Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T05:37:10.252Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2013

Bruno Andreotti
Affiliation:
Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris
Yoël Forterre
Affiliation:
Polytech Marseille
Olivier Pouliquen
Affiliation:
Polytech Marseille
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Granular Media
Between Fluid and Solid
, pp. 432 - 458
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, D. M., Lobkovsky, A. E., Petroff, A. P.et al. 2009. Growth laws for channel networks incised by groundwater flow. Nature Geosci., 2, 193–196.CrossRefGoogle Scholar
Achenbach, E. 1972. Experiments on the flow post spheres at very high Reynolds number. J. Fluid Mech., 54, 656–575.CrossRefGoogle Scholar
Achenbach, E. 1974. Vortex shielding from spheres. J. Fluid Mech., 62, 209–221.CrossRefGoogle Scholar
Agnolin, I. and Roux, J.-N. 2007. Internal states of model isotropic granular packings. III. Elastic properties. Phys. Rev. E, 76, 061304.CrossRefGoogle ScholarPubMed
Agnolin, I. and Roux, J.-N. 2008. On the elastic moduli of three-dimensional assemblies of spheres: characterization and modeling of fluctuations in the particle displacement and rotation. Int. J. Solids Structures, 45, 1101–1123.CrossRefGoogle Scholar
Alam, M. and Nott, P. R. 1998. Stability of plane Couette flow of a granular material. J. Fluid Mech., 377, 99–136.CrossRefGoogle Scholar
Allen, T. 1996. Particle Size Measurement. Volume 1: Powder Sampling and Particle Size Measurement, 5th edn. Berlin: Springer.Google Scholar
Ancey, C., Coussot, P. and Evesque, P. 1999. A theoretical framework for granular suspension in a steady simple shear flow. J. Rheol., 43, 1673–1699.CrossRefGoogle Scholar
Andersen, K. H., Chabanol, M.-L. and van Hecke, M. 2001. Dynamical models for sand ripples beneath surface waves. Phys. Rev. E, 63, 066308.CrossRefGoogle ScholarPubMed
Anderson, R. 1987. A theoretical model for aeolian impact ripples. Sedimentology, 34, 943–956.CrossRefGoogle Scholar
Anderson, R. 1990. Eolian ripples as examples of self-organization in geomorphological systems. Earth-Sci. Rev., 29, 77–96.CrossRefGoogle Scholar
Anderson, R. S. and Haff, P. K. 1988. Simulation of aeolian saltation, Science, 241, 820–823.CrossRefGoogle Scholar
Anderson, R. S. and Haff, P. K. 1991. Wind modification and bed response during saltation of sand in air. Acta Mech., 1, 21–51.Google Scholar
Andersen, K. H., Chabanol, M.-L. and van Hecke, M. 2001. Dynamical models for sand ripples beneath surface waves. Phys. Rev. E, 63, 066308.CrossRefGoogle ScholarPubMed
Andreotti, B., Claudin, P. and Douady, S. 2002a. Selection of dune shapes and velocities. Part 1: dynamics of sand, wind and barchans. Eur. Phys. J. B, 28, 321.CrossRefGoogle Scholar
Andreotti, B., Claudin, P. and Douady, S. 2002b. Selection of dune shapes and velocities. Part 2: a two-dimensional modelling. Eur. Phys. J. B, 28, 341–352.Google Scholar
Andreotti, B. 2004a. The song of dunes as a wave–particle mode locking. Phys. Rev. Lett., 93, 238001.CrossRefGoogle ScholarPubMed
Andreotti, B. 2004b. A two species model of aeolian sand transport. J. Fluid Mech., 510, 47–50.CrossRefGoogle Scholar
Andreotti, B., Claudin, P. and Pouliquen, O. 2006. Aeolian sand ripples: experimental evidence of coarsening and saturation. Phys. Rev. Lett., 96, 028001.CrossRefGoogle Scholar
Andreotti, B. 2007. A mean field model for the rheology and the dynamical phase transitions in the flow of granular matter. Europhys. Lett., 70, 34001.CrossRefGoogle Scholar
Andreotti, B. and Bonneau, L. 2009. The booming dune instability. Phys. Rev. Lett., 103, 238001.CrossRefGoogle ScholarPubMed
Andreotti, B., Fourrière, A., Ould-Kaddour, F., Murray, B. and Claudin, P. 2009. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature, 457, 1120–1123.CrossRefGoogle ScholarPubMed
Andreotti, B. 2012. Sonic sands. Rep. Prog. Phys., 75, 026602.CrossRefGoogle ScholarPubMed
Aradian, A., Raphaël, E. and de Gennes, P. G. 2002. Surface flows of granular materials: a short introduction to some recent models. C. R. Phys., 3, 187–196.CrossRefGoogle Scholar
Aranson, I. S. and Tsimring, L. S. 2002. Continuum theory of partially fluidized granular flows. Phys. Rev. Lett., 65, 061303.Google ScholarPubMed
Aranson, I. S. and Tsimring, L. S. 2006. Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys., 78, 641–692.CrossRefGoogle Scholar
Ardhuin, F. 2006. Vagues: hydrodynamique et télédétection. Cours de Master de PMMC, UBO, Brest.Google Scholar
Ashcroft, N. W. and Mermin, N. D. 1976. Solid State Physics. Belmont, MA: Brooks Cole, p. 449.Google Scholar
Ashton, A., Murray, A. B. and Arnoult, O. 2001. Formation of shoreline features by large-scale instabilities induced by high-angle waves. Nature, 414, 296–300.CrossRefGoogle ScholarPubMed
Atman, A. P. F., Brunet, P., Geng, J.et al. 2005. From the stress response function (back) to the sand pile ‘dip’. Eur. Phys. J. E, 17, 93100.CrossRefGoogle Scholar
Aumaître, S., Fauve, S., McNamara, S. and Poggi, P. 2001a. Power injected in dissipative systems and the fluctuation theorem. Eur. Phys. J. B, 19, 449–460.CrossRefGoogle Scholar
Aumaître, S., Kruelle, C. A. and Rehberg, I. 2001b. Segregation in granular matter under horizontal swirling excitation. Phys. Rev. E, 64, 041305.CrossRefGoogle ScholarPubMed
Azanza, E., Chevoir, F. and Moucheron, P. 1999. Experimental study of collisional granular flows down an inclined plane. J. Fluid. Mech., 400, 199–227.CrossRefGoogle Scholar
Baddock, M. C., Livingstone, I. and Wiggs, G. F. S. 2007. The geomorphological significance of airflow patterns in transverse dune interdunes. Geomorphology, 87, 322–336.CrossRefGoogle Scholar
Bagnold, R. A. 1941. The Physics of Blown Sand and Desert Dunes. London: Methuen.Google Scholar
Bagnold, R. A. 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London A, 225, 49–63.CrossRefGoogle Scholar
Bagnold, R. A. 1979. Sediment transport by wind and water. Nordic Hydrol., 10, 309–322.CrossRefGoogle Scholar
Balmforth, N. J. and Craster, R. V. 1999. A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech., 84, 65–81.CrossRefGoogle Scholar
Balmforth, N. J. and Liu, J. J. 2004. Roll waves in mud. J. Fluid Mech., 519, 33–54.CrossRefGoogle Scholar
Balmforth, N. J. and Kerswell, R. R. 2005. Granular collapse in two dimensions. J. Fluid Mech., 538, 399–428.CrossRefGoogle Scholar
Baran, O., Ertas, D., Halsey, T. C., Grest, G. S. and Lechman, J. B. 2006. Velocity correlations in dense gravity-driven granular chute flow. Phys. Rev. E, 74, 05130200.CrossRefGoogle ScholarPubMed
