Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T07:09:24.971Z Has data issue: false hasContentIssue false

Non-positive curvature in group theory

Published online by Cambridge University Press:  05 August 2013

M R Bridson
Affiliation:
Mathematical Institute
C. M. Campbell
Affiliation:
University of St Andrews, Scotland
E. F. Robertson
Affiliation:
University of St Andrews, Scotland
N. Ruskuc
Affiliation:
University of St Andrews, Scotland
G. C. Smith
Affiliation:
University of Bath
Get access

Summary

Abstract

This article is an edited account of the four lectures that I gave at the Groups St Andrews meeting in Bath during the summer of 1997. The aim of these lectures was to introduce an audience of group theorists, with varying backgrounds, to the role that non-positive curvature plays in the theory of discrete groups. A few new results are included, but basically this is an expository article aimed as non-experts. These notes do not constitute a comprehensive survey of curvature in group theory. Nevertheless, I hope that they give the reader a substantial and enticing taste of this active area of research.

Introduction

In the last fifteen years the close connection between geometry and combinatorial group theory, which was at the heart of the pioneering work of Dehn [52], has re-emerged as a central theme in the study of infinite groups. Thus combinatorial group theory has been joined by (and to a large extent has merged with) what has become known as geometric group theory — this is the broad context of these lectures. My basic goal will be to illustrate how various notions of non-positive curvature can be used to illuminate and solve a range of group theoretic problems. I shall also attempt to illustrate how group theory can serve as a potent tool for exploring the geometry of non-positively curved spaces.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×