs. Radiographics, 19(6), 16531669.CrossRefGoogle ScholarPubMed
Fuchsjäger, M.H., Schaefer-Prokop, C.M., Eisenhuber, E., Homolka, P., Weber, M., Funovics, M.A., Prokop, M. (2003). Impact of ambient light and window settings on the detectability of catheters on soft-copy display of chest radiographs at bedside. AJR, 181(5), 14151421.Google Scholar
Fujita, H., Kuwahata, N., Hattori, H., Kinoshita, H., Fukuda, H. (2016). Investigation of optimal display size for viewing T1-weighted MR images of the brain using a digital contrast-detail phantom. J Appl Clin Med Phys, 17(1), 353359.Google Scholar
Geller, J. (2014). Food and Drug Administration issues final guidance on mobile medical applications. J Clin Eng, 39(1), 47.CrossRefGoogle Scholar
Gregory, R.L. (1998). Eye and Brain: The Psychology of Seeing (5th ed.) Oxford: Oxford University Press, p, 55.Google Scholar
Gur, D., Klym, A.H., King, J.L., Maitz, G.S., Mello-Thoms, C., Rockette, H.E., Thaete, F.L. (2006). The effect of image display size on observer performance an assessment of variance components. Acad Radiol, 13(4), 409413.CrossRefGoogle ScholarPubMed
Harisinghani, M.G., Blake, M.A., Saksena, M., Hahn, P.F., Gervais, D., Zalis, M., et al. (2004). Importance and effects of altered workplace ergonomics in modern radiology suites. Radiographics, 24(2), 615627.Google Scholar
Hirschorn, D.S., Krupinski, E.A., Flynn, M.J. (2014). PACS displays: how to select the right display technology. J Am Coll Radiol, 11(12), 12701276.Google Scholar
Ichinohe, K., Takahashi, M., Tooyama, N. (2003). Treatment delay and radiological errors in patients with bone metastases. Braz J Med Biol Res, 36(10), 14191424.CrossRefGoogle ScholarPubMed
Jaschtnski-Kruza, W. (1990). On the preferred viewing distances to screen and document at VDU workplaces. Ergonomics, 33(8), 10551063.Google Scholar
John, S., Poh, A.C.C., Lim, T.C.C., Chan, E.H.Y., Chong, L.R. (2012). The iPad tablet computer for mobile on-call radiology diagnosis? Auditing discrepancy in CT and MRI reporting. J Digit Imag 25(5), 628634.CrossRefGoogle ScholarPubMed
Kalyanpur, A., Panughpath, S. (2012). Radiology and the mobile device: radiology in motion. Ind J Radiol Imag, 22(4), 246.Google Scholar
Kanal, K.M., Krupinski, E., Berns, E.A., Geiser, W.R., Karellas, A., Mainiero, M.B., et al. (2012). ACR–AAPM–SIIM practice guideline for determinants of image quality in digital mammography. J Digit Imag, 26(1), 1025.CrossRefGoogle Scholar
Kelsey, C.A., Moseley, R.D., Jr, Mettler, F.A., Jr, Briscoe, D.E. (1981). Observer performance as a function of viewing distance. Invest Radiol, 16(5), 435437.CrossRefGoogle ScholarPubMed
Khademi, G., Roudi, M., Shah Farhat, A., Shahabian, M. (2011). Noise pollution in intensive care units and emergency wards. Iran J Otorhinolaryngol, 23(65), 141148.Google Scholar
Kim, J.-P., Kim, J.-P., Kim, D.H., Kim, S.-J. (2005). Design of software architecture for mobile devices supporting interworking between CDMA and WiBro. In The 7th International Conference on Advanced Communication Technology, 2005, ICACT 2005. Available at: https://doi.org/10.1109/icact.2005.246003 (accessed January 8, 2018).Google Scholar
Kim, Y.S.K., Park, J. J., Kim, S.H. (2007). PDA-phone-based instant transmission of radiological images over a CDMA network by combining the PACS screen with a Bluetooth-interfaced local wireless link. J Digit Imag, 20(2), 131139.CrossRefGoogle Scholar
Kim, C.J.-W., Lee, S.-S., Huh, K.-H., Yi, W.-J., Heo, M.-S., Choi, S.-C. (2011). Effect of LCD monitor type and observer experience on diagnostic performance in soft-copy interpretations of the maxillary sinus on panoramic radiographs. Imag Sci Dent, 41(1), 1116.CrossRefGoogle ScholarPubMed
Kim, C., Kang, B., Choi, H.J., Park, J.B. (2015). A feasibility study of real-time remote CT reading for suspected acute appendicitis using an iPhone. J Digit Imag, 28(4), 399406.Google Scholar
Krupinski, E.A. (2000). Practical applications of perceptual research. In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) Handbook of Medical Imaging: Physics and Psychophysics. Bellingham, WA: SPIE, p. 905.Google Scholar
Krupinski, E.A. (2014). Human factors and human-computer considerations in teleradiology and telepathology. Healthcare (Basel, Switz), 2(1), 94114.Google Scholar
Lee, K.S. (2005). Ergonomics in total quality management: how can we sell ergonomics to management? Ergonomics, 48(5), 547558.Google ScholarPubMed
Liukkonen, E., Jartti, A., Haapea, M., Oikarinen, H., Ahvenjärvi, L., Mattila, S., et al. (2016). Effect of display type and room illuminance in chest radiographs. Eur Radiol, 26(9), 31713179.CrossRefGoogle ScholarPubMed
Marchand, G.C., Nardi, N.M., Reynolds, D., Pamoukov, S. (2014). The impact of the classroom built environment on student perceptions and learning. J Environ Psychol, 40, 187197.Google Scholar
Mazer, S.E. (2005). Hear, hear. Assessing and resolving hospital noise issues. Health Facil Manage, 18(4), 2429.Google ScholarPubMed
McEntee, M., Gafoor, S. (2009). Ambient temperature variation affects radiological diagnostic performance. In: SPIE Medical Imaging. Bellingham, WA: International Society for Optics and Photonics, pp. 72631H–72631H.Google Scholar
McLeod, T.G., Ebbert, J.O., Lymp, J.F. (2003). Survey assessment of personal digital assistant use among trainees and attending physicians. JAMIA, 10(6), 605607.Google Scholar
McNulty, J.P., Ryan, J.T., Evanoff, M.G., Rainford, L.A. (2012). Flexible image evaluation: iPad versus secondary-class monitors for review of MR spinal emergency cases, a comparative study. Acad Radiol, 19(8), 10231028.CrossRefGoogle ScholarPubMed
National Electrical Manufacturers Association. (2007). Digital Imaging and Communications in Medicine (DICOM) Part 14: Grayscale Display Standard Function. Rosslyn, VA: National Electrical Manufacturers Association (NEMA).Google Scholar
Norweck, J.T., Anthony Seibert, J., Andriole, K.P., Clunie, D.A., Curran, B.H., Flynn, M.J., et al. (2013). ACR–AAPM–SIIM technical standard for electronic practice of medical imaging. J Digit Imag, 26(1), 3852.CrossRefGoogle ScholarPubMed
O’Shea, R.P. (1991). Thumb’s rule tested: visual angle of thumb’s width is about 2 deg. Perception, 20(3), 415418.Google Scholar
Pollard, B.J., Chawla, A.S., Delong, D.M., Hashimoto, N., Samei, E. (2008). Object detectability at increased ambient lighting conditions. Med Phys, 35(6), 22042213.Google Scholar
Pollard, B.J., Samei, E., Chawla, A.S., Baker, J., Ghate, S., Kim, C., et al. (2009). The influence of increased ambient lighting on mass detection in mammograms. Acad Radiol, 16(3), 299304.Google Scholar
Prabhu, S.P., Gandhi, S., Goddard, P.R. (2005). Ergonomics of digital imaging. Br J Radiol, 78(931), 582586.CrossRefGoogle ScholarPubMed
Reiner, B.I., Siegel, E.L. (2006). PACS and productivity. In: Filmless Radiology pp. 103–112. Heidelberg, Germany: Springer.Google Scholar
Riccò, M., Cattani, S., Gualerzi, G., Signorelli, C. (2016). Work with visual display units and musculoskeletal disorders: a cross-sectional study. Medycyna Pracy, 67(6), 707719.Google Scholar
Rodrigues, M.A., Visvanathan, A., Murchison, J.T., Brady, R.R. (2013). Radiology smartphone applications; current provision and cautions. Insights Imag, 4(5), 555562.Google Scholar
Samei, E., Badano, A., Chakraborty, D., Compton, K. (2005a). Assessment of Display Performance for Medical Imaging Systems, Report of the American Association of Physicists in Medicine (AAPM) Task Group 18. Bellingham, WA: AAPM.Google Scholar