Bardet, J. P. and Proubet, J. 1991. A numerical investigation of the structure of persistent shear bands in granular media. Géotechnique, 41, 599–613.CrossRefGoogle Scholar
Barenblatt, G. I. 1996. Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bates, L. 2006. The need for industrial education in bulk technology. Bulk Solids Handling, 26, 464–473.Google Scholar
Baumberger, T., Heslot, F. and Perrin, B. 1994. Crossover from creep to inertial motion in friction dynamics. Nature, 367, 544–548.CrossRefGoogle Scholar
Baumberger, T. and Caroli, C. 2006. Solid friction from stick–slip down to pinning and aging. Adv. Phys., 55, 279–348.CrossRefGoogle Scholar
Benjamin, T. B. 1959. Shearing flow over a wavy boundary. J. Fluid Mech., 6, 161–205.CrossRefGoogle Scholar
Bernal, J. D. 1964. The Bakerian Lecture, 1962: The Structure of Liquids. Proc. R. Soc. London A, 280, 299–322.CrossRefGoogle Scholar
Bernu, B. and Mazighi, R. 1990. One dimensional bounce of inelastically colliding marbles on a wall. J. Phys. A: Math. Gen., 23, 5745–5754.CrossRefGoogle Scholar
Berthier, L. and Biroli, G. 2009. Glasses and aging: a statistical mechanics perspective, in Encyclopedia of Complexity and Systems Science. Berlin: Springer, pp. 4209–4240.Google Scholar
Berzi, D. and Jenkins, J. T. 2008. A theoretical analysis of free-surface flows of saturated granular–liquid mixtures. J. Fluid Mech., 608, 393–410.CrossRefGoogle Scholar
Best, J. 2005. The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res., 110, F04S02.CrossRefGoogle Scholar
Beverloo, W. A., Leniger, H. A. and van de Velde, J. 1961. The flow of granular solids through orifices. Chem. Eng. Sci., 15, 260–269.CrossRefGoogle Scholar
Biot, M. A. 1941. General theory of three dimensional consolidation. J. Appl. Phys., 12, 155–164.CrossRefGoogle Scholar
Biot, M. A. 1956a. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am., 28, 168–178.Google Scholar
Biot, M. A. 1956b. Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 28, 179–191.Google Scholar
Blondeaux, P. and Seminara, G. 1985. A unified bar-bend theory of river meanders. J. Fluid Mech., 157, 449–470.CrossRefGoogle Scholar
Blondeaux, P. 1990. Sand ripples under sea waves. Part 1. Ripple formation. J. Fluid Mech., 218, 1–17.CrossRefGoogle Scholar
Bocquet, L., Losert, W., Schalk, D., Lubensky, T. C. and Gollub, J. P. 2001. Granular shear flow dynamics and forces: experiments and continuum theory. Phys.Rev.E, 65, 011307.CrossRefGoogle Scholar
Bocquet, L., Charlaix, E. and Restagno, F. 2002a. Physics of humid granular media. C. R. Phys., 3, 207–215.CrossRefGoogle Scholar
Bocquet, L., Errami, J. and Lubensky, T. C. 2002b. Hydrodynamic model for a dynamical jammed-to-flowing transition in gravity driven granular media. Phys. Rev. Lett., 89, 184301.CrossRefGoogle ScholarPubMed
Bocquet, L., Colin, A. and Ajdari, A. 2009. Kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett., 103, 036001.CrossRefGoogle ScholarPubMed
Bonamy, D., Daviaud, F., Laurent, L., Bonetti, M. and Bouchaud, J.-P. 2002. Multiscale clustering in granular surface flows. Phys. Rev. Lett., 89, 034301.CrossRefGoogle ScholarPubMed
Bonelli, S., Brivois, O., Borghi, R. and Benahmed, N. 2006. On the modelling of piping erosion. C. R. Mécanique, 89, 555–559.Google Scholar
Bonelli, S., Brivois, O. and Benahmed, N. 2007. Modélisation du renard hydraulique et interprétation de l'essai d'érosion de trou. Rev. Française Géotechnique, 118, 13–22.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. and Rolley, E. 2009. Wetting and spreading. Rev. Mod. Phys., 81, 739–805.CrossRefGoogle Scholar
Bonneau, L., Andreotti, B. and Clément, E. 2007. Surface elastic waves in granular media under gravity and their relation to booming avalanches. Phys. Rev. E, 75, 016602.CrossRefGoogle ScholarPubMed
Bonneau, L., Andreotti, B. and Clément, E. 2008. Evidence of Rayleigh–Hertz surface waves and shear stiffness anomaly in granular media. Phys. Rev. Lett., 101, 118001.CrossRefGoogle ScholarPubMed
Bonneau, L., Catelin-Jullien, T. and Andreotti, B. 2010. Friction induced amplification of acoustic waves in a low Mach number granular flow. Phys. Rev. E, 82, 011309.CrossRefGoogle Scholar
Bordner, G. L. 1978. Nonlinear analysis of laminar boundary flow over a periodic wavy surface. Phys. Fluids, 21, 1471–1474.CrossRefGoogle Scholar
Börzsönyi, T. and Ecke, R. E. 2006. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag. Phys. Rev. E, 74, 061301.CrossRefGoogle ScholarPubMed
Börzsönyi, T. and Ecke, R. E. 2007. Flow rule of dense granular flows down a rough incline. Phys. Rev. E, 76, 031301.CrossRefGoogle Scholar
Bouchaud, J. P., Cates, M. E., Prakash, M. E. and Edwards, S. F. 1994. A model for the dynamics of sandpile surface. J. Phys. Paris I, 4, 1383–1410.Google Scholar
Boudet, J. F., Amarouchene, Y., Bonnier, B. and Kellay, H. 2007. The granular jump. J. Fluid Mech., 572, 413–431.CrossRefGoogle Scholar
Boussinesq, M. J. 1873. Essai théorique sur l'équilibre d'élasticité des massifs pulvérulents et sur la poussée des terres sans cohésion. C. R. Hebd. Séances Acad. Sci. Paris, 77, 1521–1525.Google Scholar
Boutreux, T. and de Gennes, P. G. 1997. Compaction of granular mixtures: a free volume model. Physica A, 244, 59–67.CrossRefGoogle Scholar
Boutreux, T., Raphaël, E. and de Gennes, P.-G. 1998. Surface flows of granular materials: a modified picture for thick avalanches. Phys. Rev. E, 58, 4692–4700.CrossRefGoogle Scholar
Boutreux, T., Makse, H. A. and de Gennes, P.-G. 1999. Surface flows of granular mixtures. III. Canonical model. Eur. Phys. J. B, 9, 105–115.CrossRefGoogle Scholar
Bowden, F. P. and Tabor, D. 1950. The Friction and Lubrication of Solids, Vol. I. Oxford: Clarendon Press.Google Scholar
Boyer, F., Guazzelli, E. and Pouliquen, O. 2011. Unifying suspension and granular rheology. Phys. Rev. Lett., 107, 188301.CrossRefGoogle ScholarPubMed
Bradley, R. S. 1932. The cohesive force between solid surfaces and the surface energy of solids. Phil. Mag., 13, 853–862.CrossRefGoogle Scholar
Branly, E. 1890. Variations de conductibilité sous diverses influences électriques. C. R. Acad. Sci. Paris, 111, 785–787.Google Scholar
Bräauer, K., Pfitzner, M., Krimer, D. O.et al. 2006. Granular elasticity: stress distributions in silos and under point loads. Phys. Rev. E, 74, 061311.CrossRefGoogle Scholar
Brennen, C. E. 1982. A review of added mass and fluid inertial forces, technical report CR 82.010, Naval Civil Engineering Laboratory, Port Hueneme, CA.
