Book contents
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
On dual pronormal subgroups and Fitting classes
Published online by Cambridge University Press: 11 January 2010
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Summary
Introduction
All groups considered in this note are finite.
The analysis of the possible embedding properties of the subgroups in a group is a first way of entering into its structure. Normality and subnormality are the most elementary ones. From the study of conjugacy classes of subgroups the property of pronormality arises. A subgroup H of a group G is said to be pronormal in G if, for every element g of G, H and Hg are conjugated in their join 〈H,Hg〉. In [17] it was proved that in fact this condition is equivalent to their conjugacy in 〈H,Hg〉N, the smallest normal subgroup of 〈H,Hg〉 with nilpotent factor group. This fact motivated the concept of dual pronormality. A subgroup H of a group G is said to be dual pronormal in G if, for every element g of G, F(〈H,Hg〉), the Fitting subgroup of 〈H,Hg〉, is contained in H. This property emerges both as a weaker condition than normality and as a dual concept to pronormality. Its influence on the structure of the groups was initially studied in a series of papers ([4], [5], [6]). Dual pronormal subgroups are close to N-injectors, for the class N of nilpotent groups, and, in this study, groups containing several relevant classes of dual pronormal subgroups were also taken into consideration. This development shows how far dual pronormality is from normality and subnormality and how dual pronormality can provide additional information.
- Type
- Chapter
- Information
- Groups St Andrews 2001 in Oxford , pp. 92 - 100Publisher: Cambridge University PressPrint publication year: 2003