Samei, E., Badano, A., Chakraborty, D., Compton, K., Cornelius, C., Corrigan, K., et al. (2005b). Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys, 32(4), 12051225.CrossRefGoogle ScholarPubMed
Schaefer, C.M., Greene, R., Oestmann, J.W., Hall, D.A., Llewellyn, H.J., McCarthy, K.A., et al. (1990). Digital storage phosphor imaging versus conventional film radiography in CT-documented chest disease. Radiology, 174(1), 207210.Google ScholarPubMed
Schlechtweg, P.M., Kammerer, F.J., Seuss, H., Uder, M., Hammon, M. (2016). Mobile image interpretation: diagnostic performance of CT exams displayed on a tablet computer+ in detecting abdominopelvic hemorrhage. J Digit Imag, 29(2), 183188.Google ScholarPubMed
Schwela, D.H. (2001). The new World Health Organization guidelines for community noise. Noise Control Eng J, 49(4), 193.CrossRefGoogle Scholar
Sekuler, R., Blake, R. (1994). Perception. New York, NY: McGraw-Hill.Google Scholar
Seltzer, S.E., Saini, S., Bramson, R.T., Kelly, P., Levine, L., Chiango, B.F., et al. (1998). Can academic radiology departments become more efficient and cost less? Radiology, 209(2), 405410.CrossRefGoogle ScholarPubMed
Sharpe, E.E., 3rd, Kendrick, M., Strickland, C., Dodd, G.D., 3rd. (2013). The radiology resident iPad toolbox: an educational and clinical tool for radiology residents. J Am Coll Radiol, 10(7), 527532.CrossRefGoogle ScholarPubMed
Shintaku, W.H., Scarbecz, M., Venturin, J.S. (2012). Evaluation of interproximal caries using the IPad 2 and a liquid crystal display monitor. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 113(5), e40–e44.Google Scholar
Siegel, L. (1962). Fatigue and boredom. In: Siegel, L. (ed.) Industrial Psychology. Washington, DC: American Psychological Association, pp. 193–209.Google Scholar
Siegel, R.B., Abiri, M., Chacko, A., Morin, R., Ro, D.W., et al. (2000). The filmless radiology reading room: a survey of established picture archiving and communication system sites. J Digit Imag, 13(S1), 2223.Google Scholar
Straub, W.H., Gur, D., Good, W.F., Campbell, W.L., Davis, P.L., Hecht, S.T., et al. (1991). Primary CT diagnosis of abdominal masses in a PACS environment. Radiology, 178(3), 739743.CrossRefGoogle Scholar
Sund, P., Båth, M., Månsson, L. G. (2008). Detection of low contrast test patterns on an LCD with different luminance and illuminance settings. Proc SPIE, 6917, 69170N.Google Scholar
Tewes, S., Rodt, T., Marquardt, S., Evangelidou, E., Wacker, F.K., von Falck, C. (2013). Evaluation of the use of a tablet computer with a high-resolution display for interpreting emergency CT scans. Rofo, 185(11), 10631069.Google ScholarPubMed
Thomas, J.A., Chakrabarti, K., Kaczmarek, R.V., Maslennikov, A., Mitchell, C.A., Romanyukha, A. (2006). Optimization of reading conditions for flat panel displays. J Digit Imag, 19(2), 181187.Google Scholar
Uffmann, M., Prokop, M., Kupper, W., Mang, T., Fiedler, V., Schaefer-Prokop, C. (2005). Soft-copy reading of digital chest radiographs: effect of ambient light and automatic optimization of monitor luminance. Invest Radiol, 40(3), 180185.CrossRefGoogle ScholarPubMed
Venjakob, A.C., Marnitz, T., Phillips, P., Mello-Thoms, C.R. (2016). Image size influences visual search and perception of hemorrhages when reading cranial CT: an eye-tracking study. Hum Factors, 58(3), 441451.CrossRefGoogle ScholarPubMed
WHO. (1982). Quality assurance in diagnostic radiology. Available at: http://apps.who.int/iris/bitstream/10665/39095/1/9241541644.pdf (accessed January 8, 2018).Google Scholar
Witterseh, T., Wyon, D.P., Clausen, G. (2004). The effects of moderate heat stress and open-plan office noise distraction on SBS symptoms and on the performance of office work. Indoor Air, 14 Suppl 8, 3040.CrossRefGoogle ScholarPubMed
Wyon, D.P., Wargocki, P. (2013). Room Temperature Effects on Office Work. London: Taylor & Francis, pp. 181192.Google Scholar
Yamaguchi, M., Fujita, H., Bessho, Y., Inoue, T., Asai, Y., Murase, K. (2011). Investigation of optimal display size for detecting ground-glass opacity on high resolution computed tomography using a new digital contrast-detail phantom. Eur J Radiol, 80(3), 845850.CrossRefGoogle ScholarPubMed
Yamazaki, A., Liu, P., Cheng, W.-C., Badano, A. (2013). Image quality characteristics of handheld display devices for medical imaging. PLoS One, 8(11), e79243.CrossRefGoogle ScholarPubMed
Zwart, C.M., He, M., Wu, T., Demaerschalk, B.M., Mitchell, J.R., Hara, A.K. (2015). Selection and pilot implementation of a mobile image viewer: a case study. JMIR mHealth and uHealth, 3(2), e45.CrossRefGoogle ScholarPubMed

References

ACR. (2017). What is a radiologist? Available at: www.acr.org/Quality-Safety/Radiology-Safety/Patient-Resources/About-Radiology (accessed March 29, 2017).Google Scholar
Allerton, D.J. (2010). The impact of flight simulation in aerospace. Aeronaut J, 114(1162), 747756.Google Scholar
Auffermann, W.F., Henry, T.S., Little, B.P., Tigges, S., Tridandapani, S. (2015). Simulation for teaching and assessment of nodule perception on chest radiography in nonradiology health care trainees. J Am Coll Radiol, 12(11), 12151222.Google Scholar
Auffermann, W.F., Little, B.P., Tridandapani, S. (2016). Teaching search patterns to medical trainees in an educational laboratory to improve perception of pulmonary nodules. J Med Imag, 3(1), 011006.Google Scholar
Baker, J.A., Kornguth, P.J., Floyd, C.E., Jr (1996). Breast imaging reporting and data system standardized mammography lexicon: observer variability in lesion description. AJR. Am J Roentgenol, 166(4), 773778.Google ScholarPubMed
Bjork, R.A. (1994). Memory and metamemory considerations in the training of human beings. In: Metcalfe, J., Shimamura, A. (eds.) Metacognition: Knowing about Knowing. Cambridge, MA: MIT Press.Google Scholar
Boeing., (2017). Statistical Summary of Commercial Jet Airplane Accidents, 1959–2016. Aviation Safety. Seattle, WA: Boeing Commercial Airplanes.Google Scholar
Bradley, A.P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn, 30(7), 11451159.CrossRefGoogle Scholar
Brusilovsky, P., Millán, E. (2007). User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. Lecture Notes in Computer Science, vol. 4321. Berlin: Springer-Verlag, pp. 3–53.Google Scholar
Buckle, C.E., Udawatta, V., Straus, C.M. (2013). Now you see it, now you don’t: visual illusions in radiology. Radiographics, 33(7), 20872102.CrossRefGoogle ScholarPubMed
Chasen, M.H. (2001). Practical applications of Mach band theory in thoracic analysis. Radiology, 219(3), 596610.Google Scholar
Desser, T.S. (2007). Simulation-based training: the next revolution in radiology education? J Am Coll Radiol, 4(11), 816824.Google Scholar
Dictionary.com. (2017). Intern–2. Available at: www.dictionary.com/browse/intern.Google Scholar
Franklin, B. (2017). Benjamin Franklin quotes. Available at: www.brainyquote.com/quotes/quotes/b/benjaminfr383997.html.Google Scholar
Goodman, L. (2014). Felson's Principles of Chest Roentgenology. Philadelphia, PA: Saunders.Google Scholar
Grimm, L.J., Ghate, S.V., Yoon, S.C., Kuzmiak, C.M., Kim, C., Mazurowski, M.A. (2014a). Predicting error in detecting mammographic masses among radiology trainees using statistical models based on BI-RADS features. Med Phys, 41(3), 31909-31909.CrossRefGoogle ScholarPubMed
Grimm, L.J., Kuzmiak, C.M., Ghate, S.V., Yoon, S.C., Mazurowski, M.A. (2014b). Radiology resident mammography training: interpretation difficulty and error-making patterns. Acad Radiol, 21(7), 888892.Google Scholar
Grimm, L.J., Zhang, J., Lo, J.Y., Johnson, K., Ghate, S.V., Mazurowski, M.A. (2016). Radiology trainee performance in digital breast tomosynthesis: relationship between difficulty and error making patterns. J Am Coll Radiol, 13(2), 198202.CrossRefGoogle ScholarPubMed