Brenner, H. 1961. The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci., 16, 242–251.CrossRefGoogle Scholar
Brey, J. J., Dufty, J. W., Kim, C. S. and Santos, A. 1998. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58, 4638–4653.CrossRefGoogle Scholar
Brey, J. J., Ruiz-Monterro, M. J. and Cubero, D. 1999. Origin of density clustering in freely evolving granular gas. Phys. Rev. E, 60, 3150–3157.CrossRefGoogle ScholarPubMed
Brey, J. J., Moreno, F., García-Rojo, R. and Ruiz-Montero, M. J. 2001. Hydrodynamic Maxwell demon in granular systems. Phys. Rev. E, 65, 011305.CrossRefGoogle ScholarPubMed
Briaud, J.-L., Ting, F. C. K., Chen, H. C.et al. 2001. Erosion function apparatus for scour rate predictions, J. Geotech. Geoenviron. Eng., 127, 105–113.CrossRefGoogle Scholar
Bridgewater, J. 1976. Fundamental powder mixing mechanisms. Powder Technol., 15, 215–236.Google Scholar
Brilliantov, N. V. and Pöschel, T. 2004. Kinetic Theory of Granular Gases. Oxford: Oxford University Press.CrossRefGoogle Scholar
Brinkman, H. C. 1947. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A, 1, 27–34.Google Scholar
Bristow, C. S., Bailey, S. D. and Lancaster, N. 2000. The sedimentary structure of linear sand dunes. Nature, 406, 56–59.CrossRefGoogle ScholarPubMed
Brown, R. L. and Richards, J. C. 1970. Principles of Powder Mechanics. Oxford: Pergamon Press.Google Scholar
Brownell, P. H. 1977. Compressional and surface waves in sand: used by desert scorpions to locate prey. Science, 197, 479–482.CrossRefGoogle ScholarPubMed
Brunet, T., Jia, X. and Mills, P. 2008. Mechanisms for acoustic absorption in dry and weakly wet granular media. Phys. Rev. Lett., 101, 138001.CrossRefGoogle ScholarPubMed
Burtally, N., King, P. J. and Swift, M. R. 2002. Spontaneous air-driven separation in vertically vibrated fine granular mixtures. Science, 295, 1877–1879.CrossRefGoogle ScholarPubMed
Caglioti, E., Loreto, V., Hermann, H. J. and Nicodemi, M. 1997. A ‘Tetris-like’ model for the compaction of dry granular media. Phys. Rev. Lett., 79, 1575–1578.CrossRefGoogle Scholar
Callaghan, P. T. 1999. Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep. Prog. Phys., 62, 599–670.CrossRefGoogle Scholar
Callen, H. B. 1985. Thermodynamics and an Introduction to Thermostatistics. New York: John Wiley & Sons.Google Scholar
Campbell, C. S. 1990. Rapid granular flows. Ann. Rev. Fluid Mech., 22, 57–92.CrossRefGoogle Scholar
Campbell, C. S. 2002. Granular shear flows at the elastic limit. J. Fluid Mech., 465, 261–291.CrossRefGoogle Scholar
Campbell, C., Cleary, P. and Hopkins, M. 1995. Large-scale landslide simulations: global deformation, velocities and basal friction. J. Geophys. Res., 100, 8267–8283.CrossRefGoogle Scholar
Cantelaube, F. and Bideau, D. 1995. Radial segregation in a 2D drum: an experimental analysis. Europhys. Lett., 30, 133–138.CrossRefGoogle Scholar
Caponi, E. A., Fornberg, B., Knight, D. D.et al. 1982. Calculations of laminar viscous flow over a moving wavy surface. J. Fluid Mech., 124, 247–262.CrossRefGoogle Scholar
Caroli, C. and Velicki, B. 2003. Anomalous acoustic reflection on a sliding interface or a shear band. Phys. Rev. E, 67, 061301.CrossRefGoogle ScholarPubMed
Cassar, C., Nicolas, M. and Pouliquen, O. 2005. Submarine granular flows down inclined plane. Phys. Fluids, 17, 103301.CrossRefGoogle Scholar
Cates, M. E., Wittmer, J. P., Bouchaud, J. P. and Claudin, P. 1999. Jamming and static stress transmission in granular materials. Chaos, 9, 511–522.CrossRefGoogle ScholarPubMed
Chapman, S. and Cowling, T. G. 1970. The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press.Google Scholar
Charru, F. and Hinch, E. J. 2000. ‘Phase diagram’ of interfacial instabilities in a two-layer Couette flow and mechanism for the long-wave instability. J. Fluid Mech., 414, 195–223.CrossRefGoogle Scholar
Charru, F., Mouilleron-Arnould, H. and Eiff, O. 2004. Erosion and deposition of particles on a bed sheared by a viscous flow. J. Fluid Mech., 519, 55–80.CrossRefGoogle Scholar
Charru, F. 2006. Selection of the ripple length on a granular bed. Phys. Fluids, 18, 121508.CrossRefGoogle Scholar
Charru, F. and Hinch, E. J. 2006. Ripple formation on a particle bed sheared by a viscous liquid. Part 1. Steady flow. Part 2. Oscillating flow. J. Fluid Mech., 550, 111–137.Google Scholar
Chepil, W. S. 1945. Dynamics of wind erosion: II. Initiation of soil movement. Soil Sci., 60, 397–411.Google Scholar
Chladni, E. F. F. 1787. Entdeckungen über die Theorie des Klanges. Leipzig: Weidmanns Erben und Reich.Google Scholar
Ciarlet, P. G. and Lions, J. L. 1995. Handbook of Numerical Analysis: Finite Element Methods (Part 1), Numerical Methods for Solids (Part 2). Amsterdam: North Holland.Google Scholar
Cipra, B. 1998. Packing challenge mastered at last. Science, 281, 1267.CrossRefGoogle Scholar
Claudin, P. and Andreotti, B. 2006. A scaling law for aeolian dunes on Mars, Venus, Earth, and for sub-aqueous ripples. Earth Planet. Sci. Lett., 252, 30–44.CrossRefGoogle Scholar
Claudin, P. 2007. Static properties of granular materials, in Mehta, A. (ed.), Granular Physics. Cambridge: Cambridge University Press, pp. 233–273.Google Scholar
Coco, G., O'Hare, T. J. and Huntley, D. A. 1999. Beach cusps: a comparison of data and theories for their formation. J. Coastal Res., 15, 741–749.Google Scholar
Coleman, S. E. and Melville, B. W. 1994. Bed-form development. J. Hydraul. Eng., 120, 544–560.CrossRefGoogle Scholar
Coleman, S. E. and Melville, B. W. 1996. Initiation of bed forms on a flat sand bed. J. Hydraul. Eng., 122, 301–310.CrossRefGoogle Scholar
Coppersmith, S. N., Liu, C. H., Majumdar, S., Narayan, O. and Witten, T. A. 1996. Model for force fluctuations in bead packs. Phys. Rev. E, 53, 4673–4685.CrossRefGoogle ScholarPubMed
Coulomb, C. A. 1776. Sur une application des règles de maximis et minimis à quelques problèmes de Statique, relatifs à l'Architecture, in Théorie des Machines simples. Paris: Imprimerie Royale, pp. 343–382.Google Scholar
Coulomb, C. A. 1785. Mémoires de mathématique et physique présentés à l'Académie Royale des Sciences. Paris: Imprimerie Royale.Google Scholar
Coussot, P. and Ancey, C. 1999. Rhéophysique des pâtes et des suspensions. Paris: EDP Sciences.Google Scholar
Courrech du Pont, S., Gondret, P., Perrin, B. and Rabaud, M. 2003. Granular avalanches in fluids. Phys. Rev. Lett., 90, 044301.CrossRefGoogle ScholarPubMed
Crassous, J., Métayer, J.-F., Richard, P. and Laroche, C. 2008. Experimental study of a creeping granular flow at very low velocity. J. Statist. Mech.: Theor. Exp., P03009.Google Scholar
Creyssels, M., Dupont, P., Ould El Moctar, A.et al. 2009. Saltating particles in a turbulent boundary layer: experiment and theory. J. Fluid Mech., 625, 47–74.CrossRefGoogle Scholar
Csahók, Z., Misbah, C., Rioual, F. and Valance, A. 2000. Dynamics of aeolian sand ripples. Eur. Phys. J. E, 3, 71–86.CrossRefGoogle Scholar
Cumberland, D. J. and Crawford, R. J. 1987. Packing of Particles, Handbook of Powder Technology, Vol. 6. Amsterdam: Elsevier.Google Scholar
Cundall, P. A. and Strack, O. D. L. 1979. A discrete numerical model for granular assemblies. Géotechnique, 29, 47–65.CrossRefGoogle Scholar
da Cruz, F., Chevoir, F., Bonn, D. and Coussot, P. 2002. Viscosity bifurcation in granular materials, foams, and emulsions. Phys. Rev. E, 66, 051305.CrossRefGoogle ScholarPubMed
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. and Chevoir, F. 2005. Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E, 72, 021309.CrossRefGoogle ScholarPubMed
Dade, W. and Huppert, H. 1998. Long-runout rockfalls. Geology, 26, 803–806.Google Scholar
Daerr, A. and Douady, S. 1999a. Sensitivity of granular surface flows to preparation. Europhys. Lett., 47, 324–330.CrossRefGoogle Scholar
Daerr, A. and Douady, S. 1999b. Two types of avalanche behaviour in granular media. Nature, 399, 241–243.CrossRefGoogle Scholar
Daerr, A., Lee, P., Lanuza, J. and Clément, E. 2003. Erosion patterns in a sediment layer. Phys. Rev. E, 67, 065201(R).CrossRefGoogle Scholar
