Published online by Cambridge University Press: 15 April 2019
These notes are devoted to lattices in products of trees and related topics. They provide an introduction to the construction, by M. Burger and S. Mozes, of examples of such lattices that are simple as abstract groups. Two features of that construction are emphasized: the relevance of non-discrete locally compact groups, and the two-step strategy in the proof of simplicity, addressing separately, and with completely different methods, the existence of finite and infinite quotients. A brief history of the quest for finitely generated and finitely presented infinite simple groups is also sketched. A comparison with Margulis’ proof of Kneser’s simplicity conjecture is discussed, and the relevance of the Classification of the Finite Simple Groups is pointed out. A final chapter is devoted to finite and infinite quotients of hyperbolic groups and their relation to the asymptotic properties of the finite simple groups. Numerous open problems are discussed along the way.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.