Skip to main content Accessibility help
×
  • Cited by 77
Publisher:
Cambridge University Press
Online publication date:
September 2010
Print publication year:
2010
Online ISBN:
9780511730276

Book description

Free surface problems occur in many aspects of science and of everyday life such as the waves on a beach, bubbles rising in a glass of champagne, melting ice, pouring flows from a container and sails billowing in the wind. Consequently, the effect of surface tension on gravity-capillary flows continues to be a fertile field of research in applied mathematics and engineering. Concentrating on applications arising from fluid dynamics, Vanden-Broeck draws upon his years of experience in the field to address the many challenges involved in attempting to describe such flows mathematically. Whilst careful numerical techniques are implemented to solve the basic equations, an emphasis is placed upon the reader developing a deep understanding of the structure of the resulting solutions. The author also reviews relevant concepts in fluid mechanics to help readers from other scientific fields who are interested in free boundary problems.

Reviews

'There is no doubt that this volume would determine fruitful directions for future advanced study and research. So, this is an outstanding contribution of the author who spent a considerable amount of time and energy to write such a useful monograph.'

Source: Zentralblatt MATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[1] Acheson, D. J. 1990, Elementary Fluid DynamicsOxford University Press.
[2] Ackerberg, R. C. 1975, The effects of capillarity on free-streamline separation. J. Fluid Mech. 70, 333–352.
[3] Akylas, T. R. 1993, Envelope solitons with stationary crests. Phys. Fluids A 5, 789–791.
[4] Akylas, T. R. & Grimshaw, R. 1992, Solitary internal waves with oscillatory tails. J. Fluid Mech. 242, 279–298.
[5] Amick, C. J., Fraenkel, L. E. & Toland, J. F. 1982, On the Stokes conjecture and the wave of extreme form. Acta Math. 148, 193–214.
[6] Anderson, C. D. & Vanden-Broeck, J.-M. 1996, Bow flows with surface tension. Proc. Roy. Soc. Lond. A 452, 1985–1997.
[7] Asavanant, J. & Vanden-Broeck, J.-M. 1994, Free-surface flows past a surface-piercing object of finite length. J. Fluid. Mech. 273, 109–124.
[8] Batchelor, G. K.Fluid Dynamics. Cambridge University Press, 615 pp.
[9] Baker, G., Meiron, D. & Orszag, S. 1982, Generalised vortex methods for free surface flow problemsJ. Fluid Mech. 123, 477–501.
[10] Beale, T. J. 1991, Solitary water waves with capillary ripples at infinity. Comm. Pure Appl. Maths 64, 211–257.
[11] Benjamin, B. 1956, On the flow in channels when rigid obstacles are placed in the stream. J. Fluid Mech. 1, 227–248.
[12] Benjamin, B. 1962, The solitary wave on a stream with arbitrary distribution of vorticity. J. Fluid Mech. 12, 97–116.
[13] Billingham, J. & King, A. C. 2000, Wave Motion. Cambridge University Press.
[14] Binder, B. J., Dias, F. & Vanden-Broeck, J.-M. 2005, Forced solitary waves and fronts past submerged obstacles. Chaos 15, 037106.
[15] Binder, B. J. & Vanden-Broeck, J.-M. 2005, Free surface flows past surfboards and sluice gates. Euro. J. Appl. Math. 16, 601–619.
[16] Binder, B. J. & Vanden-Broeck, J.-M. 2007, The effect of disturbances on the flows under a sluice gate and past an inclined plate. J. Fluid Mech. 576, 475–490.
[17] Binnie, A. M. 1952, The flow of water under a sluice gate. Q. J. Mech. Appl. Math. 5, 395–407.
[18] Birkhoff, G. & Carter, D. 1957, Rising plane bubbles. J. Math. Phys. 6 769–779.
[19] Birkhoff, G. & Zarantonello, E. 1957, Jets, Wakes and CavitiesAcademic Press, 353 pp.
[20] Blyth, M. G. & Vanden-Broeck, J.-M. 2004, New solutions for capillary waves on fluid sheets. J. Fluid Mech. 507, 255–264.
[21] Blyth, M. G. & Vanden-Broeck, J.-M. 2005, New solutions for capillary waves on curved sheets of fluids. IMA J. Appl. Math. 70, 588–601.
