Published online by Cambridge University Press: 07 September 2010
This book is concerned with the theory of gravity–capillary free-surface flows. Free-surface flows are flows bounded by surfaces that have to be found as part of the solution. A canonical example is that of waves propagating on a water surface, the latter in this case being the free surface.
Many other examples of free-surface flows are considered in the book (cavitating flows, free-surface flows generated by moving disturbances, rising bubbles etc.). I hope to convince the reader of the beauty of such problems and to elucidate some mathematical challenges faced when solving them. Both analytical and numerical methods are presented. Owing to space limitations, some topics could not be covered. These include interfacial flows and the effects of viscosity, compressibility and surfactants. Some further developments of the theories described in the book can be found in the list of references.
Many results presented in the book have grown out of my research over the last 35 years and, of course, out of the research of the whole fluid mechanics community. References to the original papers are given. For this book, I have repeated the older numerical calculations with larger numbers of grid points than was possible at the time. I am pleased to report that the new results are in agreement with the earlier ones!
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.