Dantu, P. 1968. Etude statistique des forces intergranulaires dans un milieu pulvérulent. Géotechnique, 18, 50–55.CrossRefGoogle Scholar
Darve, F. 1990. The expression of rheological laws in incremental form and the main classes of constitutive equations, in Darve, F. (ed.), Geomaterials: Constitutive Equations and Modelling. Amsterdam: Elsevier, pp. 123–148.Google Scholar
Dash, J. G., Rempel, A. W. and Wettlaufer, J. S. 2006. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys., 78, 695–741.CrossRefGoogle Scholar
Deboeuf, A., Gauthier, G., Martin, J., Yurkovetsky, Y. and Morris, J. F. 2009. Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. Phys. Rev. Lett., 102, 108301.CrossRefGoogle Scholar
Deboeuf, S., Lajeunesse, E., Dauchot, O. and Andreotti, B. 2006. Flow rule, self-channelization and levees in unconfined granular flows. Phys. Rev. Lett., 97, 158303.CrossRefGoogle ScholarPubMed
Debrégeas, G., Tabuteau, H. and di Meglio, J. M. 2001. Deformation and flow of a two-dimensional foam under continuous shear. Phys. Rev. Lett., 87, 178305.CrossRefGoogle ScholarPubMed
de Gennes, P.-G., Brochard-Wyart, F. and Quéré, D. 2003. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York: Springer.Google Scholar
Denlinger, R. P. and Iverson, R. M. 2001. Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J. Geophys. Res., 106, 553–566.CrossRefGoogle Scholar
Denny, P. J. 2002. Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol., 127, 162–172.CrossRefGoogle Scholar
Depken, M., Lechman, J. B., van Hecke, M., van Saarloos, W. and Grest, G. S. 2007. Stresses in smooth flows of dense granular media. Europhys. Lett., 78, 58001.CrossRefGoogle Scholar
Derjaguin, B. V., Müller, V. M. and Toporov, Y. P. 1975. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci., 53, 314–326.CrossRefGoogle Scholar
de Saint-Venant, A. J. C. 1871. Théorie du mouvement non-permanent des eaux, avec application aux crues des riviéres et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris, 73, 147–154.Google Scholar
Desrues, J. 1984. Localisation de la déformation plastique dans les matériaux granulaires. PhD Thesis, Université de Grenoble.Google Scholar
Devauchelle, O., Malverti, L., Lajeunesse, E.et al. 2010a. Rhomboid beach pattern: a benchmark for shallow water geomorphology. J. Geophys. Res. – Earth Surface, 115, F02017.Google Scholar
Devauchelle, O., Malverti, L., Lajeunesse, E.et al. 2010b. Stability of bedforms in laminar flows with free-surface: from bars to ripples. J. Fluid Mech., 642, 329–348.CrossRefGoogle Scholar
Dey, S. 2003. Threshold of sediment motion on combined transverse and longitudinal sloping beds. J. Hydraul. Res., 41, 405–415.CrossRefGoogle Scholar
Dieterich, J. and Kilgore, B. 1994. Direct observation of frictional contacts: new insights for state-dependent properties. Pure Appl. Geophys., 143, 283–302.CrossRefGoogle Scholar
Divoux, T. and Géminard, J.-C. 2007. Friction and dilatancy in immersed granular matter. Phys. Rev. Lett., 99, 258301.CrossRefGoogle ScholarPubMed
Dodds, P. S. and Rothman, D. H. 2000. Scaling, universality and geomorphology. Ann. Rev. Earth Planet. Sci., 28, 571–610.CrossRefGoogle Scholar
Dolgunin, V. N., Kudy, A. N. and Ukolov, A. A. 1998. Development of the model of segregation of particles undergoing granular flow down an inclined chute. Powder Technol., 96, 211–218.CrossRefGoogle Scholar
Donev, A., Cisse, I., Sachs, D.et al. 2004. Improving the density of jammed disordered packings using ellipsoids. Science, 303, 990–993.CrossRefGoogle ScholarPubMed
Doppler, D., Gondret, P., Loiseleux, T., Meyer, S. and Rabaud, M. 2007. Relaxation dynamics of water-immersed granular avalanches. J. Fluid Mech., 577, 161–181.CrossRefGoogle Scholar
Douady, S., Fauve, S. and Laroche, C. 1989. Subharmonic instabilities and defects in a granular layer under vertical vibrations. Europhys. Lett., 8, 621–627.CrossRefGoogle Scholar
Douady, S., Andreotti, B. and Daerr, A. 1999. On granular surface flow equations. Eur. Phys. J. B, 11, 131–142.CrossRefGoogle Scholar
Douady, S., Andreotti, B., Cladé, P. and Daerr, A. 2001. The four avalanche fronts: a test case for granular surface flow modeling. Adv. Complex Systems, 4, 509–522.CrossRefGoogle Scholar
Douady, S., Manning, A., Hersen, P.et al. 2006. Song of the dunes as a self-synchronized instrument. Phys. Rev. Lett., 97, 018002.CrossRefGoogle ScholarPubMed
Dubois, F. and Jean, M. 1990. Freeware LMGC90, opensource licence CECILL, http://www.lmgc.univ-montp2.fr/dubois/LMGC90/.
Duffy, J. and Mindlin, R. D. 1957. Stress–strain relations and vibrations of a granular medium. J. Appl. Mech., 24, 585–593.Google Scholar
Dufty, J. W. 2001. Kinetic theory and hydrodynamics for a low density granular gas. Adv. Complex Systems, 4, 397–406.CrossRefGoogle Scholar
Dullien, F. A. L. 1992. Porous Media: Fluid Transport and Pore Structure, 2nd edn. New York: Academic Press.Google Scholar
Duran, J. 1997. Sables, poudres et grains. Paris: Eyrolles Sciences.Google Scholar
Duran, J. 2002. The physics of fine powders: plugging and surface instabilities. C. R. Phys., 3, 217–227.CrossRefGoogle Scholar
Duran, O., Claudin, P. and Andreotti, B. 2011. On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res., 3, 243–270.CrossRefGoogle Scholar
Duru, P., Nicolas, M., Hinch, E. J. and Guazzelli, E. 2002. Constitutive laws in liquid-fluidized beds. J. Fluid Mech., 452, 371–404.CrossRefGoogle Scholar
Dyakowski, T., Jeanmeure, L. F. C. and Jaworski, A. J. 2000. Applications of electrical tomography for gas–solids and liquid–solids flows – a review. Powder Technol., 112, 174–192.CrossRefGoogle Scholar
Eggers, J. 1999. Sand as Maxwell's demon. Phys. Rev. Lett., 83, 5522–5525.CrossRefGoogle Scholar
Ehrhardt, G. C. M. A., Stephenson, A. and Reis, P. M. 2005. Segregation mechanisms in a numerical model of a binary mixture. Phys. Rev. E, 71, 041301.CrossRefGoogle Scholar
Einstein, A. 1906. Eine neue Bestimmung der Moleküldimensionen. Ann. Phys., 19, 289–306.Google Scholar
Einstein, A. 1926. Die Ursache der Mäaanderbildung der Fluüläaufe und des sogenannten Baerschen Gesetzes. Naturwissenschaften, 14, 223–224.CrossRefGoogle Scholar
Elbelrhiti, H., Claudin, C. and Andreotti, B. 2005. Field evidence for surface wave induced instability of sand dunes. Nature, 437, 720–723.CrossRefGoogle ScholarPubMed
Elbelrhiti, H., Andreotti, B. and Claudin, C. 2008. Barchan dune corridors: field characterization and investigation of control parameters. J. Geophys. Res., 113, F02S15.CrossRefGoogle Scholar
Eldredge, K. R. and Tabor, D. 1955. The mechanism of rolling friction. I. The plastic range. Proc. R. Soc. London A, 229, 181–198.CrossRefGoogle Scholar
Engelund, F. 1970. Instability of erodible beds. J. Fluid Mech., 42, 225–224.CrossRefGoogle Scholar
Ertas, D. and Halsey, T. C. 2002. Granular gravitational collapse and chute flow. Europhys. Lett., 60, 931–937.CrossRefGoogle Scholar
Essipov, S. E. and Pöschel, T. 1997. The granular phase diagram. J. Statist. Phys., 86, 1385–1395.Google Scholar
Estrada, N., Azéma, E., Radjai, F. and Taboada, A. 2011. Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E, 84, 011306.CrossRefGoogle ScholarPubMed
Evesque, P. and Rajchenbach, J. 1989. Instability in a sand heap. Phys. Rev. Lett., 62, 44–46.CrossRefGoogle Scholar
Fahnestock, M. A., Scambos, T. A., Shuman, C. A.et al. 2000. Snow megadune fields on the east antarctic plateau: extreme atmosphere–ice interaction. Geophys. Res. Lett., 27, 3719–3722.CrossRefGoogle Scholar
Falcon, E., Laroche, C., Fauve, S. and Coste, C. 1998. Behavior of one inelastic ball bouncing repeatedly off the ground. Eur. Phys. J. B, 3, 45–57.CrossRefGoogle Scholar
Falcon, E., Fauve, S. and Laroche, C. 1999. Cluster formation, pressure and density measurements in a granular medium fluidized by vibrations. Eur. Phys. J. B, 9, 183–186.CrossRefGoogle Scholar
Falcon, E., Castaing, B. and Creyssels, M. 2004a. Nonlinear electrical conductivity in a 1D granular medium. Eur. Phys. J. B, 38, 475–483.CrossRefGoogle Scholar