[22] Brillouin, M. 1911, Les surfaces de glissement de Helmoltz at la résistance des fluides. Ann. de Chim. Phys. 23, 145–230.
[23] Brodetsky, S. 1923, Discontinuous fluid motion past circular and elliptic cylinders. Proc. Roy. Soc. London A 102, 1–14.
[24] Budden, P. & Norbury, J. 1982, Uniqueness of free boundary flows under gravity. Arch. Rat. Mech. Anal. 78, 361–380.
[25] Byatt-Smith, J. G. B. & Longuet-Higgins, M. S. 1976, On the speed and profile of steep solitary waves. Proc. Roy. Soc. London. A 350, 175–189.
[26] Champneys, A. R., Vanden-Broeck, J.-M. & Lord, G. J. 2002, Do true elevation gravity–capillary solitary waves exist? A numerical investigation. J. Fluid Mech. 454, 403–417.
[27] Chen, B. & Saffman, P. G. 1979, Steady gravity–capillary waves on deep water, Part I: Weakly nonlinear waves. Stud. Appl. Math. 60, 183–210.
[28] Chen, B. & Saffman, P. G. 1980a, Numerical evidence for the existence of new types of gravity waves on deep water. Stud. Appl. Math. 62, 1–21.
[29] Chen, B. & Saffman, P. G. 1980b, Steady gravity–capillary waves on deep water, Part II: Numerical results for finite amplitude. Stud. Appl. Math. 62, 95–111.
[30] Chung, Y. K. 1972, Solution of flow under a sluice gates. ASCE J. Eng. Mech. Div. 98, 121–140.
[31] Cokelet, E. D. 1977, Steep gravity waves in water of arbitrary uniform depth, Phil. Trans. Roy. Soc. London A 286, 183–230.
[32] Collins, R. 1965, A simple model of a plane gas bubble in a finite liquid. J. Fluid Mech. 22, 763–771.
[33] Concus, P. 1962, Standing capillary–gravity waves of finite amplitude. J. Fluid Mech. 14, 568–576.
[34] Concus, P. 1964, Standing capillary–gravity waves of finite amplitude: Corrigendum. J. Fluid Mech. 19, 264–266.
[35] Cooker, M. J., Weidman, P. D. & Bale, D. S. 1997, Reflection of a high-amplitude solitary wave at a vertical wall. J. Fluid Mech. 342, 141–158.
[36] Couët, B. & Strumolo, G. S. 1987, The effects of surface tension and tube inclination on a two-dimensional rising bubble. J. Fluid Mech. 213, 1–14.
[37] Crapper, G. D. 1957, An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech. 2, 572–540.
[38] Crowdy, D. G. 1999, Exact solutions for steady capillary waves on a fluid annulus. J. Nonlinear Sci. 9, 615–640.
[39] Cumberbatch, E. & Norbury, J. 1979, Capillarity modification of the singularity at a free-streamline separation point. Q. J. Mech. Appl. Math. 32, 303–312.
[40] Dagan, G. & Tulin, M. P. 1972, Two-dimensional free surface gravity flows past blunt bodies. J. Fluid Mech. 51, 529–543.
[41] Davies, T. V. 1951, Theory of symmetrical gravity waves of finite amplitude. Proc. Roy. Soc. London A 208, 475–486.
[42] Dias, F. & Iooss, G. 1993, Capillary–gravity solitary waves with damped oscillations. Physica D 65, 399–423.
[43] Dias, F. & Kharif, C. 1999, Nonlinear gravity and capillary–gravity waves. Ann. Rev. Fluid Mech. 31, 301–346.
[44] Dias, F., Menasce, D. & Vanden-Broeck, J.-M. 1996, Numerical study of capillary–gravity solitary waves. Eur. J. Mech. B – Fluids 15, 17–36.
[45] Dias, F. & Vanden-Broeck, J.-M. 1989, Open channel flows with submerged obstructions. J. Fluid Mech. 206, 155–170.
[46] Dias, F. & Vanden-Broeck, J.-M. 1992, Solitary waves in water of infinite depth and related free surface flows. J. Fluid Mech. 240, 549–557.
