Published online by Cambridge University Press: 12 May 2010
Introduction
In 1926 Hermann Weyl published a paper that contains his character formula for irreducible finite dimensional complex representations of complex and real semi-simple Lie groups and their Lie algebras. It can also be interpreted as a character formula for connected compact groups and for semi-simple algebraic groups in characteristic 0. (Here I am using modern terminology; when Weyl wrote his paper, terms like “Lie groups” were not yet in use.)
When we look at Weyl's character formula as a statement for Lie algebras, then it is a theorem on purely algebraic objects. However, Weyl used analytic methods to prove it. Not surprisingly, people looked for algebraic proofs. These attempts were finally successful and led also to useful reformulations of Weyl's formula. This development will be described in the first section of this survey.
The other topic to be discussed will be the search for analogues to Weyl's formula in more general cases. To start with, a finite dimensional complex semi-simple Lie algebra has an abundance of irreducible representations that are infinite dimensional. It was natural to look for character formulae for at least some families of representations sharing features of the finite dimensional ones — for example those generated by a highest weight vector.
Furthermore, it was also natural to go beyond finite dimensional complex semi-simple Lie algebras. There are several algebraic objects that share many structural features with these Lie algebras and that have similar representation theories.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.