Published online by Cambridge University Press: 07 May 2010
Abstract
We investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the simple Mathieu group M11. As a consequence, for this group we confirm the conjecture by Kimmerle about prime graphs.
Introduction and main results
Let V (ℤG) be the normalized unit group of the integral group ring ℤG of a finite group G. The following famous conjecture was formulated by H. Zassenhaus in [15]:
Conjecture 1 (ZC) Every torsion unit u ∈ V(ℤG) is conjugate within the rational group algebra ℚG to an element of G.
This conjecture is already confirmed for several classes of groups but, in general, the problem remains open, and a counterexample is not known.
Various methods have been developed to deal with this conjecture. One of the original ones was suggested by I. S. Luthar and I. B. S. Passi [12, 13], and it was improved further by M. Hertweck [9]. Using this method, the conjecture was proved for several new classes of groups, in particular for S5 and for some finite simple groups (see [4, 9, 10, 12, 13]).
The Zassenhaus conjecture appeared to be very hard, and several weakened variations of it were formulated (see, for example, [3]). One of the most interesting modifications was suggested by W. Kimmerle [11]. Let us briefly introduce it now.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.