[47] Dias, F. & Vanden-Broeck, J.-M. 1993, Nonlinear bow flows with splashes. J. Fluid Mech. 255, 91–102.
[48] Dias, F. & Vanden-Broeck, J.-M. 2002, Generalized critical free-surface flows. J. Eng. Math. 42, 291–301.
[49] Dias, F. & Vanden-Broeck, J.-M. 2004a, Trapped waves between submerged obstacles. J. Fluid Mech. 509, 93–102.
[50] Dias, F. & Vanden-Broeck, J.-M. 2004b, Two-layer hydraulic falls over an obstacle. Eur. J. Mech. B – Fluids 23, 879–898.
[51] Dingle, R. B. 1973, Asymptotic Expansions: Their Derivation and Interpretation. Academic Press.
[52] Eggers, J. 1995, Theory of drop formation. Phys. Fluids 7, 941–953.
[53] Evans, W. A. B. & Ford, M. J. 1996, An exact integral equation for solitary waves (with new numerical results for some ‘internal’ properties). Proc. Roy. Soc. London A 452, 373–390.
[54] Fangmeier, D. D. & Strelkoff, T. S. 1968, Solution for gravity flow under a sluice gate. ASCE J. Eng. Mech. Div. 94, 153–176.
[55] Forbes, L.-K. 1981, On the resistance of a submerged semi-elliptical body. J. Eng. Math. 15, 287–298.
[56] Forbes, L.-K. 1983, Free surface flow over a semicircular obstruction including the influence of gravity and surface tension. J. Fluid Mech. 127, 283–297.
[57] Forbes, L.-K. 1988, Critical free-surface flow over a semi-circular obstruction. J. Eng. Math. 22, 3–13.
[58] Forbes, L. K 1989, An algorithm for 3-dimensional free-surface problems in hydrodynamics. J. Comput. Phys. 82, 330–347.
[59] Forbes, L. K. & Schwartz, L. W. 1982, Free-surface flow over a semicircular obstruction. J. Fluid Mech. 114, 299–314.
[60] Forbes, L. K. & Hocking, G. C. 1990, Flow caused by a point sink in a fluid having a free surface. J. Austral. Math. Soc. Ser. B 32, 231–249.
[61] Friedrics, K. O. & Hyers, D. H. 1954, The existence of solitary waves. Comm. Pure Appl. Math. 7, 517–550.
[62] Garabedian, P. R. 1957, On steady state bubbles generated by Taylor instability. Proc. Roy. Soc. London A 241, 423–431.
[63] Garabedian, P. R. 1985, A remark about pointed bubbles. Comm. Pure Appl. Math. 38, 609–612.
[64] Gleeson, H., Papageorgiou, D. T. & Vanden-Broeck, J.-M. 2007, A new application of the Korteweg–de-Vries Benjamin–Ono equation in interfacial electrohydrodynamics. Phys. Fluids 19, 031703.
[65] Grandison, S. & Vanden-Broeck, J.-M. 2006, Truncation methods for gravity capillary free surface flows. J. Eng. Math. 54, 89–97.
[66] Grilli, S. T., Guyenne, P. & Dias, F. 2001, A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. Int. J. Numer. Meth. Fluids 35, 829–867.
[67] Grimshaw, R. H. J. & Smyth, N. 1986, Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429–464.
[68] Groves, M. D. & Sun, M. S. 2008, Fully localised solitary-wave solutions of the three-dimensional gravity–capillary water-wave problem. Arch. Rat. Mech. Anal. 188. 1–91.
[69] Gurevich, M. 1965, Theory of Jets and Ideal Fluids. Academic Press, 585 pp.
[70] Havelock, T. H. 1919, Periodic irrotational waves of finite amplitude. Proc. Roy. Soc. London Ser. A 95, 38–51.
[71] Helmholtz, H. 1868, Über discontinuierliche Flüssigkeitsbewegungen. Monatsber, Berlin Akad., 215–228, reprinted in Phil. Mag.36, 337–346.
[72] Hocking, G. C. & Vanden-Broeck, J.-M. 1997, Draining of a fluid of finite depth into a vertical slot. Applied Math. Modelling 21, 643–649.