Falcon, E., Castaing, B. and Laroche, C. 2004b. ‘Turbulent’ electrical transport in copper powders. Europhys. Lett., 65, 186–192.CrossRefGoogle Scholar
Fall, A., Lemaître, A., Bertrand, F., Bonn, D. and Ovarlez, G. 2010. Shear thickening and migration in granular suspensions. Phys. Rev. Lett., 105, 268303.CrossRefGoogle ScholarPubMed
Fan, Y. and Hill, K. M. 2011. Phase transitions in shear-induced segregation of granular materials. Phys. Rev. Lett., 106, 218301.CrossRefGoogle ScholarPubMed
Faraday, M. 1831. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. London, 121, 299–340.Google Scholar
Félix, G. and Thomas, N. 2004a. Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett., 221, 197–213.CrossRefGoogle Scholar
Félix, G. and Thomas, N. 2004b. Evidence of two effects in the size segregation process in dry granular media. Phys. Rev. E, 70, 051307.CrossRefGoogle ScholarPubMed
Fenistein, D. and van Hecke, M. 2003. Wide shear zones in granular bulk flow. Nature, 425, 256.CrossRefGoogle ScholarPubMed
Fernandez Luque, R. and van Beek, R. 1976. Erosion and transport of bed-load sediment. J. Hydraul. Res., 14, 127–144.CrossRefGoogle Scholar
Finnigan, J. J., Raupach, M. R., Bradley, E. F. and Aldis, G. K. 1990. A wind tunnel study of turbulent flow over a two-dimensional ridge. Boundary-Layer Meteorol, 50, 277–317.CrossRefGoogle Scholar
Forterre, Y. and Pouliquen, O. 2001. Longitudinal vortices in granular flows. Phys. Rev. Lett., 86, 5886–5889.CrossRefGoogle ScholarPubMed
Forterre, Y. and Pouliquen, O. 2002. Stability analysis of rapid granular chute flows: formation of longitudinal vortices. J. Fluid Mech., 467, 361–387.CrossRefGoogle Scholar
Forterre, Y. and Pouliquen, O. 2003. Long-surface-wave instability in dense granular flows. J. Fluid Mech., 486, 21–50.CrossRefGoogle Scholar
Forterre, Y. 2006. Kapitza waves as a test for three-dimensional granular flow rheology. J. Fluid Mech., 563, 123–132.CrossRefGoogle Scholar
Forterre, Y. and Pouliquen, O. 2008. Flows of dense granular media. Ann. Rev. Fluid Mech., 40, 1–24.CrossRefGoogle Scholar
Fourrière, A., Claudin, P. and Andreotti, B. 2010. Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by non-linear pattern coarsening. J. Fluid Mech., 649, 287–328.CrossRefGoogle Scholar
Fraysse, N., Thomé, H. and Petit, L. 1999. Humidity effects on the stability of a sandpile. Eur. Phys. J. B, 11, 615–619.CrossRefGoogle Scholar
Frederick, K. A. and Hanratty, T. J. 1988. Velocity measurements for a turbulent nonsepa-rated flow over solid waves. Exp. Fluids, 6, 477–486.CrossRefGoogle Scholar
Frezzotti, M., Gandolfi, S. and Urbini, S. 2002. Snow megadunes in Antarctica: sedimentary structure and genesis. J. Geophys. Res., 107, 4344–4356.CrossRefGoogle Scholar
Fryberger, S. G. and Dean, G. 1979. Dunes forms and wind regime, in McKee, E. D. (ed.), A Study of Global Sand Seas, Geological Survey Professional Paper 1052, pp. 137–169.Google Scholar
Fukushima, E. 1999. Nuclear magnetic resonance as a tool to study flow. Ann. Rev. Fluid Mech., 31, 95–123.CrossRefGoogle Scholar
Furukawa, A. and Tanaka, H. 2006. Violation of the incompressibility of liquid by simple shear flow. Nature, 443, 434–438.CrossRefGoogle ScholarPubMed
Garcia, M. H. 2008. Sedimentation Engineering: Processes, Management, Modeling, and Practice. Reston, VA: American Society of Civil Engineers.CrossRefGoogle Scholar
Garrat, J. R. 1994. The Atmospheric Boundary Layer. Cambridge: Cambridge University Press.Google Scholar
Garzó, V. and Dufty, J. W. 1999. Dense fluid transport for inelastic hard spheres. Phys. Rev. E, 59, 5895–5911.CrossRefGoogle ScholarPubMed
Garzó, V., Dufty, J. and Hrenya, C. 2007. Enskog theory for polydisperse granular fluids. I. Navier–Stokes order transport. Phys. Rev. E., 76, 031303.CrossRefGoogle Scholar
GdR, MiDi. 2004. On dense granular flows. Eur. Phys. J. E, 14, 341–365.Google Scholar
German, R. M. 1996. Sintering Theory and Practice. New York: Wiley.Google Scholar
Gilles, B. and Coste, C. 2003. Low-frequency behavior of beads constrained on a lattice. Phys. Rev. Lett., 90, 174302.CrossRefGoogle ScholarPubMed
Glasser, B. J. and Goldhirsch, I. 2001. Scale dependence, correlations, and fluctuations of stresses in rapid granular flows. Phys. Fluids, 13, 407–420.CrossRefGoogle Scholar
Goddard, J. D. 1986. Dissipative materials as constitutive models for granular media. Acta Mech., 83, 3–13.Google Scholar
Goddard, J. D. 1990. Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc. R. Soc., 430, 105–131.CrossRefGoogle Scholar
Goldenberg, C. and Goldhirsch, I. 2002. Force chains, microelasticity, and macroelasticity. Phys. Rev. Lett., 83, 084302.CrossRefGoogle Scholar
Goldenberg, C., Atman, A. P. F., Claudin, P., Combe, G. and Goldhirsch, I. 2006. Scale separation in granular packings: stress plateau and fluctuations. Phys. Rev. Lett., 96, 168001.CrossRefGoogle ScholarPubMed
Goldenberg, C., Tanguy, A. and Barrat, J.-L. 2007. Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field. Eur. Phys. Lett., 80, 16003.CrossRefGoogle Scholar
Goldhirsch, I. and Zanetti, G. 1993. Clustering instability in dissipative gases. Phys. Rev. Lett., 70, 1619–1622.CrossRefGoogle ScholarPubMed
Goldhirsch, I. 1999. Scales and kinetics of granular flows. Chaos, 9, 659–672.CrossRefGoogle ScholarPubMed
Goldhirsch, I. and Goldenberg, C. 2002. On the microscopic foundations of elasticity. Eur. Phys. J. E, 9, 245–251.CrossRefGoogle ScholarPubMed
Goldhirsch, I. 2003. Rapid granular flows. Ann. Rev. Fluid Mech., 35, 267–293.CrossRefGoogle Scholar
Goldreich, P. and Tremaine, S. 1978. The velocity dispersion in Saturn's rings. Icarus, 34, 227–239.CrossRefGoogle Scholar
Golvin, J.-C. and Goyon, J.-C. 1987. Les bâtisseurs de Karnak. Paris: Presses du CNRS.Google Scholar
Gondret, P., Hallouin, E., Lance, M. and Petit, L. 1999. Experiments on the motion of a solid sphere toward a wall: from viscous dissipation to elastohydrodynamic bouncing. Phys. Fluids, 11, 643–652.CrossRefGoogle Scholar
Gondret, P., Lance, M. and Petit, L. 2002. Bouncing motion of spherical particles in fluids. Phys. Fluids, 14, 2803–2805.CrossRefGoogle Scholar
Goujon, C., Dalloz-Dubrujeaud, B. and Thomas, N. 2007. Bidisperse granular avalanches on inclined planes: a rich variety of behaviors. Eur. Phys. J. E, 23, 199–215.CrossRefGoogle ScholarPubMed
Grasselli, Y. and Hermann, H. J. 1998. Experimental study of granular stratification. Granular Matter, 1, 43–47.CrossRefGoogle Scholar
Gray, J. M. N. T., Wieland, M. and Hutter, K. 1999. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. London A, 455, 1841–1874.CrossRefGoogle Scholar
Gray, J. M. N. T., Tai, Y. C. and Noelle, S. 2003. Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech., 491, 161–181.CrossRefGoogle Scholar
Gray, J. M. N. T. and Thornton, A. R. 2005. A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. London A, 461, 1447–1473.CrossRefGoogle Scholar
Gray, J. M. N. T. and Ancey, C. 2009. Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech., 629, 387–423.CrossRefGoogle Scholar
Greenwood, J. A. and Williamson, J. B. P. 1966. Contact of nominally flat surface. Proc. R. Soc. London A, 295, 300–319.CrossRefGoogle Scholar
Greenwood, J. A. 1997. Adhesion of elastic sphere. Proc. R. Soc. London A, 453, 1277–1297.CrossRefGoogle Scholar
Greve, R., Koch, T. and Hutter, K. 1994. Unconfined flow of granular avalanches along a partly curved surface: experiments and theoretical predictions. Proc. R. Soc. London A, 342, 573–600.Google Scholar
Guazzelli, E. and Morris, J. 2010. A Physical Introduction to Suspension Dynamics. Cambridge: Cambridge University Press.Google Scholar
Gusev, V. E., Aleshin, V. and Tournat, V. 2006. Acoustic waves in an elastic channel near the free surface of granular media. Phys. Rev. Lett., 96, 214301.CrossRefGoogle Scholar
Guy, H., Simons, D. and Richardson, E. 1966. Summary of alluvial channel data from flume experiments, 1956–61. US Geological Survey Professional Paper 462, 96 pp.