Kundel, H.L., La Follette, P.S. (1972). Visual search patterns and experience with radiological images. Radiology, 103(3), 523528.Google Scholar
Kundel, H.L., Nodine, C.F., Carmody, D. (1978). Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Invest Radiol, 13(3), 175181.CrossRefGoogle ScholarPubMed
Latham, G.P., Seijts, G., Crim, D. (2008). The effects of learning goal difficulty level and cognitive ability on performance. Can J Behav Sci/Rev Can Sci Comport, 40(4), 220.Google Scholar
Manning, D.J., Ethell, S.C., Donovan, T. (2004). Detection or decision errors? Missed lung cancer from the posteroanterior chest radiograph. Br J Radiol, 77(915), 231235.CrossRefGoogle ScholarPubMed
Mazurowski, M.A., Tourassi, G.D. (2011). Exploring the potential of collaborative filtering for user-adaptive mammography education. In: Proceedings of the 2011 Biomedical Sciences and Engineering Conference: Image Informatics and Analytics in Biomedicine. IEEE.Google Scholar
Mazurowski, M.A., Baker, J.A., Barnhart, H.X., Tourassi, G.D. (2010). Individualized computer-aided education in mammography based on user modeling: concept and preliminary experiments. Med Phys, 37(3), 11521160.Google Scholar
Mazurowski, M.A., Barnhart, H.X., Baker, J.A., Tourassi, G.D. (2012). Identifying error-making patterns in assessment of mammographic BI-RADS descriptors among radiology residents using statistical pattern recognition. Acad Radiol, 19(7), 865871.CrossRefGoogle ScholarPubMed
Meng, K., Lipson, J.A. (2011). Utilizing a PACS-integrated ultrasound-guided breast biopsy simulation exercise to reinforce the ACR practice guideline for ultrasound-guided percutaneous breast interventional procedures during radiology residency. Acad Radiol, 18(10), 13241328.CrossRefGoogle ScholarPubMed
Rich, E. (1983). Users are individuals: individualizing user models. Int J Man-Machine Stud, 18(3), 199214.Google Scholar
Samia, H., Khan, S., Lawrence, J., Delaney, C.P. (2013). Simulation and its role in training. Clin Colon Rect Surg, 26(1), 4755.Google Scholar
Sarwani, N., Tappouni, R., Flemming, D. (2012). Use of a simulation laboratory to train radiology residents in the management of acute radiologic emergencies. AJR. Am J Roentgenol, 199(2), 244251.Google Scholar
SIMulation, . (2017). Emergent/critical care imaging SIMulation (SIM). Available at: http://widi.xray.ufl.edu/acr-resident-sim/history/ (accessed September 9, 2017).Google Scholar
Su, X., Khoshgoftaar, T.M. (2009). A survey of collaborative filtering techniques. Adv Artif Intell, 2009, 4.CrossRefGoogle Scholar
Towbin, A.J., Paterson, B.E., Chang, P.J. (2008). Computer-based simulator for radiology: an educational tool. Radiographics, 28(1), 309316.CrossRefGoogle ScholarPubMed
Wang, M., Wang, M., Grimm, L.J., Mazurowski, M.A. (2016a). A computer vision-based algorithm to predict false positive errors in radiology trainees when interpreting digital breast tomosynthesis cases. Exp Syst Applic, 64: 490–499.Google Scholar
Wang, M., Zhang, J., Grimm, L.J., Ghate, S.V. Walsh, R., Johnson, K.S., Lo, J.Y., Mazurowski, M.A. (2016b). Predicting false negative errors in digital breast tomosynthesis among radiology trainees using a computer vision-based approach. Exp Syst Applic, 56, 1–8.Google Scholar
Webb, G.I., Pazzani, M.J., Billsus, D. (2001). Machine learning for user modeling. User Model User-Adapt Interact, 11(1–2), 1929.CrossRefGoogle Scholar
Zhang, J., Lo, J.Y., Kuzmiak, C.M., Ghate, S.V., Yoon, S.C., Mazurowski, M.A. (2014). Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents. Med Phys, 41(9), 91907.Google Scholar
Zhang, J., Silber, J.I., Mazurowski, M.A. (2015). Modeling false positive error making patterns in radiology trainees for improved mammography education. J Biomed Inform, 54, 50–57.CrossRefGoogle ScholarPubMed

References

ACGME. (2011). Task Force on Quality Care and Professionalism. The ACGME 2011 duty hour standards: enhancing quality of care, supervision, and resident professional development. Available at:www.acgme.org/Portals/0/PDFs/jgme-monograph[1].pdf (accessed December 20, 2017).Google Scholar
Ackerman, P.L., Kanfer, R., Shapiro, S.W., Newton, S., Beier, M.E. (2010). Cognitive fatigue during testing: an examination of trait, time-on-task, and strategy influences. Hum Perform, 23, 381402.CrossRefGoogle Scholar
Ahsberg, E. (2000). Dimensions of fatigue in different workplace populations. Scand J Psychol, 41, 231241.Google Scholar
Ahsberg, E, Gamberale, F, Gustafsson, K. (2000). Perceived fatigue after mental work: an experimental evaluation of a fatigue inventory. Ergonomics, 43, 252268.Google Scholar
Akerstedt, T., Knutsson, A., Westerholm, P., Theorell, T., Alfredsson, L., Kecklund, G. (2004). Mental fatigue, work and sleep. J Psychosom Res, 57, 427433.Google Scholar
Andre, J.T., Owens, D.A. (1999). Predicting optimal accommodative performance from measures of the dark focus of accommodation. Hum Fact, 41, 139145.CrossRefGoogle ScholarPubMed
Ankrum, D.R. (1996). Viewing distance at computer workstations. Work Place Ergonom, September/October, 1012.Google Scholar
Backs, R.W., Walrath, L.C. (1992). Eye movement and pupillary response indices of mental workload during visual search of symbolic displays. Appl Ergonom, 23, 243254.Google Scholar
Barger, L.K., Cade, B.E., Ayas, N.T., Cronin, J.W., Rosner, B., Speizer, F.E., et al. (2005). Extended work shifts and the risk of motor vehicle crashes among interns. N Engl J Med, 352, 125314.CrossRefGoogle ScholarPubMed
Bellini, L.M., Baime, M., Shea, J.A. (2002). Variation in mood and empathy during internship. JAMA, 287, 31433146.CrossRefGoogle ScholarPubMed
Ben-Aroya, Z., Segal, D., Hadar, A., Hallak, M., Friger, M., Katz, M., Mazor, M. (2002). Effect of OB/GYN residents’ fatigue and training level on the accuracy of fetal weight estimation. Fetal Diagn Ther, 17, 177–181.CrossRefGoogle Scholar
Berbaum, K.S., Franken, E.A., Dorfman, D.D., et al. (1990). Satisfaction of search in diagnostic radiology. Invest Radiol, 25, 133140.Google Scholar
Berbaum, K.S., Dorfman, D.D., Franken, E.A., et al. (2000). Proper ROC analysis and joint ROC analysis of the satisfaction of search effect in chest radiography. Acad Radiol, 7, 945958.Google Scholar
Berbaum, K.S., Krupinski, E.A., Schartz, K.M., et al. (2015). Satisfaction of search in chest radiography 2015. Acad Radiol, 22, 14571465.CrossRefGoogle ScholarPubMed
Berbaum, K.S., Krupinski, E.A., Schartz, K.M., et al. (2016). The influence of a vocalized checklist on detection of multiple abnormalities in chest radiography. Acad Radiol, 23, 413420.CrossRefGoogle ScholarPubMed
Berlin, L. (2007). Accuracy of diagnostic procedures: has it improved over the past five decades? Am J Roentgenol, 188, 11731178.Google Scholar
Bilimoria, K.Y., Chung, J.W., Hedges, L.V., Dahlke, A.R., Love, R., Cohen, M.E., et al. (2016). National cluster-randomized trial of duty-hour flexibility in surgical training. N Engl J Med, 374, 713727.Google Scholar
Boiselle, P.M., Levine, D., Horwich, P.J., et al. (2008). Repetitive stress symptoms in radiology: prevalence and response to ergonomic interventions. J Am Coll Radiol, 5, 919923.CrossRefGoogle ScholarPubMed
Boksem, M.A.S., Tops, M. (2008). Mental fatigue: costs and benefits. Brain Res Rev, 59, 125139.Google Scholar
Boksem, M.A.S., Meijman, T.F., Lorist, M.M. (2006). Mental fatigue, motivation and action monitoring. Biol Psychol, 72, 123132.CrossRefGoogle ScholarPubMed