[73] Hocking, G. C., Vanden-Broeck, J.-M. & Forbes, L. K. 2002, A note on withdrawal from a fluid of finite depth through a point sink. ANZIAM J. 44, 181–191.
[74] Hogan, S. J. 1980, Some effects of surface tension on steep water waves. Part 2. J. Fluid Mech. 96, 417–445.
[75] Hunter, J. K. & Scherule, J. 1988, Existence of perturbed solitary wave solutions to a model equation for water waves. Physica D 32, 253–268.
[76] Hunter, J. K. & Vanden-Broeck, J.-M. 1983a, Solitary and periodic gravity–capillary waves of finite amplitude. J. Fluid Mech. 134, 205–219.
[77] Hunter, J. K. & Vanden-Broeck, J.-M. 1983b, Accurate computations for steep solitary waves. J. Fluid Mech. 136, 63–71.
[78] Iooss, G. & Kirrmann, P. 1996, Capillary gravity waves on the free surface of an inviscid fluid of infinite depth – existence of solitary waves. Arch. Rat. Mech. Anal. 136, 1–19.
[79] Iooss, G. & Kirchgassner, K. 1990, Bifurcation d'ondes solitaires en présences d'une faible tension superficielle. C.R. Acad. Sci. Paris 311 I, 265–268.
[80] Iooss, G. & Kirchgassner, K. 1992, Water waves for small surface tension: an approach via normal form. Proc. Roy. Soc. Edinburgh 122A, 267–299.
[81] Iooss, G., Plotnikov, P. & Toland, J. F. 2005, Standing waves on an infinitely deep perfect fluid under gravity. Arch. Rat. Mech. Anal. 177, 367–478.
[82] Kang, Y. & Vanden-Broeck, J.-M. 2002, Stern waves with vorticityANZIAM J. 43, 321–332.
[83] Kawahara, T. 1972, Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan 33, 260–264.
[84] Keller, H. B. 1977, Applications of Bifurcation Theory. Academic Press.
[85] Keller, J. B. & Miksis, M. J. 1983, Surface tension driven flows. SIAM J. Appl. Math. 43, 268–277.
[86] Keller, J. B., Milewski, P. & Vanden-Broeck, J.-M. 2000, Wetting and merging driven by surface tension. Euro. J. Mech. B – Fluids 19, 491–502.
[87] Kim, B. & Akylas, T. R. 2005, On gravity–capillary lumps. J. Fluid Mech. 540, 337–351.
[88] Kim, B. & Akylas, T. R. 2006, On gravity–capillary lumps, Part 2. Two dimensional Benjamin equation. J. Fluid Mech. 557, 237–256.
[89] Kinnersley, W. 1976, Exact large amplitude capillary waves on sheets of fluid. J. Fluid Mech. 77, 229–241.
[90] Kirchhoff, G. 1869, Zur Theorie freier Flüssigkeitsstrahlen. J. Reine Angew. Math. 70, 289–298.
[91] Korteweg, D. J. & G., de Vries 1895, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves. Phil. Mag. 39, 422–443.
[92] Lamb, H. 1945, Hydrodynamics, 6th edn, Cambridge University Press.
[93] Larock, B. E. 1969, Gravity-affected flow from planar sluice gate. ASCE J. Engng Mech. Div. 96, 1211–1226.
[94] Lee, J. W. & Vanden-Broeck, J.-M. 1993, Two-dimensional jets falling from funnels and nozzles. Phys. Fluids A5, 2454–2460.
[95] Lee, J. W. & Vanden-Broeck, J.-M. 1998, Bubbles rising in an inclined two-dimensional tube and jets falling from along a wall. J. Austral. Math. Soc. B 39, 332–349.
[96] Lenau, C. W. 1966, The solitary wave of maximum amplitude. J. Fluid Mech. 26, 309–320.
[97] Lombardi, E. 2000, Oscillatory Integrals on Phenomena Beyond All Orders: with Applications to Homoclinic Orbits in reversible systems. Lecture Notes in Mathematics 1741, Springer.
[98] Lighthill, M. J. 1946, A note on cusped cavities. Aero. Res. Councial Rep. and Mem. 2328.
