Book contents
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Computations with almost-crystallographic groups
Published online by Cambridge University Press: 11 January 2010
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Summary
Abstract
Recently, algorithmic approaches to construct and investigate almost crystallographic groups and a library of almost crystallographic groups of small Hirsch length have been made available in the Aclib package of Gap. Here we present a survey of these methods and we illustrate a variety of their applications.
Introduction
Almost crystallographic groups have first been discussed in the theory of actions on connected and simply connected nilpotent Lie groups L. In this setting L ⋊ Aut(L) acts affinely on L via l(m,α) = lα · m for l,m ∈ L and α ∈ Aut(L). If C is a maximal compact subgroup of Aut(L), then a subgroup G of L⋊C is almost crystallographic if the action of G on L is properly discontinuous and the quotient space L/G is compact. Almost crystallographic groups can also be characterized as those finitely generated nilpotent-by-finite groups whose normal torsion subgroup is trivial. One of the most fundamental observations on almost crystallographic groups is that for a given finitely generated torsion-free nilpotent group N there exist only finitely many almost crystallographic groups having N as Fitting subgroup. This property can be used as a basis for a classification of almost crystallographic groups. In fact, in [2] this approach has been exploited to determine a library of almost crystallographic groups of Hirsch length at most 4. Recently, this library of almost crystallographic groups has been made available in electronic form in the package Aclib [3] of the computer algebra system Gap [20].
- Type
- Chapter
- Information
- Groups St Andrews 2001 in Oxford , pp. 110 - 119Publisher: Cambridge University PressPrint publication year: 2003
- 1
- Cited by