Bruno, M.A., Walker, E.A., Abujudeh, H.H. (2015). Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. RadioGraphics, 35, 16681676.CrossRefGoogle ScholarPubMed
Bultmann, U., Kant, I., Van den Brandt, P.A., Kasl, S.V. (2002a). Psychosocial work characteristics as risk factors for the onset of fatigue and psychological distress: prospective results from the Maastricht cohort study. Psychol Med, 32, 333345.Google Scholar
Bultmann, U., Kant, I., Kasi, S.V., Schroer, K.A.P., Swaen, G.M.H., van den Brandt, P.A. (2002b). Lifestyle factors as risk factors for fatigue and psychological distress in the working population: prospective results from the Maastricht cohort study. J Occup Environ Med, 44, 116124.Google Scholar
Burnside, E.S., Park, J.M., Fine, J.P., Sisney, G.A. (2005). The use of batch reading to improve the performance of screening mammography. Am J Roentgenol, 185, 790796.Google Scholar
Caldwell, J.A., Caldwell, J.L. (2016). Fatigue in Aviation: A Guide to Staying Awake at the Stick. New York, NY: Routledge.Google Scholar
Chi, C.F., Lin, F.T. (1998). A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks. Hum Fact, 40, 577590.Google Scholar
Cornell Musculoskeletal Discomfort Questionnaire for Sedentary Workers. Cornell University Ergonomics Web. Available at: http://ergo.human.cornell.edu/ahmsquest.html (accessed April 17, 2017).Google Scholar
de Mello, M.T., Narciso, F.V., Tufik, S., Paiva, T., Spence, D.W., BaHammam, A.S., et al. (2013). Sleep disorders as a cause of motor vehicle collisions. Int J Prevent Med, 4, 246257.Google Scholar
Dillon, T.W., Emurian, H.H. (1996). Some factors affecting reports of visual fatigue resulting from use of a VDU. Comput Hum Behav, 12, 4959.Google Scholar
Dinnes, J., Moss, S., Melia, J., Blanks, R., Song, F., Kleijnen, J. (2001). Effectiveness and cost-effectiveness of double reading of mammograms in breast cancer screening: findings of a systematic review. Breast. 10(6), 455463.CrossRefGoogle ScholarPubMed
Dorrian, J., Hussey, F., Dawson, D. (2007). Train driving efficiency and safety: examining the cost of fatigue. J Sleep Res, 16, 111.Google Scholar
Dreyer, K.J., Geis, J.R. (2017). When machines think: radiology’s next frontier. Radiology, 285, 713718.CrossRefGoogle ScholarPubMed
Duffy, V.G., Chan, A.H.S. (2002). Effects of virtual lighting on visual performance and eye fatigue. Hum Fact Ergonom Manufact, 12, 193209.CrossRefGoogle Scholar
Ebenholtz, S.M. (2001). Oculomotor Systems and Perception. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
European Cockpit Association. (2012). Barometer on pilt fatigue. Available at: www.eurocockpit.be/positions-publications/barometer-pilot-fatigue (accessed December 20, 2017).Google Scholar
Fuchs, A.F., Binder, M.D. (1983). Fatigue resistance of human extraocular muscles. J Neurophysiol, 49, 2834.CrossRefGoogle ScholarPubMed
Gale, A.G., Murray, D., Millar, K., Worthington, B.S. (1984). Circadian variation in radiology. Adv Psychol, 22, 313321.Google Scholar
Gates, D.H., Dingwell, J.B. (2008). The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Exp Brain Res, 187, 573585.CrossRefGoogle Scholar
Grantcharov, T.P., Bardram, L., Funch-Jensen, P., Rosenberg, J. (2001). Laparoscopic performance after one night on call in a surgical department: prospective study. Br Med J, 323, 12221223.Google Scholar
Gur, D., Bandos, A.I., Cohen, C.S., Hakim, C.M., Hardesty, L.A., Ganott, M.A., et al. (2008). The “laboratory” effect: comparing radiologists’ performance and variability during prospective clinical and laboratory mammography interpretations. Radiology, 249, 4753.Google Scholar
Hancock, P.A. (2013). In search of vigilance: the problem of iatrogenically created psychological phenomena. Am Psychol, 68, 97109.CrossRefGoogle ScholarPubMed
Hanna, T.N., Lamoureux, C., Krupinski, E.A., Weber, S., Johnson, J.O. (2018a). Effect of shift schedule, and volume on interpretative accuracy: a retrospective analysis of 2.9 million radiologic examinations. Radiology, 287, 205212.Google Scholar
Hanna, T., Zygmont, M., Peterson, R., Shekhani, H., Theriot, D., Johnson, J.O., Krupinski, E.A. (2018b). The effects of fatigue from overnight shifts on radiology search patterns and diagnostic performance. J Am Coll Radiol, pii: S1546-1440(17)31661-7.Google ScholarPubMed
Hardy, G.E., Shapiro, D.A., Borrill, C.S. (1997). Fatigue in the workforce of National Health Service trusts: levels of symptomatology and links with minor psychiatric disorder, demographic, occupational and work role factors. J Psychosom Res, 43, 8392.CrossRefGoogle ScholarPubMed
Harris, J.D., Staheli, G., LeClere, L., Andersone, D., McCormick, F. (2015). What effects have resident work-hour changes had on education, quality of life, and safety? A systematic review. Clin Orthop Rel Res, 473, 16001608.Google Scholar
Hasebe, S., Graf, E.W., Schor, C. (2001). Fatigue reduces tonic accommodation. Ophthalmic Physiol Opt, 21, 151160.CrossRefGoogle ScholarPubMed
Heron, G., Charman, W.N., Gray, L.S. (1999). Accommodation responses and ageing. Invest Ophthalmol Visual Sci, 40, 28722883.Google Scholar
Ho, J.C., Lee, M.B., Chen, R.Y., Chen, C.J., Chang, W.P., Yeh, C.Y., et al. (2013). Work-related fatigue among medical personnel in Taiwan. J Formos Med Assoc, 112, 608615.CrossRefGoogle ScholarPubMed
Hoffmann, J.C., Mittal, S., Hoffmann, C.H., Fadl, A., Baadh, A., Katz, D.S., Flug, J. (2016). Combating the health risks of sedentary behavior in the contemporary radiology reading room. Am J Roentgenol, 206, 11351140.CrossRefGoogle ScholarPubMed
Horowitz, T.S., Cade, B.E., Wolfe, J.M., Czeisler, C.A. (2003). Searching night and day: a dissociation of effects of circadian phase and time awake on visual selective attention and vigilance. Psychol Sci, 14, 549557.Google Scholar
Howard, S.K., Gaba, D.M., Smith, B.E., Weinger, M.B., Herndon, C., Keshavacharya, S., Rosekind, M.R. (2003). Simulation of rested versus sleep-deprived anesthesiologists. Anesthesiology, 98, 13451355.Google Scholar
Jaschinski-Kruza, W. (1988). Visual strain during VDU work: the effect of viewing distance and dark focus. Ergonomics, 31, 14491465.CrossRefGoogle ScholarPubMed
Kahn, C.E. (2017). From images to actions: opportunities for artificial intelligence in radiology. Radiology, 285, 719720.CrossRefGoogle ScholarPubMed
Khan, F.A., Bhalla, S., Jost, G. (2002). Results of the 2001 survey of the American Association of Academic chief residents in radiology. Acad Radiol, 9, 8997.CrossRefGoogle Scholar
Kohli, M., Prevedello, L.M., Filice, R.W., Geis, J.R. (2017). Implementing machine learning in radiology practice and research. Am J Roentgenol, 208, 754760.Google Scholar
Komiushina, T.A. (2000). Physiological mechanisms of the etiology of visual fatigue during work involving visual stress. Vestnik Oftalmologii, 116, 3336.Google Scholar
Krupinski, E.A., Berbaum, K.S. (2009). Measurement of visual strain in radiologists. Acad Radiol, 16, 947950.Google Scholar
Krupinski, E., Reiner, B.I. (2012). Real-time occupational stress and fatigue measurement in medical imaging practice. J Digit Imag, 25, 319324.Google Scholar
Krupinski, E.A., Berbaum, K.S., Caldwell, R.T., Schartz, K.M., Kim, J. (2010). Long radiology workdays reduce detection and accommodation accuracy. J Am Coll Radiol, 7, 698704.CrossRefGoogle ScholarPubMed
Krupinski, E.A., Berbaum, K.S., Caldwell, R.T., Schartz, K.M., Madsen, M.T., Kramer, D.J. (2012). Do long radiology workdays affect nodule detection in dynamic CT interpretation? J Am Coll Radiol, 9, 191198.CrossRefGoogle Scholar