[99] Lighthill, M. J. 1953, On boundary layers and upstream influence, I. A comparison between subsonic and supersonic flows. Proc. Roy. Soc. London A 217, 344–357.
[100] Lighthill, M. J. 1978, Waves in Fluids, Cambridge University Press, 504 pp.
[101] Longuet–Higgins, M. S. 1975, Integral properties of periodic gravity waves of finite amplitude. Proc. Roy. London A 342, 157–174.
[102] Longuet-Higgins, M. S. 1989, Capillary-gravity waves of solitary type on deep water. J. Fluid Mech. 200, 451–478.
[103] Longuet-Higgins, M. S. 1993, Capillary–gravity waves of solitary type and envelope solitons on deep water. J. Fluid Mech. 252, 703–711.
[104] Longuet-Higgins, M. S. & Cokelet, E. 1976, The deformation of steep surface waves on water, I. A numerical method of computation. Proc. Roy. Soc. London A 350, 1–26.
[105] Longuet-Higgins, M. S. & Fenton, J. D. 1974, On the mass, momentum, energy and circulation of a solitary wave, II. Proc. R. Soc. Lond. A 340, 471–493.
[106] Longuet-Higgins, M. S. & Fox, M. J. H. 1978, Theory of the almost highest wave, Part 2. Matching and analytical extension. J. Fluid Mech. 85, 769–786.
[107] Maneri, C. C. 1970, The motion of plane bubbles in inclined ducts. Ph.D. thesis, Polytechnic Institute of Brooklyn, New York.
[108] McCue, S. W. & Forbes, L. K. 2002, Free surface flows emerging from beneath a semi-infinite plate with constant vorticity. J. Fluid Mech. 461, 387–407.
[109] McLean, J. W. & Saffman, P. G. 1981, The effect of surface tension on the shape of fingers in a Hele Shaw cell. J. Fluid Mech. 102, 455–469.
[110] Mekias, H. & Vanden-Broeck, J.-M. 1991, Subcritical flow with a stagnation point due to a source beneath a free surface. Phys. Fluids A 3, 2652–2658.
[111] Michallet, H. & Dias, F. 1999, Numerical study of generalized interfacial solitary waves. Phys. Fluids 11, 1502–1511.
[112] Michell, J. H. 1883, The highest wave in water. Phil. Mag. 36, 430–437.
[113] Miksis, M., Vanden-Broeck, J.-M. & Keller, J. B. 1981, Axisymmetric bubble or drop in a uniform flow. J. Fluid Mech. 108, 89–101.
[114] Miksis, M., Vanden-Broeck, J.-M. & Keller, J. B. 1982, Rising bubbles. J. Fluid Mech. 123, 31–41.
[115] Milewski, P. A. 2005, Three-dimensional localized solitary gravity–capillary waves. Comm. Math. Sc. 3, 89–99.
[116] Nayfeh, A. H. 1970, Triple and quintuple-dimpled wave profiles in deep water. J. Fluid Mech. 13, 545–550.
[117] Ockendon, H. & Ockendon, J. R. 2004, Viscous Flow. Cambridge Texts in Applied Mathematics.
[118] Olfe, D. B. & Rottman, J. W. 1980, Some new highest-wave solutions for deep-water waves of permanent form. J. Fluid Mech. 100, 801–810.
[119] Osher, S. & Fedkiw, R. 2003, Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences 153, Springer.
[120] Papageorgiou, D. T. & Vanden-Broeck, J.-M. 2003, Large amplitude capillary waves in electrified fluid sheets. J. Fluid Mech. 508, 71–88.
[121] Papageorgiou, D. T. & Vanden-Broeck, J.-M. 2004, Antisymmetric capillary waves in electrified fluid sheets. Eur. J. Appl. Math. 15, 609–623.
[122] Parau, E. & Vanden-Broeck, J.-M. 2002, Nonlinear two- and three-dimensional free surface flows due to moving disturbances. Eur. J. Mech. B – Fluids 21, 643–656.
[123] Parau, E., Vanden-Broeck, J.-M. & Cooker, M. 2005a, Nonlinear three dimensional gravity capillary solitary waves. J. Fluid Mech. 536, 99–105.
