Published online by Cambridge University Press: 20 April 2010
Abstract
A square matrix over the complex field with non-negative integral trace is called a quasi-permutation matrix. For a finite group G the minimal degree of a faithful permutation representation of G is denoted by p(G). The minimal degree of a faithful representation of G by quasi-permutation matrices over the rationals and the complex numbers are denoted by q(G) and c(G) respectively. Finally r(G) denotes the minimal degree of a faithful rational valued complex character of G. In this paper p(G), q(G), c(G) and r(G) are calculated for the group G2(qn), q ≠ 3.
AMS Classification: 20C15
Keywords: General linear group, Quasi-permutation.
Introduction
Let G be a finite linear group of degree n, that is, a finite group of automorphisms of an n-dimensional complex vector space. We shall say that G is a quasi-permutation group if the trace of every element of G is a non-negative rational integer. The reason for this terminology is that, if G is a permutation group of degree n, its elements, considered as acting on the elements of a basis of an n-dimensional complex vector space V, induce automorphisms of V forming a group isomorphic to G. The trace of the automorphism corresponding to an element x of G is equal to the number of letters left fixed by x and so is a non-negative integer.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.