Krupinski, E.A., Berbaum, K.S., Schartz, K.M., Caldwell, R.T., Madsen, M.T. (2017a). The impact of fatigue on satisfaction of search in chest radiography. Acad Radiol, 24, 10581063.Google Scholar
Krupinski, E.A., Schartz, K.M., van Tassell, M.S., Madsen, M.T., Caldwell, R.T., Berbaum, K.S. (2017b). Effect of fatigue on reading computed tomography examination of the multiple injured patient. J Med Imag, 4, 035504.CrossRefGoogle Scholar
Landrigan, C.P., Rothschild, J.M., Cronin, J.W., Kaushal, R., Burdick, E., Katz, J.T., et al. (2004). Effect of reducing interns’ work hours on serious medical errors in intensive care units. N Engl J Med, 351, 18381848.Google Scholar
Lavine, R.A., Sibert, J.L., Gokturk, M., Dickens, B. (2002). Eye-tracking measures and human performance in a vigilance task. Aviat Space Environ Med, 73, 367372.Google Scholar
Lee, J.G., Jun, S., Cho, Y.W., Lee, H., et al. (2017). Deep learning in medical imaging: general overview. Korean J Radiol, 18, 570584.CrossRefGoogle ScholarPubMed
Levine, A.C., Adusumilli, J., Landrigan, C.P. (2010). Effects of reducing or eliminating resident work shifts over 16 hours: a systematic review. Sleep, 33, 10431053.CrossRefGoogle ScholarPubMed
Lockley, S.W., Barger, L.K., Ayas, N.T., Rothschild, J.M., Czeisler, C.A., Landrigan, C.P. (2007). Effects of health care provider work hours and sleep deprivation on safety and performance. Jt Comm J Qual Patient Saf, 33(11 Suppl), 718.Google ScholarPubMed
Lorist, M.M., Kernell, D., Meijman, T.F., Zijdewind, I. (2002). Motor fatigue and cognitive task performance in humans. J Physiol, 545, 313319.Google Scholar
Mann, F.A., Danz, P.L. (1993). The night stalker effect: quality improvements with a dedicated night-call rotation. Invest Radiol, 28, 9296.CrossRefGoogle ScholarPubMed
Megaw, E.D. (1995). The definition and measurement of visual fatigue. In: Wilson, J.R., Corlett, E.N. (eds.) Evaluation of Human Work: a Practical Ergonomics Methodology. Philadelphia, PA: Taylor & Francis. pp. 840863.Google Scholar
Mehta, R.K., Agnew, M.J. (2012). Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work. Eur J Appl Physiol, 112, 28912902.Google Scholar
Mockel, T., Beste, C., Wascher, E. (2015). The effects of time on task in response selection – an ERP study of mental fatigue. Sci Rep, 5, 10113.CrossRefGoogle ScholarPubMed
Moonesinghe, S.R., Lowery, J., Shahi, N., Millen, A., Beard, J.D. (2011). Impact of reduction in working hours for doctors in training on postgraduate medical education and patients’ outcomes: systematic review. Br Med J, 342, d1580.Google Scholar
Murata, A., Uetake, A., Otsuka, M., Takasaw, Y. (2001). Proposal of an index to evaluate visual fatigue induced during visual display terminal tasks. Int J Hum-Comput Interact, 13, 305321.Google Scholar
Mutti, D.O., Zadnik, K. (1996). Is computer use a risk factor for myopia? J Am Optom Assn, 67, 521530.Google ScholarPubMed
Owens, J.A. (2001). Sleep loss and fatigue in medical training. Curr Opin Pulm Med, 7, 411418.CrossRefGoogle ScholarPubMed
Patterson, P.D., Suffoletto, B.P., Kupas, D.F., Weaver, M.D., Hostler, D. (2010). Sleep quality and fatigue among prehospital providers. Prehosp Emerg Care, 14, 187193.CrossRefGoogle ScholarPubMed
Patterson, P.D., Weaver, M.D., Frank, R.C., Warner, C.W., Martin-Gill, C., Guyette, F.X., et al. (2012). Association between poor sleep, fatigue, and safety outcomes in emergency medical services providers. Prehosp Emerg Care, 6, 8697.Google Scholar
Pigeon, W.R., Sateia, M.J., Ferguson, R.J. (2003). Distinguishing between excessive daytime sleepiness and fatigue – toward improved detection and treatment. J Psychosom Res, 54, 6169.Google Scholar
Pronovost, P., Needham, D., Berenholtz, S., Sinopoli, D., Chu, H., Cosgrove, S., et al. (2006). An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med, 355, 27252732.Google Scholar
Reuss, L., O’Connor, S.C., Cho, K.H., et al. (2003). Carpal tunnel syndrome and cubital tunnel syndrome: work-related musculoskeletal disorders in four symptomatic radiologists. Am J Roentgenol, 181, 3742.Google Scholar
Rodrigues, J.C., Morgan, S., Augustine, K., et al. (2014). Musculoskeletal symptoms amongst clinical radiologists and the implications of reporting environment ergonomics- a multicentre questionnaire study. J Digit Imag, 27, 255261.CrossRefGoogle ScholarPubMed
Rogers, A.E. (2008). The effects of fatigue and sleepiness on nurse performance and patient safety. In: Hughes, R.G. (ed.). Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Rockville, MD: Agency for Healthcare Research and Quality.Google Scholar
Rogers, A.E., Hwang, W.T., Scott, L.D., Aiken, L.H., Dinges, D.F. (2004). The working hours of hospital staff nurses and patient safety. Health Aff (Millwood), 23, 202212.Google Scholar
Rohatgi, S., Hanna, T.N., Sliker, C.W., Abbott, R.M., Nicola, R. (2015). After-hours radiology: challenges and strategies for the radiologist. Am J Roentgenol, 205, 956961.Google Scholar
Rosen, I.M., Shea, J.A., Bellini, L.M. (2003). Residents’ work hours. N Engl J Med, 348, 664666.Google ScholarPubMed
Rozenshtein, A., Bauman-Fishkin, O., Fishkin, I., Homel, P. (2003). Radiology residency call in the Northeastern United States: comparison of difficulty and frequency in programs of different sizes. Acad Radiol, 10, 559564.Google Scholar
Rutter, C.M., Taplin, S. (2000). Assessing mammographers’ accuracy. A comparison of clinical and test performance. J Clin Epidemiol, 53, 443450.Google Scholar
Ruutiainen, A.T., Durand, D.J., Scanlon, M.H., Itri, J.N. (2013). Increased error rates in preliminary reports issued by radiology residents working more than 10 consecutive hours overnight. Acad Radiol, 20, 305311.Google Scholar
Sanchez-Roman, F.R., Perez-Lucio, C., Juarez-Ruiz, C., Velez-Zamora, N.M., Jimenez-Villarruel, M. (1996). Risk factors for asthenopia among computer terminal operators. Salud Publ Mex, 38, 189196.Google Scholar
Scott, J.N., Romano, C.C. (2003). On-call services provided by radiology residents in a university hospital environment. Can Assn Radiol J, 54, 104108.Google Scholar
Scott, H., Evan, A., Gale, A., Murphy, A., Reed, J. (2009). The relationship between real life breast screening and an annual self-assessment scheme. Proc SPIE Med Imag, 7263, 72631E-1–72631E-7.Google Scholar
Seidel, R.L., Krupinski, E.A. (2017). The agony of it all: musculoskeletal discomfort in the reading room. J Am Coll Radiol, 14, 16201625.Google Scholar
Siegel, E.L., Reiner, B. (2002). Image workflow. In: Dreyer, K.J., Mehta, A., Thrall, J.H. (eds.) PACS: A Guide to the Digital Revolution. New York, NY: Springer-Verlag, pp. 161190.CrossRefGoogle Scholar
Sirevaag, E.J., Stern, J.A. (2000). Ocular measures of fatigue and cognitive factors. In: Backs, R.W., Boucsein, W. (eds.) Engineering Psychophysiology: Issues and Applications. Maywah, NJ: Lawrence Erlbaum, pp. 269287.Google Scholar
Sommerich, C.M., Joines, S.M.B., Psihogios, J.P. (2001). Effects of computer monitor viewing angle and related factors on strain, performance, and preference outcomes. Hum Fact, 43, 3955.CrossRefGoogle ScholarPubMed
Stern, J.A., Boyer, D., Schroeder, D., Touchstone, M. (1994). Blinks, saccades, and fixation pauses during vigilance task performance. I. Time on task. FAA Off Aviat Med Rep, FAA-AM-94- 26, 144.Google Scholar
Stinton, C., Jenkinson, D., Adekanmbi, V., Clarke, A., Taylor-Phillips, S. (2017). Does time of day influence cancer detection and recall rates in mammography? Proc SPIE Med Imag, 10136, 10136B.Google Scholar
Stone, M.D., Doyle, J., Bosch, R.J., Bothe, A., Steele, G. (2000). Effect of resident call system on ABSITE performance. Surgery, 28, 465471.Google Scholar