[124] Parau, E., Vanden-Broeck, J.-M. & Cooker, M. 2005b, Three-dimensional gravity–capillary solitary waves in water of finite depth and related problems. Phys. Fluids 17, 122 101.
[125] Parau, E., Vanden-Broeck, J.-M. & Cooker, M. 2007a, Three-dimensional capillary–gravity waves generated by a moving disturbance. Phys. Fluids 19, 082 102.
[126] Parau, E., Vanden-Broeck, J.-M. & Cooker, M. 2007b, Nonlinear three dimensional interfacial flows with a free surface. J. Fluid Mech. 591, 481–494.
[127] Pullin, D. I. & Grimshaw, R. H. J. 1988, Finite amplitude solitary waves at the interface between two homogeneous fluids. Phys. Fluids 31, 3550–3559.
[128] Rayleigh, Lord 1883, The form of standing waves on the surface of running water. Proc. Lond. Math. Soc. 15, 69–78.
[129] Romero, L. 1982, Ph.D. thesis, California Institute of Technology.
[130] Saffman, P. G. 1980, Long wavelength bifurcation of gravity waves on deep water. J. Fluid Mech. 101, 567–581.
[131] Saffman, P. G. 1986, Viscous fingering in Hele Shaw cells. J. Fluid Mech. 173, 73–94.
[132] Saffman, P. G. & Taylor, G. I. 1958, The penetration of a fluid into a porous medium or Hele Shaw cell containing a more viscous fluid. Proc. Roy. Soc. London A 245, 312–329.
[133] Schwartz, L. W. 1974, Computer extension and analytic continuation of Stokes' expansion for gravity waves. J. Fluid Mech. 62, 553–578.
[134] Schwartz, L. W. & Fenton, J. 1982, Strongly nonlinear waves. Ann. Rev. Fluid Mech. 14, 39–60.
[135] Schwartz, L. W. & Vanden-Broeck, J.-M. 1979, Numerical solution of the exact equations for capillary–gravity waves. J. Fluid Mech. 95, 119–139.
[136] Schultz, W. W., Vanden-Broeck, J.-M., Jiang, L. & Perlin, M. 1998, Highly nonlinear water waves with small capillary effect. J. Fluid Mech. 369, 253–272.
[137] Sethian, J. A.Level Set Methods. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press.
[138] Sha, H. & Vanden-Broeck, J.-M. 1993, Two-layer flows past a semicircular obstaclePhys. Fluids A 5, 2661–2668.
[139] Sha, H. & Vanden-Broeck, J.-M. 1997, Internal solitary waves with stratification in density. J. Austral. Math. Soc. B 38, 563–580.
[140] Shen, S.-P. 1995, On the accuracy of the stationary forced Korteweg-de-Vries equation as a model equation for flows over a bump. Quart. J. Appl. Math. 53, 701–719.
[141] Simmen, J. A. & Saffman, P. G. 1985, Steady deep water waves on a linear shear current. Stud. Appl. Maths 75, 35–57.
[142] Southwell, R. V. & Vaisey, G. 1946, Fluid motions characterised by ‘free’ streamlines. Phil. Trans. Roy. Soc. A 240, 117–161.
[143] Stokes, G. G. 1847, On the theory of oscillatory waves. Camb. Trans. Phil. Soc. 8, 441–473.
[144] Stokes, G. G. 1880, in Mathematical and Physical Papers, Vol. 1, p. 314, Cambridge University Press.
[145] Sun, S. M. 1991, Existence of generalized solitary wave solution for water with positive Bond number less than ⅓. J. Math. Anal. Appl. 156, 471–504.
[146] Sun, S. M. 1999, Nonexistence of truly solitary waves in water with small surface tensionProc. Roy. Soc. London A 455, 2191–2228.
[147] Sun, S. M. & Shen, M. C. 1993, Exponentially small estimate for the amplitude of capillary ripples of generalised solitary waves. J. Math. Anal. Appl. 172, 533–566.
[148] Tadjbakhsh, I. & Keller, J. B. 1960, Standing surface waves of finite amplitude. J. Fluid Mech. 8, 442–451.
[149] Tanaka, M., Dold, J. W., Lewy, M. & Peregrine, D. H. 1987, Instability and breaking of a solitary wave. J. Fluid Mech. 185, 235–248.
