Published online by Cambridge University Press: 15 December 2009
Abstract
In the present paper we start to study the soluble groups in which every non-subnormal subgroup has finite special rank.
Introduction
Let G be a group, Lnon–sn(G) the set of all non-subnormal subgroups of G. If Lnon–sn(G) = Ø then we obtain a group, every subgroup of which is subnormal. The study of these groups was very fruitful and has brought many interesting results (see the books [12], [13], [8]). The groups G in which the set Lnon–sn(G) is “very small” in some sense is the natural next consideration. For many domains of Infinite Group Theory “to be very small” means to satisfy some finiteness conditions. The first natural finiteness conditions in Group Theory were the classical minimal and maximal conditions. The groups with minimal condition for non-subnormal subgroups have been considered by S. Franciosi and F. de Giovanni [1]. The groups with dual maximal condition for non-subnormal subgroups have been studied by L.A. Kurdachenko and H. Smith [4]. The groups with maximal condition for non-subnormal subgroups is nearly allied to the groups, in which the set Lnon–sn(G) consists only of the finitely generated subgroups. Such groups have been considered. The results of papers [1], [4] have been extended on groups with weak minimal and maximal condition on non-subnormal subgroups [5], [6]. The weak minimal and maximal conditions are connected with the concept of special rank (or Mal'tsev-Prüfer rank).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.