Takahashi, K., Sasaki, T., Hosokawa, T., Kurasaki, M., Saito, K. (2001). Combined effects of working environmental conditions in VDT work. Ergonomics, 44, 562570.Google Scholar
Taylor, P., Potts, H.W.W. (2008). Computer aids and human second reading as interventions in screening mammography: two systematic reviews to compare effects on cancer detection and recall rate. Eur J Cancer, 44, 798807.Google Scholar
Taylor-Phillips, S., Clarke, A., Wallis, M., Wheaton, M, Duncan, A, Gale, A.G. (2001). The time course of cancer detection performance. Proc SPIE Med Imag, 7966, 796605-1–796605-8.Google Scholar
Taylor-Phillips, S., Wallis, M.G., Jenkinson, D., Adekanmbi, V., Parsons, H., Dunn, J., et al. (2016). Effect of using the same vs different order for second readings of screening mammograms on rates of breast cancer detection: a randomized clinical trial. JAMA, 315, 19561965.Google Scholar
Thompson, A.C., Kremer Prill, M.J., Biswal, S., et al. (2014). Factors associated with repetitive strain, and strategies to reduce injury among breast-imaging radiologists. J Am Coll Radiol, 11, 10741079.CrossRefGoogle ScholarPubMed
Townsend, R.R., Manco-Johnson, M.L. (1995). Night call in US radiology residency programs. Acad Radiol, 2, 810815.CrossRefGoogle ScholarPubMed
Trinkoff, A.M., Le, R., Geiger-Brown, J., Lipscomb, J. (2007). Work schedule, needle use, and needlestick injuries among registered nurses. Infect Control Hosp Epidemiol, 28, 156164.Google Scholar
Turville, K.L., Psihogios, J.P., Ulmer, T.R., Mirka, G.A. (1998). The effects of video display terminal height on the operator: a comparison of the 15” and 40” recommendation. Appl Ergonom, 9, 239246.CrossRefGoogle Scholar
Tyrrell, R.A., Leibowitz, H.W. (1990). The relation of vergence effort to reports of visual fatigue following prolonged near work. Hum Fact, 32, 341357.Google Scholar
Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., Roelands, B. (2017). The effects of mental fatigue on physical performance: a systematic review. Sports Med, 47, 15691588.CrossRefGoogle ScholarPubMed
Van Orden, K.F., Jung, T.P., Makeig, S. (2000). Combined eye activity measures accurately estimate changes in sustained visual task performance. Biol Psychol, 52, 221240.Google Scholar
Veasey, S., Rosen, R., Barzansky, B., Rosen, I., Owens, J. (2002). Sleep loss and fatigue in residency training: a reappraisal. JAMA, 288, 11161124.CrossRefGoogle ScholarPubMed
Waite, S., Kolla, S., Jeudy, J., Legasto, A., Macknik, S.L., Martinez-Condo, S., Krupinski, E.A., Reede, D.L. (2017). Tired in the reading room: the influence of fatigue in radiology. J Am Coll Radiol, 14, 191197.CrossRefGoogle ScholarPubMed
Wascher, E., Getzmann, S. (2014). Rapid mental fatigue amplifies age-related attentional deficits. J Psychophys, 28, 215224.Google Scholar
Watanabe, Y. (2007). Preface and mini-review: fatigue science for human health. In: Watanabe, Y., Evengård, B., Natelson, B., Jason, L., Kuratsune, H. (eds.) Fatigue Science for Human Health. New York, NY: Springer, pp. 511.Google Scholar
Watten, R.G., Lie, I. (1992). Time factors in VDT-induced myopia and visual fatigue: an experimental study. J Hum Ergol, 21, 1320.Google Scholar
Watten, R.G., Lie, I., Birketvedt, O. (1994). The influence of long-term visual near-work on accommodation and vergence: a field study. J Hum Ergol, 23, 2739.Google ScholarPubMed
Whetsell, J.F. (2003). Changing the law, challenging the culture: rethinking the “sleepy resident” problem. Ann Health Law, 12, 2373.Google Scholar
Wolska, A., Switula, M. (1999). Luminance of the surround and visual fatigue of VDT operators. Int J Occup Saf Ergonom, 5, 553581.Google Scholar
Yunfang, L., Wenjing, W., Bingshuang, H., Changji, L., Chenglie, Z. (2000). Visual strain and working capacity in computer operators. Homeostasis Health Dis, 40, 2729.Google Scholar
Ziefle, M. (1998). Effects of display resolution on visual performance. Hum Fact, 40, 554568.Google Scholar

References

Badano, A., Revie, C., Casertano, A., Cheng, W.C., Green, P., Kimpe, T. et al. (2015). Consistency and standardization of color in medical imaging: a consensus report. J Digit Imag, 28, 4152.CrossRefGoogle ScholarPubMed
Bashshur, R.L., Krupinski, E.A., Weinstein, R.S., Dunn, M.R., Bashshur, N. (2017). The empirical foundations of telepathology: evidence of feasibility and intermediate results. Telemed J eHealth, 23, 155191.Google Scholar
Bautista, P.A., Hashimoto, N., Yagi, Y. (2014). Color standardization in whole slide imaging using a color calibration slide. J Pathol Inform, 5, 4.Google Scholar
Beam, C.A., Krupinski, E.A., Kundel, H.L., Sickles, E.A., Wagner, R.F. (2006). The place of medical image perception in 21st-century health care. J Am Coll Radiol, 3, 409412.Google Scholar
Bhargava, R., Madabhushi, A. (2016). Emerging themes in image informatics and molecular analysis for digital pathology. Annu Rev Biomed Eng, 18, 387412.Google Scholar
Brunye, T.T., Carney, P.A., Allison, K.H., Shapiro, L.G., Weaver, D.L., Elmore, J.G. (2014). Eye movements as an index of pathologist visual expertise: a pilot study. PLoS One, 9, e103447.Google Scholar
Brunyé, T.T., Mercan, E., Weaver, D.L., Elmore, J.G. (2017). Accuracy is in the eyes of the pathologist: the visual interpretive process and diagnostic accuracy with digital whole slide images. J Biomed Inform, 66, 171179.CrossRefGoogle ScholarPubMed
Bussolati, G. (2006). Disecting the pathologist’s brain: mental processes that lead to pathological diagnoses. Virchows Arch, 448, 739743.CrossRefGoogle Scholar
Campbell, W.S., Hinrichs, S.H., Lele, S.M., Baker, J.J., Lazenby, A.J., Talmon, G.A., Smith, L.M., West, W.W. (2014). Whole slide imaging diagnostic concordance with light microscopy for breast needle biopsies. Hum Pathol, 45, 17131721.CrossRefGoogle ScholarPubMed
Carney, P.A., Allison, K.H., Oster, N.V., Frederick, P.D., Morgan, T.R., Geller, B.M., Weaver, D.L., Elmore, J.G. (2016). Identifying and processing the gap between perceived and actual agreement in breast pathology interpretation. Mod Pathol, 9, 717726.Google Scholar
Cheng, W.C., Caceres, H., Badano, A. (2012). Evaluating color calibration kits with virtual display. Proc SPIE Med Imag, 8292, 82920A.Google Scholar
Christensen, E.E., Murry, R.C., Holland, K., Reynolds, J., Landay, M.J., Moore, J.G. (1981). The effect of search time on perception. Radiology, 138, 361365.CrossRefGoogle ScholarPubMed
Chun, M.M., Wolfe, J.M. (1996). Just say no: how are visual searches terminated when there is no target present? Cogn Psychol, 30, 3978.CrossRefGoogle ScholarPubMed
Clarke, E.L., Treanor, D. (2017). Colour in digital pathology: a review. Histopathology, 70, 153163.Google Scholar
Crowley, R.S., Naus, G.J., Stewart, J., Friedman, C.P. (2003). Development of visual diagnostic expertise in pathology: an information-processing study. J Am Medical Inform Assoc, 10, 3951.Google Scholar
Drew, T., Vo, M.L., Olwal, A., Jacobson, F., Seltzer, S.E., Wolfe, J.M. (2013). Scanners and drillers: characterizing expert visual search through volumetric images. J Vision, 13, 3.Google Scholar
Dunckner, K. (1945). On problem-solving. Psych Monographs, 58, i–113.Google Scholar
Evered, A., Walker, D., Watt, A., Perham, N. (2016). Visual distraction in cytopathology: should we be concerned? Cytopathology, 27, 351358.Google Scholar
Farahani, N, Parawni, A.V., Pantanowitz, L. (2015). Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int, 7, 2333.Google Scholar