[150] Teles da Silva, A. F. & Peregrine, D. H. 1988, Steep solitary waves in water of finite depth with constant vorticity. J. Fluid Mech. 195, 281–305.
[151] Tooley, S. & Vanden-Broeck, J.-M. 2002, Waves and singularities in nonlinear capillary free-surface flows. J. Eng. Math. 43, 89–99.
[152] Tsai, W. T. & Yue, D. K. 1996, Computation of nonlinear free surface flows. Ann. Rev. Fluid Mech. 28, 249–278.
[153] Tseluiko, D., Blyth, M. & Papageorgiou, D. T. 2008a, Electrified viscous thin film over topography. J. Fluid Mech. 597, 449–475.
[154] Tseluiko, D., Blyth, M. & Papageorgiou, D. T. 2008b, Effect of an electric field on film flow down a corrugated wall at zero Reynolds number. Phys. Fluids 20, 042 103
[155] Turner, R. E. L. & Vanden-Broeck, J.-M. 1986, The limiting configuration of interfacial gravity waves. Phys. Fluids 29, 372–375.
[156] Turner, R. E. L. & Vanden-Broeck, J.-M. 1988, Broadening on interfacial solitary waves. Phys. Fluids 31, 2486–2490.
[157] Turner, R. E. L. & Vanden-Broeck, J.-M. 1992, Long internal waves. Phys. Fluids A 4, 1929–1935.
[158] Vanden-Broeck, J.-M. 1980, Nonlinear stern waves. J. Fluid Mech. 96, 601–610.
[159] Vanden-Broeck, J.-M. 1981, The influence of capillarity on cavitating flow past a flat plate. Quart. J. Mech. Appl. Math. 34, 465–473.
[160] Vanden-Broeck, J.-M. 1983a, The influence of surface tension on cavitating flow past a curved obstacle. J. Fluid Mech. 133, 255–264.
[161] Vanden-Broeck, J.-M. 1983b, Fingers in a Hele-Shaw cell with surface tension. Phys. Fluids 26, 2033–2034.
[162] Vanden-Broeck, J.-M. 1983c, Some new gravity waves in water of finite depth. Phys. Fluids 26, 2385–2387.
[163] Vanden-Broeck, J.-M. 1984a, The effect of surface tension on the shape of the Kirchhoff jet. Phys. Fluids 27, 1933–1936.
[164] Vanden-Broeck, J.-M. 1984b, Numerical solutions for cavitating flow of a fluid with surface tension past a curved obstacle. Phys. Fluids 27, 2601–2603.
[165] Vanden-Broeck, J.-M. 1984c, Bubbles rising in a tube and jets falling from a nozzle. Phys. Fluids 27, 1090–1093.
[166] Vanden-Broeck, J.-M. 1984d, Rising bubbles in a two-dimensional tube with surface tension. Phys. Fluids 27, 2604–2607 and 1992, Rising bubbles in a two-dimensional tube: asymptotic behavior for small values of the surface tension, Phys. Fluids A4, 2332–2334.
[167] Vanden-Broeck, J.-M. 1984e, Nonlinear gravity–capillary standing waves in water of arbitrary uniform depth. J. Fluid Mech. 139, 97–104.
[168] Vanden-Broeck, J.-M. 1985, Nonlinear free-surface flows past two-dimensional bodies. In Advances in Nonlinear Waves, Vol. II, L., Debnath, ed., Boston, Pitman.
[169] Vanden-Broeck, J.-M. 1986a, Pointed bubbles rising in a two dimensional tube. Phys. Fluids 29, 1343–1344.
[170] Vanden-Broeck, J.-M. 1986b, A free streamline model for a rising bubble. Phys. Fluids 29, 2798–2801.
[171] Vanden-Broeck, J.-M. 1986c, Flow under a gate. Phys. Fluids 29, 3148–3151.
[172] Vanden-Broeck, J.-M. 1986d, Steep gravity waves: Havelock's method revisited. Phys. Fluids 29, 3084–3085.
[173] Vanden-Broeck, J.-M. 1987, Free-surface flow over an obstruction in a channel. Phys. Fluids 30, 2315–2317.