Guyon, E. and Troadec, J.-P. 1994. Du sac de bille au tas de sable. Paris: Odile Jacob.Google Scholar
Guyon, E., Hulin, J.-P., Petit, L. and Mitescu, C. D. 2001. Physical Hydrodynamics. New York: Oxford University Press.Google Scholar
Haff, P. K. 1983. Grain flow as a fluid mechanical phenomenon. J. Fluid Mech., 134, 401–430.CrossRefGoogle Scholar
Haff, P. K. 1986. Booming dunes. Am. Sci., 74, 376–381.Google Scholar
Hales, T. C. 2005. A proof of the Kepler conjecture, Ann. Math., 162, 1065–1185.CrossRefGoogle Scholar
Halsey, T. C. and Levine, A. J. 1998. How sandcastles fall. Phys. Rev. Lett., 80, 3141–3144.CrossRefGoogle Scholar
Hamaker, H. C. 1937. The London–van der Waals attraction between spherical particles. Physica, 4, 1058–1072.CrossRefGoogle Scholar
Hanson, G. J. and Simon, A. 2001. Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrol. Processes, 15, 23–38.CrossRefGoogle Scholar
Hardisty, J. and Whitehouse, J. R. S. 1988. Evidence for a new sand transport process from experiments on Saharan dunes. Nature, 332, 532–534.CrossRefGoogle Scholar
Heckel, R. W. 1961. Density–pressure relationship in powder compaction. Trans. Metall. Soc. AIME, 221, 671–675.Google Scholar
Heinrich, Ph., Boudon, G., Komorowski, J. C.et al. 2001. Numerical simulation of the December 1997 debris avalanche in Montserrat, Lesser Antilles. Geophys. Res. Lett., 28, 2529–2532.CrossRefGoogle Scholar
Hermann, H. J. and Luding, S. 1998. Modeling granular media on the computer. Continuum Mech. Thermodyn., 10, 189–231.CrossRefGoogle Scholar
Hersen, P., Douady, S. and Andreotti, B. 2002. Relevant length scale of barchan dunes. Phys. Rev. Lett., 89, 264301.CrossRefGoogle ScholarPubMed
Hersen, P. 2005. Flow effects on the morphology and dynamics of aeolian and subaqueous barchan dunes. J. Geophys. Res., 110, F04S07.CrossRefGoogle Scholar
Hertz, H. 1896. On the contact of elastic solids, in Miscellaneous Papers. London: Macmillan, pp. 146–183.Google Scholar
Heussinger, C. and Barrat, J.-L. 2009. Jamming transition as probed by quasistatic shear flow. Phys. Rev. Lett., 102, 218303.CrossRefGoogle ScholarPubMed
Hill, G., Yeung, S. and Koehler, S. A. 2005. Scaling vertical drag forces in granular media. Europhys. Lett., 72, 137–143.CrossRefGoogle Scholar
Hill, K. M., Caprihan, A. and Kakalios, J. 1997. Axial segregation of granular media rotated in a drum mixer: pattern evolution. Phys. Rev. E, 56, 4386–4393.CrossRefGoogle Scholar
Hill, R. 1950. The Mathematical Theory of Plasticity. Oxford: Oxford University Press.Google Scholar
Holm, R. 2000. Electric Contacts, 4th edn. Berlin: Springer.Google Scholar
Hopkins, M. A. and Louge, M. Y. 1991. Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A, 3, 47–57.CrossRefGoogle Scholar
Horton, R. E. 1945. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull., 56, 275–370.CrossRefGoogle Scholar
Howard, A. D. 1977. Effect of slope on the threshold of motion and its application to orientation of wind ripples. Bull. Geol. Soc. Am., 88, 853–856.2.0.CO;2>CrossRefGoogle Scholar
Howell, D., Behringer, R. P. and Veje, C. 1999. Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Phys. Rev. Lett., 82, 5241–5244.CrossRefGoogle Scholar
Hoyle, R. B. and Mehta, A. 1999. Two-species continuum model for aeolian sand ripples. Phys. Rev. Lett., 83, 5170–5173.CrossRefGoogle Scholar
Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. and van Tiggelen, B. A. 2008. Localization of ultrasound in a three-dimensional elastic network. Nature Phys., 4, 945–948.CrossRefGoogle Scholar
Huang, D. M., Sendner, C., Horinek, D., Netz, R. R. and Bocquet, L. 2008. Water slippage versus contact angle: a quasiuniversal relationship. Phys. Rev. Lett., 101, 226101.CrossRefGoogle ScholarPubMed
Huang, K. 1987. Statistical Mechanics, 2nd edn. New York: John Wiley and Sons.Google Scholar
Huang, N., Ovarlez, G., Bertran, F.et al. 2005. Flow of wet granular materials. Phys. Rev. Lett., 94, 028301.CrossRefGoogle ScholarPubMed
Huber-Burnand, F. 1829. Sur l'écoulement et la pression du sable. Ann. Chim. Phys., 50, 159–173.Google Scholar
Huerre, P. and Rossi, M. 1998. Hydrodynamic instability in open flows, in Godrèche, C. and Manneville, P. (eds.), Hydrodynamics and Nonlinear Instabilities. Cambridge: Cambridge University Press, pp. 81–294.Google Scholar
Hui, K., Haff, P. K., Ungar, J. E. and Jackson, R. 1984. Boundary conditions for high-shear grain flows. J. Fluid Mech., 145, 223–233.CrossRefGoogle Scholar
Hunt, J. C. R., Leibovich, S. and Richards, K. J. 1988. Turbulent shear flows over low hills. Q. J. R. Meteorol. Soc., 114, 1435–1470.Google Scholar
Ikeda, A., Berthier, L. and Sollich, P. 2012. Unified study of glass and jamming rheology in soft particle systems. Phys. Rev. Lett., 109, 018301.CrossRefGoogle ScholarPubMed
Iordanoff, I. and Khonsari, M. M. 2004. Granular lubrication: toward an understanding between kinetic and dense regime. ASME J. Tribol., 126, 137–145.CrossRefGoogle Scholar
Isert, N., Maa, C. C. and Aegerter, C. M. 2009. Influence of gravity on a granular Maxwell's demon experiment. Eur. Phys. J. E, 28, 205–210.CrossRefGoogle ScholarPubMed
Isa, L., Besseling, R. and Poon, W. C. K. 2007. Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Phys. Rev. Lett., 98, 198305.CrossRefGoogle ScholarPubMed
Israelachvili, J. N. 1992. Intermolecular and Surface Forces, 2nd edn. London: Academic Press.Google Scholar
Iversen, J. D. and Rasmussen, K. R. 1994. The effect of surface slope on saltation threshold. Sedimentology, 41, 721–728.CrossRefGoogle Scholar
Iversen, J. D. and Rasmussen, K. R. 1999. The effect of wind speed and bed slope on sand transport. Sedimentology, 46, 723–731.CrossRefGoogle Scholar
Iverson, R. M. 1997. The physics of debris flows. Rev. Geophys., 35, 245–296.CrossRefGoogle Scholar
Iverson, R. M., Reid, M. E., Iverson, N. R.et al. 2000. Acute sensitivity of landslide rates to initial porosity. Science, 290, 513–516.CrossRefGoogle Scholar
Izumi, N. and Parker, G. 1995. Inception of channelization and drainage basin formation: upstream driven theory. J. Fluid Mech., 283, 341–363.CrossRefGoogle Scholar
Izumi, N. and Parker, G. 2000. Linear stability analysis of channel inception: downstream-driven theory. J. Fluid Mech., 419, 239–262.CrossRefGoogle Scholar
Jackson, P. S. and Hunt, J. C. R. 1975. Turbulent wind flow over a low hill. Q. J. R. Meteorol. Soc., 101, 929–955.CrossRefGoogle Scholar