Farahani, N., Post, R., Duboy, J., Ahmed, I., Kolowitz, B.J., Krinchai, T., Monaco, S.E., Fine, J.L., Hartman, D.J., Pantanowitz, L. (2016). Exploring virtual reality technology and the Oculus Rift for the examination of digital pathology slides. J Pathol Inform, 7, 22.Google Scholar
Food and Drug Administration (FDA). (2017). FDA allows marketing of first whole slide imaging system for digital pathology. Available at: www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm552742.htm (accessed November 2, 2017).Google Scholar
Gutierrez, R., Gomez, F., Roa-Pena, L., Romero, E. (2011). A supervised visual model for finding regions of interest in basal cell carcinoma images. Diagn Pathol, 6, 26.Google Scholar
Harrison, B.T., Dillon, D.A., Richardson, A.L., Brock, J.E., Guidi, A.J., Lester, S.C. (2017). Quality assurance in breast pathology: lessons learned from a review of amended reports. Arch Pathol Lab Med, 141, 260266.Google Scholar
Hufnagl, P, Guski, H., Hering, J., Schrtader, T., Kayser, K., Ten nstedt-Schenck, C., Dietel, M., Winzer, K.J. (2016). Comparing conventional and telepathology diagnosis in routine frozen section service. Diagn Pathol J, 2, 112.Google Scholar
Kalinski, T., Zwonitzer, R., Grabellus, F., Sheu, S.-Y., Sel, S., Hofmann, H., Bernarding, J., Roessner, A. (2009). Lossy compression in diagnostic virtual 3-dimensional microscopy – where is the limit? Hum Pathol, 40, 9981005.CrossRefGoogle ScholarPubMed
Kalinski, T., Zwonitzer, R., Grabellus, F., Sheu, S.-Y., Sel, S., Hofmann, H., Roessner, A. (2011). Lossless compression of JPEG2000 whole slide images is not required for diagnostic virtual microscopy. Am J Clin Pathol, 136, 889895.CrossRefGoogle Scholar
Kimpe, T., Rostang, J., Avanki, A., Espig, K., Zthona, A., Cocuranu, I., Parawni, A.V., Pantanowitz, L. (2014). Does the choice of display system influence perception and visibility of clinically relevant features in digital pathology images? Proc SPIE Med Imag, 9041, 904109.Google Scholar
King, L.S. (1967). How does a pathologist make a diagnosis? Arch Pathol, 84, 331333.Google Scholar
Konsti, J., Lundin, M., Linder, N., Haglund, C., Blomqvist, C., Nevanlinna, H., Aaltonen, K., Nordling, S., Lunding, J. (2012). Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium. Diagn Pathol, 7, 29.Google Scholar
Krupinski, E.A. (2009). Virtual slide telepathology workstation of the future: lessons learned from teleradiology. Hum Pathol, 40, 11001111.CrossRefGoogle ScholarPubMed
Krupinski, E.A. (2010). Optimizing the pathology workstation “cockpit”: challenges and solutions. J Pathol Inform, 1, 19.Google Scholar
Krupinski, E.A., Tillack, A.A., Richter, L., Henderson, J.T., Bhattacharyya, A.K., Scott, K.M., Graham, A.R., Descour, M.R., Davis, J.R., Weinstein, R.S. (2006). Eye-movement study and human performance using telepathology virtual slides. Implications for medical education and differences with experience. Hum Pathol, 37, 15431556.Google Scholar
Krupinski, E.A., Johnson, J.P., Jaw, S., Graham, A.R., Weinstein, R.S. (2012). Compressing pathology whole-slide images using a human and a model observer evaluation. J Pathol Inform, 3, 17.CrossRefGoogle Scholar
Krupinski, E.A., Graham, A.R., Weinstein, R.S. (2013). Characterizing the development of visual search expertise in pathology residents viewing whole slide images. Hum Pathol, 44, 357364.Google Scholar
Littelfair, S., Brennan, P., Reed, W., Williams, M., Pietrzyk, M.W. (2012). Does the thinking aloud condition affect the search for pulmonary nodules? Proc SPIE Med Imag, 83181A.Google Scholar
Mello-Thoms, C., Mello, C.A.B., Medvedva, O., Castine, M., Legowski, E., Gardner, G., Tseytlin, E., Crowley, R.S. (2012). Perceptual analysis of the reading of dermatopathology virtual slides by pathology residents. Arch Pathol Lab Med, 136, 551562.CrossRefGoogle ScholarPubMed
Mercan, E., Aksoy, S., Shapiro, L.G., Weaver, D.L., Brunye, T.T., Elmore, J.G. (2016). Localization of diagnostically relevant regions of interest in whole slide images: a comparative study. J Digit Imag, 29, 496506.CrossRefGoogle ScholarPubMed
Mercan, E., Shapiro, L.G., Brunye, T.T., Weaver, D.L., Elmore, J.G. (2017). Characterizing diagnostic search patterns in digital breast pathology: scanners and drillers. J Digit Imag, https://doi.org/10.1007/s10278-017-9990-5.Google Scholar
Meyer, J., Pare, G. (2015). Telepathology impacts and implementation challenges: a scoping review. Arch Pathol Lab Med, 139, 15501557.CrossRefGoogle ScholarPubMed
Molin, J., Fjeld, M., Mello-Thoms, C., Lundstrom, C. (2015). Slide navigation patterns among pathologists with long experience in digital review. Histopathology, 67, 185192.Google Scholar
Nagarkar, D.B., Mercan, E., Weaver, D.L., Brunyé, T.T., Carney, P.A., Rendi, M.H., Beck, A.H., Frederick, P.D., Shapiro, L.G., Elmore, J.G. (2016). Region of interest identification and diagnostic agreement in breast pathology. Mod Pathol, 29, 10041011.Google Scholar
Nakhleh, R.E., Nose, V., Colasacco, C., Fatheree, L.A., Lilemoe, T.J., et al. (2016). Interpretative diagnostic error reduction in surgical pathology and cytology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center and the Association of Directors of Anatomic and Surgical Pathology. Arch Pathol Lab Med, 140, 2940.Google Scholar
Nodine, C.F., Kundel, H.L. (1987). Using eye movements to study visual search and improve tumor detection. Radiographics, 7, 12411250.Google Scholar
Nodine, C.F., Mello-Thoms, C. (2010). The role of expertise in radiologic image interpretation. In: Samei, E., Krupinski, E. (eds). The Handbook of Medical Image Perception and Techniques. Cambridge, England: Cambridge University Press, pp. 139156.Google Scholar
Oyster, C.W. (1999). The Human Eye: Structure and Function. Sunderland, MA: Sinauer Associates.Google Scholar
Pantanowitz, L., Valenstein, P.N., Evans, A.J., Kaplan, K.J., Pfeifer, J.D., Wilber, D.C., Collins, L.C., Colgan, T.J. (2011). Review of the current state of whole slide imaging in pathology. J Pathol Inform, 2, 26.Google Scholar
Pantanowitz, L., Parwani, A., Tseytlin, E., Mello-Thoms, C. (2012). Analysis of slide exploration strategy of cytologists when reading digital slides. Proc SPIE Med Imag, 8318, 83180O-1–83180O-10.Google Scholar
Pantanowitz, L., Liu, C., Huang, Y., Guo, H., Rohde, G.K. (2017). Impact of alterating imaging parameters on image analysis data quality. J Pathol Inform, 8, 39.Google Scholar
Pena, G.P., Andrade-Filho, J.S. (2009). How does a pathologist make a diagnosis? Arch Pathol Lab Med, 133, 124132.Google Scholar
Perkins, I.U. (2016). Error disclosure in pathology and laboratory medicine: a review of the literature. AMA J Ethics, 18, 809816.Google ScholarPubMed
Pinco, J., Goulart, R.A., Otis, C.N., Garb, J., Pantanowitz, L. (2009). Impact of digital image manipulation in cytology. Arch Pathol Lab Med, 133, 5761.Google Scholar
Privitera, C.M., Stark, L.W. (1998). Evaluating image processing algorithms that predict regions of interest. Patt Recog Lett, 19, 10371043.CrossRefGoogle Scholar
Raghunath, V., Braxton, M.O., Gagnon, S.A., Brunye, T.T., Allison, K.H., Reisch, L.M., Weaver, D.L., Elmore, J.G., Shapiro, L.G. (2012). Mouse cursor movement and eye tracking data as an indicator of pathologists’ attention when viewing digital whole slide images. J Pathol Inform, 3, 43.Google Scholar
Revie, W.C., Shires, M., Jackson, P., Brettle, D., Cochrane, R., Treanor, D. (2014). Color management in digital pathology. Anal Cell Pathol, 2014, 652757.Google Scholar
Rhoads, D.D., Habib-Bein, N.F., Hariri, R.S., Hartman, D.J., Monaco, S.E., Lesniak, A., Duboy, J., Salama, Mel-S., Pantanowitz, L. (2016). Comparison of the diagnostic utility of digital pathology systems for telemicrobiology. J Pathol Inform, 7, 10.Google Scholar
