Book contents
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Subgroups which are a union of a given number of conjugacy classes
Published online by Cambridge University Press: 11 January 2010
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Summary
Abstract
In [11] and [12] Shahryari and Shahabi investigated the structure of finite groups containing a normal subgroup which is a union of two or three conjugacy classes. In [13] Riese and Shahabi investigated the similar problem for normal subgroups which are a union of four conjugacy classes. In [2], we investigated the structure of finite non-perfect groups in which every non-trivial proper normal subgroup is a union of n conjugacy classes, for a given integer n.
In this survey paper we report these results and investigate some new problems.
2000 Mathematics Subject Classification: 20E34, 20D10.
Keywords and phrases: Conjugacy class, normal subgroup
Introduction
Let G be a finite group and h be a non-central element of G. Following Shahryari and Shahabi [11], we say that a normal subgroup H of the group G is a small subgroup if H = 1 ∪ ClG(h), in which ClG(h) denotes the G-conjugacy class containing h. It is easy to see that H ≤ G′ and |H|(|H| − 1) ||G|. Moreover, H is an elementary abelian normal subgroup of G.
In [11], Shahryari and Shahabi studied the structure of finite centerless groups in which G′, the derived subgroup of G, is a small subgroup. They proved that:
Theorem 1.1 (Shahryari and Shahabi [11]) Let G be a finite centerless group and G′ be a small subgroup of G. Then:
(a) G is a Frobenius group with kernel G′ and its kernel is abelian.
(b) G has exactly one irreducible non-linear character χ.
[…]
- Type
- Chapter
- Information
- Groups St Andrews 2001 in Oxford , pp. 22 - 26Publisher: Cambridge University PressPrint publication year: 2003
- 1
- Cited by