[174] Vanden-Broeck, J.-M. 1988, Joukovskii's model for a rising bubble. Phys. Fluids 31, 974–977.
[175] Vanden-Broeck, J.-M. 1989, Bow flows in water of finite depth. Phys. Fluids A1, 1328–1330.
[176] Vanden-Broeck, J.-M. 1991a, Cavitating flow of a fluid with surface tension past a circular cylinder. Phys. Fluids A 3, 263–266.
[177] Vanden-Broeck, J.-M. 1991b, Elevation solitary waves with surface tensionPhys. Fluids A 3, 2659–2663.
[178] Vanden-Broeck, J.-M. 1994, Steep solitary waves in water of finite depth with constant vorticity. J. Fluid Mech. 274, 339–348.
[179] Vanden-Broeck, J.-M. 1995, New families of steep solitary waves in water of finite depth with constant vorticity. Eur. J. Mech. B – fluids 14, 761–774.
[180] Vanden-Broeck, J.-M. 1996a, Periodic waves with constant vorticity in water of infinite depth. IMA J. Appl. Math. 56, 207–217.
[181] Vanden-Broeck, J.-M. 1996b, Numerical calculations of the free-surface flow under a sluice gate. J. Fluid Mech. 330, 339–347.
[182] Vanden-Broeck, J.-M. 2002, Wilton ripples generated by a moving pressure distribution. J. Fluid Mech. 451, 193–201.
[183] Vanden-Broeck, J.-M. 2004, Nonlinear capillary free-surface flows. J. Eng. Math. 50, 415–426.
[184] Vanden-Broeck, J.-M. & Dias, F. 1992, Gravity–capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549–557.
[185] Vanden-Broeck, J.-M. & Keller, J. B. 1980, A new family of capillary waves. J. Fluid Mech. 98, 161–169.
[186] Vanden-Broeck, J.-M. & Keller, J. B. 1989, Surfing on solitary waves. J. Fluid Mech. 198, 115–125.
[187] Vanden-Broeck, J.-M. & Keller, J. B. 1997, An axisymmetric free surface with a 120 degree angle along a circle. J. Fluid Mech. 342, 403–409.
[188] Vanden-Broeck, J.-M. & Miloh, T. 1995, Computations of steep gravity waves by a refinement of the Davies–Tulin approximation. Siam J. Appl. Math. 55, 892–903.
[189] Vanden-Broeck, J.-M. & Schwartz, L. W. 1979, Numerical computation of steep gravity waves in shallow water. Phys. Fluids 22, 1868–1871.
[190] Vanden-Broeck, J.-M., Schwartz, L. W. & Tuck, E. O. 1978, Divergent low-Froude-number series expansion in nonlinear free-surface flow problems. Proc. Roy. Soc. London A 361, 207–224.
[191] Vanden-Broeck, J.-M. & Shen, M. C. 1983, A note on solitary and periodic waves with surface tension. Z. Angew. Math. Phys. 34, 112–117.
[192] Vanden-Broeck, J.-M. & Tuck, E. O. 1977. Computation of near-bow or stern flows, using series expansion in the Froude number. In Proc. 2nd Int. Conf. on Num. Ship Hydrodynamics, Berkeley, California, 371–381.
[193] Vanden-Broeck, J.-M. & Tuck, E. O. 1994, Steady inviscid rotational flows with free surfacesJ. Fluid Mech. 258, 105–113.
[194] Villat, H. 1914, Sur la validité des solutions de certains problèmes d'hydrodynamique. J. de Math. 10, 231–290.
[195] Whitham, G. B. 1974, Linear and nonlinear waves. Wiley Interscience, John Wiley & Sons.
[196] Wehausen, J. V. & Laitone, E. V. 1960, Surface waves. In Handbuch der Physik, C., Truesdell, ed., Vol. IX, pp. 446–778, Springer.
[197] Williams, J. M. 1981, Limiting gravity waves in water of finite depth. Phil. Trans. R. Soc. Lond. A 302, 139–188.
[198] Wilton, J. R., 1915, On ripples. Phil. Mag. 29, 688–700.
[199] Zufuria, J. A. 1987, Symmetry breaking in periodic and solitary gravity–capillary waves on water of finite depth. J. Fluid Mech. 184, 183–206.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.