Published online by Cambridge University Press: 05 July 2011
Abstract
Every finite group acts as a group of automorphisms of some compact bordered Klein surface of algebraic genus g ≥ 2. The same group G may act on different genera and so it is natural to look for the minimum genus on which G acts. This is the minimum genus problem for the group G. On the other hand, for a fixed integer g ≥ 2, there are finitely many abstract groups acting as a group of automorphisms of some compact bordered Klein surface of algebraic genus g. The condition g ≥ 2 assures that all such groups are finite. So it makes sense to look for the largest order of groups G acting on some surface of genus g when g is fixed and G runs over a prescribed family F of groups. This is the maximum order problem for the family F. There is a significant amount of research dealing with these two problems (or with some of their variations), and the corresponding results are scattered in the literature. The purpose of this survey is to gather some of these results, paying special attention to important families of finite groups.
Introduction
A natural extension of the definition of a compact Riemann surface, which is orientable and has no boundary, is to allow dianalytic transition functions, that is, functions which are either analytic or the composite of complex conjugation with an analytic function.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.