Jackson, R. 1997. Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem. Eng. Sci., 52, 2457–2469.CrossRefGoogle Scholar
Jackson, R. 2000. The Dynamics of Fluidized Particles.Cambridge: Cambridge University Press.Google Scholar
Jaeger, H. M., Nagel, S. R. and Behringer, R. P. 1996. Granular solids, liquids and gases. Rev. Mod. Phys., 68, 1259–1273.CrossRefGoogle Scholar
Jain, N., Ottino, J. M. and Lueptow, R. M. 2004. Effect of interstitial fluid on a granular flow layer. J. Fluid Mech., 508, 23–44.CrossRefGoogle Scholar
Jean, M. 1999. The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng., 177, 235–257.CrossRefGoogle Scholar
Jenkins, J. T. and Savage, S. B. 1983. A theory for the rapid flow of identical smooth nearly elastic spherical particles. J. Fluid Mech., 130, 187–202.CrossRefGoogle Scholar
Jenkins, J. T. and Richman, M. W. 1985. Grad's 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal., 87, 355–377.CrossRefGoogle Scholar
Jenkins, J. T. and Richman, M. W. 1986. Boundary conditions for plane flows of smooth, nearly elastic, circular disks. J. Fluid Mech., 171, 53–69.CrossRefGoogle Scholar
Jenkins, J. T. and Mancini, F. 1989. Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids A, 1, 2050–2057.CrossRefGoogle Scholar
Jenkins, J. T. 2006. Dense shearing flows of inelastic disks. Phys. Fluids, 18, 103307.CrossRefGoogle Scholar
Jensen, N.-O. and Zeman, O. 1985. Perturbations to mean wind and turbulence in flow over topographic forms, in Darndorff-Nielsen, O. E., Møller, J. T., Rasmussen, K. R. and Willets, B. B. (eds.), Proceedings of the International Workshop on the Physics of Blown Sand. Aarhus: Institute of Mathematics, University of Aarhus, pp. 351–368.Google Scholar
Jerkins, M., Schröter, M., Swinney, H. L.et al. 2008. Onset of mechanical stability in random packings of frictional spheres. Phys. Rev. Lett., 101, 018301.CrossRefGoogle ScholarPubMed
Jia, X., Caroli, C. and Velicky, B. 1999. Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett., 82, 1863–1866.CrossRefGoogle Scholar
Jiang, Y. and Liu, M. 2003. Granular elasticity without the Coulomb condition. Phys. Rev. Lett., 91, 144301.CrossRefGoogle ScholarPubMed
Jiang, Y. and Liu, M. 2004. Energetic instability unjams sand and suspension. Phys. Rev. Lett., 93, 148001.CrossRefGoogle Scholar
Job, S., Melo, F., Sokolow, A. and Sen, S. 2005. How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett., 94, 178002.CrossRefGoogle Scholar
Johnson, K. L., Kendall, K. and Roberts, A. D. 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. London A, 324, 301–313.CrossRefGoogle Scholar
Johnson, K. L. 1985. Contact Mechanics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Johnson, K. L. and Greenwood, J. A. 1997. An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci., 192, 326–333.CrossRefGoogle ScholarPubMed
Johnson, D. L. and Norris, A. N. 1997. Nonlinear elasticity of granular media. J. Appl. Mech., 64, 39–49.Google Scholar
Johnson, P. C. and Jackson, R. 1987. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech., 176, 67–93.CrossRefGoogle Scholar
Jop, P., Forterre, Y. and Pouliquen, O. 2005. Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech., 541, 167–192.CrossRefGoogle Scholar
Jop, P., Forterre, Y. and Pouliquen, O. 2006. A constitutive law for dense granular flows. Nature, 441, 727–730.CrossRefGoogle ScholarPubMed
Jop, P. 2008. Hydrodynamics modeling of granular flows in a modified Couette cell. Phys. Rev. E, 77, 032301.CrossRefGoogle Scholar
Julien, P. Y. 1998. Erosion and Sedimentation. Cambridge: Cambridge University Press.Google Scholar
Jullien, R., Meakin, P. and Pavlovitch, A. 1992. Three dimensional model for particle size segregation by shaking. Phys. Rev. Lett., 69, 640–643.CrossRefGoogle ScholarPubMed
Kabla, A. and Debrégeas, G. 2003. Local stress relaxation and shear banding in a dry foam under shear. Phys. Rev. Lett., 90, 258303.CrossRefGoogle Scholar
Kamrin, K. and Bazant, M. Z. 2007. A stochastic flow rule for granular materials. Phys. Rev. E, 75, 041301.CrossRefGoogle ScholarPubMed
Kamrin, K. 2012. Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett., 108, 178301.CrossRefGoogle ScholarPubMed
Kardar, M., Parisi, G. and Zhang, Y.-C. 1986. Dynamic scaling of growing interfaces. Phys. Rev. Lett., 56, 889–892.CrossRefGoogle ScholarPubMed
Kennedy, J. F. 1963. The mechanics of dunes and antidunes in erodible bed channels. J. Fluid Mech., 16, 521–544.CrossRefGoogle Scholar
Kessler, M. A. and Werner, B. T. 2003. Self-organization of sorted patterned ground. Science, 299, 380–383.CrossRefGoogle ScholarPubMed
Khakhar, D. V., McCarthy, J. J. and Ottino, J. M. 1999. Mixing and segregation of granular materials in chute flows. Chaos, 9, 594–610.CrossRefGoogle ScholarPubMed
Khakhar, D. V., Orpe, A. V., Andersen, P. and Ottino, J. M. 2001. Surface flow of granular materials: model and experiments in heap formation. J. Fluid Mech., 441, 255–263.CrossRefGoogle Scholar
Khaldoun, A., Eiser, E., Wegdam, G. H. and Bonn, D. 2005. Liquefaction of quicksand under stress. Nature, 437, 635.CrossRefGoogle ScholarPubMed
Kilkenny, C.Leach, M. F. and Goldsack, D. E. 1997. The acoustic emission of silica gel. Canadian Acoust., 25, 28.Google Scholar
Kilkenny, C. 1999. An Experimental Study of Some Physical and Acoustical Properties of Confined Booming Sand. Master's Thesis, Faculty of Graduate Studies, Laurentian University, Sudbury, Ontario.Google Scholar
Kim, S. and Karilla, S. 1991. Microhydrodynamics: Principles and Selected Applications. London: Butterworths.Google Scholar
Klevan, I., Nordström, J., Bauer-Brandl, A. and Alderborn, G. 2009. On the physical interpretation of the initial bending of a Shapiro–Konopicky–Heckel compression profile. Eur. J. Pharmacol. Biopharmacol., 71, 395–401.CrossRefGoogle ScholarPubMed
Knight, J. B., Jaeger, H. M. and Nagel, S. R. 1993. Vibration induced size separation in granular media, the convection connection. Phys. Rev. Lett., 70, 3728–3731.CrossRefGoogle ScholarPubMed
Knight, J. B., Fandrich, C. G., Lau, C. N., Jaeger, H. M. and Nagel, S. R. 1995. Density relaxation in a vibrated granular material. Phys. Rev. E, 51, 3957–3963.CrossRefGoogle Scholar
Kocurek, G., Havholm, K. G., Deynoux, M. and Blakey, R. C. 1991. Amalgamated accumulations resulting from climatic and eustatic changes, Akchar Erg, Mauritania. Sedimentology, 38, 751–772.CrossRefGoogle Scholar