Roa-Peña, L., Gómez, F., Romero, E. (2010). An experimental study of pathologist’s navigation patterns in virtual microscopy. Diagn Pathol, 5, 71.CrossRefGoogle ScholarPubMed
Romo, D., Romero, E., Gonzalez, F. (2011). Learning regions of interest from low level maps in virtual microscopy. Diagn Pathol, 6, 522.CrossRefGoogle ScholarPubMed
Saha, A., Kelley, E.F., Badano, A. (2010). Accurate color measurement methods for medical displays. Med Phys, 37, 7481.Google Scholar
Sellaro, T.L., Filkins, R., Hoffman, C., Fine, J.L., Ho, J., Parwani, A., Pantanowitz, L., Montalto, M. (2013). Relationship between magnification and resolution in digital pathology systems. J Pathol Inform, 4, 21.Google Scholar
Shrestha, P, Hulsken, B. (2014). Color accuracy and reproducibility in whole slide imaging scanners. J Med Imag, 1, 027501.Google Scholar
Silverstein, L.D., Hashmi, S.F., Lang, K., Krupinski, E.A. (2012). Paradigm for achieving color reproduction accuracy in LCDs for medical imaging. J Soc Info Disp, 20, 5362.Google Scholar
Stålhammar, G., Fuentes Martinez, N., Lippert, M., Tobin, N.P., Mølholm, I., Kis, L., Rosin, G., Rantalainen, M., Pedersen, L., Bergh, J., Grunkin, M., Hartman, J. (2016). Digital image analysis outperforms manual biomarker assessment in breast cancer. Mod Pathol, 29, 318329.Google Scholar
Tiersma, E.S.M., Peters, A.A.W., Mooij, H.A., Fleuren, G.J. (2003). Visualising scanning patterns of pathologists in the grading of cervical intraepithelial neoplasia. J Clin Pathol, 56, 677680.CrossRefGoogle ScholarPubMed
Treanor, D., Lim, C.H., Magee, D., Bulpitt, A., Quirke, P. (2009). Tracking with virtual slides: a tool to study diagnostic error in histopathology. Histopathology, 55, 3745.Google Scholar
Vandenberghe, M.E., Scott, M.L., Scorer, P.W., Söderberg, M., Balcerzak, D., Barker, C. (2017). Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer. Sci Rep, 7, 45938.Google Scholar
Venjakob, A.C., Mello-Thoms, C. (2016). Review of prospects and challenges of eye tracking in volumetric imaging. J Med Imag, 3: 011002.Google Scholar
Webster, J.D., Dunstan, R.W. (2014). Whole-slide imaging and automated image analysis: considerations and opportunities in the practice of pathology. Vet Radiol, 51, 211223.Google ScholarPubMed
Weinstein, R.S., Graham, A.R., Lian, F., Braunhut, B.L., Barker, G.P., Krupinski, E.A., Bhattacharyya, A.K. (2012). Reconciliation of diverse telepathology system designs. Historic issues and implications for emerging markets and new applications. Acta Pathol Microbiol Immunol Scand, 120, 256275.CrossRefGoogle ScholarPubMed
Wilbur, D.C., Madi, K., Colvin, R.B., Duncan, L.M., Faquin, W.C., Ferry, J.A., Frosch, M.P., Houser, S.L., Kradin, R.L., Lauwers, G.Y., Louis, D.N., Mark, E.J., Mino-Kenudson, M., Misdraji, J., Nielsen, G.P., Pitman, M.B., Rosenberg, A.E., Smith, R.N., Sohani, A.R., Stone, J.R., Tambouret, R.H., Wu, C.L., Young, R.H., Zembowicz, A., Klietmann, W. (2009). Whole-slide imaging digital pathology as a platform for teleconsultation: a pilot study using paired subspecialist correlations. Arch Pathol Lab Med, 133, 19491953.Google Scholar
Woolgar, J.A., Triantafyllou, A., Thompson, L.D.R., Hunt, J.L., Lewis, J.S., et al. (2014). Double reporting and second opinion in head and neck pathology. Eur Arch Oto-Rhino-Laryngol, 271, 847854.CrossRefGoogle ScholarPubMed
Yagi, Y. (2011). Color standardization and optimization in whole slide imaging. Diagn Pathol, 6, 115.Google Scholar

References

Bashshur, R.L., Krupinski, E.A., Thrall, J.H., Bashshur, N. (2016). The empirical foundations of teleradiology and related applications: a review of the evidence. Telemed J eHealth, 22, 868898.Google Scholar
Drew, T., Vo, M.L., Olwal, A., Jacobson, F., Seltzer, S.E., Wolfe, J.M. (2013). Scanners and drillers: characterizing expert visual search through volumetric images. J Vision, 13, 3.CrossRefGoogle ScholarPubMed
Evans, K., Birdwell, R.L., Wolfe, J.M. (2013). If you don’t find it often, you often don’t find it: why some cancers are missed in breast cancer screening. PLoS One, 8, e64366.CrossRefGoogle ScholarPubMed
Gallagher, A., Bowden, L., Faulkner, R., et al. (2016). “The times they are a changing” for quality assurance testing in diagnostic radiology. Eur J Med Phys, 32, 426.Google Scholar
Gilbert, F.J., Tucker, L., Young, K.C. (2016). Digital breast tomosynthesis (DBT): a review of the evidence for use as a screening tool. Clin Radiol, 71, 141150.CrossRefGoogle ScholarPubMed
Holzman, D.C. (2010). What’s in a color? The unique human health effects of blue light. Environ Health Perspect, 118, A22–A27.CrossRefGoogle Scholar
Jacobson, F.L., Berlanstein, B.P., Andriole, K.P. (2006). Paradigms of perception in clinical practice. J Am Coll Radiol, 3, 441445.Google Scholar
Krupinski, E.A., Berbaum, K.S. (2000). The Medical Image Perception Society update on key issues for image perception research. Radiology, 253, 230233.Google Scholar
Lowe, A.S., Kay, C.L. (2014). Recent developments in CT: a review of the clinical applications and advantages of multidetector computed tomography. Imaging, 18, 62–67.Google Scholar
Mallet, S., Phillips, P., Fanshawe, T.R., Helbren, E., et al. (2014). Tracking eye gaze during interpretation of endoluminal three-dimensional CT colonography: visual perception of experienced and inexperienced readers. Radiology, 273, 783792.Google Scholar
Mammography Quality Standards Act. (1992). Available at: www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandards ActandProgram/ (accessed November 8, 2017).Google Scholar
Medicare Access and CHIP Reauthorization Act of 2015. (2015). Available at: www.healthit.gov/sites/default/files/macra_health_it_fact_sheet_final.pdf (accessed November 8, 2017).Google Scholar
Mettler, F.A., Bhargavan, M., Faulkner, K., Gilley, D.B., Gray, J.E., Ibbott, G.S. et al. (2009). Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources – 1950–2007. Radiology, 253, 520531Google Scholar
Pinto, A., Brunese, L. (2010). Spectrum of diagnostic errors in radiology. World J Radiol, 2, 377383.Google Scholar
Reicher, M., Wolfe, J.M. (2016). Let’s use cognitive science to create collaborative workstations. J Am Coll Radiol, 13, 571575.Google Scholar
Seltzer, S.E., Judy, P.F., Adams, D.F., Jacobson, F.L., Stark, P., Kikinis, R., Swensson, R.G., et al. (1995). Spiral CT of the chest: comparison of cine and film-based viewing. Radiology, 197, 7378.Google Scholar
Smith, S.M. (2014). Overview of fMRI analysis. Imaging, 77, S167–S175.Google Scholar
Thomas, A.M.K., Banerjee, A.K. (2013). The History of Radiology. Cary, NC: Oxford University Press.Google Scholar
US Preventive Services Task Force. (2016). Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA, 315, 25642575.CrossRefGoogle Scholar
Wood, B.P. (1999). Visual expertise. Radiology, 211, 13.CrossRefGoogle ScholarPubMed

References

Krupinski, E.A., Kundel, H.L. (1998). Update on long-term goals for medical image perception research. Acad Radiol, 5, 629633.Google Scholar
Krupinski, E.A., Kundel, H.L., Judy, P.F., Nodine, C.F. (1998). The Medical Image Perception Society: key issues for image perception research. Radiology, 209, 611612.Google Scholar
Kundel, H.L. (1995). Medical image perception. Acad Radiol, 2, S108–S110.CrossRefGoogle ScholarPubMed
Zerhouni, E.A. (2008). Major trends in imaging sciences: 2007 Eugene P. Pendergrass New Horizons lecture. Radiology, 249, 403409.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×