Published online by Cambridge University Press: 07 September 2010
Introduction
In, the “bimonster” (the wreathed square of the Fischer-Griess monster group) was studied in terms of its representation as a quotient of a certain infinite Coxeter group. Here we shall use the representation of this Coxeter group as a hyperbolic reflection group to investigate both the bimonster and its subgroup 3Fi24.
Throughout the paper, we shall use the notation of for group structures. In section 1, we give a simple axiomatic definition of a group G, and deduce that G is generated by 16 involutions that satisfy the Coxeter relations of Figure 1. This allows us to represent them in Section 2 by reflections in certain vectors of a hyperbolic space (that is, a space with a Lorentzian metric).
This notation makes it easy to perform calculations with these elements. In Section 2, we shall find some relations that must hold in G, but are not consequences of the Coxeter relations, and will use these to establish many identities in G, which we express in terms of alias groups.
Our section 4 contains a short proof of the 26 node theorem of.
The remainder of the paper is devoted to the subgroup Y552 of G, which we shall show has the structure 3Fi24. By way of introduction, Section 5 is used to show that the smaller group Y551 has structure, by completely enumerating its root vectors. In Section 6, we describe the root vectors for 3Fi24, and compute the corresponding alias groups.
A certain element ωis defined in Section 7, and shown to generate a normal subgroup of order 3 in Y552.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.