Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T10:59:18.263Z Has data issue: false hasContentIssue false

Denjoy subsystems and horseshoes

Published online by Cambridge University Press:  10 May 2024

Albert Fathi
Affiliation:
Georgia Institute of Technology
Philip J. Morrison
Affiliation:
University of Texas, Austin
Tere M-Seara
Affiliation:
Universitat Politècnica de Catalunya, Barcelona
Sergei Tabachnikov
Affiliation:
Pennsylvania State University
Get access

Summary

We introduce a notion of weak Denjoy subsystem (WDS) that generalizes the Aubry–Mather–Cantor sets to diffeomorphisms of manifolds. We explain how a rotation number can be associated to such a WDS. Then we build in any horseshoe a continuous one parameter family of such WDS that is indexed by its rotation number. Looking at the inverse problem in the setting of Aubry– Mather theory, we also prove that for a generic conservative twist map of the annulus, the majority of the Aubry–Mather sets are contained in some horseshoe that is associated to an Aubry–Mather set with a rational rotation number.

Type
Chapter
Information
Hamiltonian Systems
Dynamics, Analysis, Applications
, pp. 1 - 28
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnaud, M.-C., “Hyperbolicity for conservative twist maps of the 2-dimensional annulus”, Publ. Mat. Urug. 16 (2016), 139.Google Scholar
Arnaud, M.-C. and Le Calvez, P., “A notion of Denjoy sub-system”, C. R. Math. Acad. Sci. Paris 355:8 (2017), 914919.CrossRefGoogle Scholar
Aubry, S. and Le Daeron, P. Y., “The discrete Frenkel–Kontorova model and its extensions, I: Exact results for the ground-states”, Phys. D 8:3 (1983), 381422.CrossRefGoogle Scholar
Bangert, V., “Mather sets for twist maps and geodesics on tori”, pp. 1–56 in Dynamics reported, vol. 1, Dynam. Report. Ser. Dynam. Systems Appl. 1, Wiley, Chichester, 1988.Google Scholar
Bousch, T., “Le poisson n’a pas d’arêtes”, Ann. Inst. H. Poincaré Probab. Statist. 36:4 (2000), 489508.CrossRefGoogle Scholar
Boyland, P., “Weak disks of Denjoy minimal sets”, Ergodic Theory Dynam. Systems 13:4 (1993), 597614.CrossRefGoogle Scholar
Burns, K. and Weiss, H., “A geometric criterion for positive topological entropy”, Comm. Math. Phys. 172:1 (1995), 95118.CrossRefGoogle Scholar
Chenciner, A., “La dynamique au voisinage d’un point fixe elliptique conservatif: de Poincaré et Birkhoff à Aubry et Mather”, exposé 622, pp. 147170 in Séminaire Bourbaki, 1983/1984, Astérisque 121-122, Soc. Mat. de France, Paris, 1985.Google Scholar
Fathi, A., “Expansiveness, hyperbolicity and Hausdorff dimension”, Comm. Math. Phys. 126:2 (1989), 249262.CrossRefGoogle Scholar
Fogg, N. P., Substitutions in dynamics, arithmetics and combinatorics, edited by Berthé, V. et al., Lecture Notes in Mathematics 1794, Springer, 2002.CrossRefGoogle Scholar
Goroff, D. L., “Hyperbolic sets for twist maps”, Ergodic Theory Dynam. Systems 5:3 (1985), 337339.CrossRefGoogle Scholar
Hedlund, G. A., “Sturmian minimal sets”, Amer. J. Math. 66 (1944), 605620.CrossRefGoogle Scholar
Herman, M.-R., “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5233.CrossRefGoogle Scholar
Herman, M.-R., Sur les courbes invariantes par les difféomorphismes de l’anneau, Vol. 1, Astérisque 103, Société Mathématique de France, Paris, 1983.Google Scholar
Hockett, K. and Holmes, P., “Josephson’s junction, annulus maps, Birkhoff attractors, horseshoes and rotation sets”, Ergodic Theory Dynam. Systems 6:2 (1986), 205239.CrossRefGoogle Scholar
Katok, A., “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137173.CrossRefGoogle Scholar
Katok, A. and Hasselblatt, B., Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, 1995.CrossRefGoogle Scholar
Le Calvez, P., “Propriétés dynamiques des régions d’instabilité”, Ann. Sci. École Norm. Sup. (4) 20:3 (1987), 443464.CrossRefGoogle Scholar
Le Calvez, P., “Les ensembles d’Aubry–Mather d’un difféomorphisme conservatif de l’anneau déviant la verticale sont en général hyperboliques”, C. R. Acad. Sci. Paris Sér. I Math. 306:1 (1988), 5154.Google Scholar
Le Calvez, P. and Tal, F., “Topological horseshoes for surface homeomorphisms”, Duke Math. J. 171:12 (2022), 25192626.CrossRefGoogle Scholar
Markley, N. G., “Homeomorphisms of the circle without periodic points”, Proc. London Math. Soc. (3) 20 (1970), 688698.CrossRefGoogle Scholar
Mather, J. N., “Existence of quasiperiodic orbits for twist homeomorphisms of the annulus”, Topology 21:4 (1982), 457467.CrossRefGoogle Scholar
Mather, J. N., “More Denjoy minimal sets for area preserving diffeomorphisms”, Comment. Math. Helv. 60:4 (1985), 508557.CrossRefGoogle Scholar
Moise, E. E., Geometric topology in dimensions 2 and 3, Graduate Texts in Mathematics 47, Springer, 1977.CrossRefGoogle Scholar
Morse, M. and Hedlund, G. A., “Symbolic dynamics, II: Sturmian trajectories”, Amer. J. Math. 62 (1940), 142.CrossRefGoogle Scholar
Palis, J., Jr. and Takens, F., Homoclinic bifurcations and hyperbolic dynamics, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1987.Google Scholar
Smale, S., “Diffeomorphisms with many periodic points”, pp. 6380 in Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, 1965.CrossRefGoogle Scholar
Yoccoz, J.-C., “Introduction to hyperbolic dynamics”, pp. 265291 in Real and complex dynamical systems (Hillerød, 1993), edited by Branner, B. and Hjorth, P., NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 464, Kluwer Acad. Publ., Dordrecht, 1995.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×