Komar, P. D. 1998. Beach Processes and Sedimentation. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Komatsu, T. S., Inagaki, S., Nakagawa, N. and Nasumo, S. 2001. Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett., 86, 1757–1760.CrossRefGoogle Scholar
Kroy, K., Sauermann, G. and Herrmann, H. J. 2002. Minimal model for aeolian sand dunes. Phys. Rev. E, 66, 031302.CrossRefGoogle ScholarPubMed
Kumaran, V. 2006. The constitutive relation for the granular flow of rough particles, and its application to the flow down an inclined plane. J. Fluid. Mech., 561, 1–42.CrossRefGoogle Scholar
Kumaran, V. 2009. Dynamics of dense sheared granular flows. Part 1. Structure and diffusion. J. Fluid Mech. 632, 109–144.Google Scholar
Lacaze, L. and Kerswell, R. R. 2009. Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett., 102, 108305.CrossRefGoogle ScholarPubMed
Lade, P. V. 1977. Elasto-plastic stress–strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids Struct., 13, 1019–1035.CrossRefGoogle Scholar
Lagrée, P.-Y. 2003. A triple deck model of ripple formation and evolution. Phys. Fluids, 15, 2355–2368.CrossRefGoogle Scholar
Lagrée, P.-Y., Staron, L. and Popinet, S. 2011. The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I) rheology. J. Fluid Mech., 686, 378–408.CrossRefGoogle Scholar
Lajeunesse, E., Mangeney-Castelnau, A. and Vilotte, J.-P. 2004. Spreading of a granular mass on a horizontal plane. Phys. Fluids, 16, 2371–2381.CrossRefGoogle Scholar
Lajeunesse, E., Quantin, C., Allemand, P. and Delacourt, C. 2006. New insights on the runout of large landslides in the Valles-Marineris canyons, Mars. Geophys. Res. Lett., 33, L04403.CrossRefGoogle Scholar
Lancaster, N. 1989. The dynamics of star dunes: an example from Gran Desierto, Mexico. Sedimentology, 36, 273–289.CrossRefGoogle Scholar
Lancaster, N., Nickling, W. G., McKenna-Neuman, C. K. and Wyatt, V. E. 1996. Sediment flux and airflow on the stoss slope of a barchan dune. Geomorphology, 17, 55–62.CrossRefGoogle Scholar
Landau, L. and Lifshitz, E. 1990. Theory of Elasticity. New York: Pergamon Press.Google Scholar
Laroche, C., Douady, S. and Fauve, S. 1989. Convective flow of granular masses under vertical vibrations. J. Phys. Paris, 50, 699–706.Google Scholar
Larrieu, E., Staron, L. and Hinch, E. J. 2006. Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech., 554, 259–270.CrossRefGoogle Scholar
Larson, R. G. 1999. The Structure and Rheology of Complex Fluids. Oxford: Oxford University Press.Google Scholar
Lauridsen, J., Twardos, M. and Dennin, M. 2002. Shear-induced stress relaxation in a two-dimensional wet foam. Phys. Rev. Lett., 89, 098303.CrossRefGoogle Scholar
Lecoq, N., Anthore, R., Cichocki, B., Szymczak, P. and Feuillebois, F. 2004. Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech., 513, 247–264.CrossRefGoogle Scholar
Lemaître, A. and Caroli, C. 2009. Rate-dependent avalanche size in athermally sheared amorphous solids. Phys. Rev. Lett., 103, 065501.CrossRefGoogle ScholarPubMed
Lemaître, A., Roux, J.-N. and Chevoir, F. 2009. What do dry granular flows tell us about dense non-Brownian suspension rheology?Rheol. Acta, 48, 925–942.CrossRefGoogle Scholar
Lemieux, P.-A. and Durian, D. J. 2000. From avalanches to fluid flow: a continuous picture of grain dynamics down a heap. Phys. Rev. Lett., 85, 4273–4276.CrossRefGoogle Scholar
Lerner, E., Duering, G. and Wyart, M. 2012. A unified framework for non-Brownian suspension flows and soft amorphous solids. PNAS, 109, 4798–4803.CrossRefGoogle ScholarPubMed
Levine, D. 1999. Axial segregation of granular materials. Chaos, 9, 573–579.CrossRefGoogle ScholarPubMed
Lhuillier, D. 2009. Migration of rigid particles in non-Brownian viscous suspensions. Phys. Fluids, 21, 023302.CrossRefGoogle Scholar
Lian, G., Thornton, C. and Adams, M. J. 1993. A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci., 161, 138–147.CrossRefGoogle Scholar
Lifshitz, E. M. 1956. The theory of molecular attraction forces between solid bodies. Sov. Phys. JETP (English Transl.), 2, 73–83.Google Scholar
Linares-Guerrero, E., Goujon, C. and Zenit, R. 2007. Increased mobility of bidispersed granular avalanches. J. Fluid Mech., 593, 475–504.CrossRefGoogle Scholar
Liu, A. J. and Nagel, S. R. 1998. Jamming is not just cool any more. Nature, 396, 21–22.CrossRefGoogle Scholar
Liu, A. J. and Nagel, S. R. (eds.). 2001. Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales. London: Taylor and Francis.
Liu, C.-H., Nagel, S. R., Schecter, D. A.et al. 1995. Force fluctuations in bead packs. Science, 269, 513–515.CrossRefGoogle ScholarPubMed
Lobkovsky, A. E., Smith, B., Kudrolli, A., Mohrig, D. C. and Rothman, D. H. 2007. Dynamics of channel incision in a granular bed driven by subsurface water flow. J. Geophys. Res., 112, F03S12.CrossRefGoogle Scholar
Lohse, D., Rauhé, R., Bergmann, R. and van der Meer, D. 2004. Granular physics: creating a dry variety of quicksand. Nature, 432, 689-690.CrossRefGoogle ScholarPubMed
Lois, G., Lemaître, A. and Carlson, J. M. 2005. Numerical tests of constitutive laws for dense granular flows. Phys. Rev. E, 72, 051303.CrossRefGoogle ScholarPubMed
Lois, G., Lemaître, A. and Carlson, J. M. 2006. Emergence of multi-contact interactions in contact dynamics simulations of granular shear flows. Europhys. Lett., 76, 31824.CrossRefGoogle Scholar
Lois, G., Blawzdziewicz, J. and O'Hern, C. S. 2008. Jamming transition and new percolation universality classes in particulate systems with attraction. Phys. Rev. Lett., 100, 028001.CrossRefGoogle ScholarPubMed
Loiseleux, T., Gondret, P., Rabaud, M.andDoppler, D. 2005. Onset of erosion and avalanche for an inclined granular bed sheared by a continuous laminar flow. Phys. Fluids, 17, 103304.CrossRefGoogle Scholar
López de Haro, M., Cohen, E. G. D. and Kincaid, J. M. 1983. The Enskog theory for multicomponent mixture. I. Linear transport theory. J. Chem. Phys., 78, 2746-2759.CrossRefGoogle Scholar
Lorenz, R. D., Wall, S., Radebaugh, J. et al. 2006. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science, 312, 724-727.CrossRefGoogle ScholarPubMed
Losert, W., Cooper, D. G. W., Dulour, J., Kudrolli, A. and Gollub, J. P. 1999. Velocity statistics in granular media. Chaos, 9, 682–690.CrossRefGoogle ScholarPubMed
Louge, M. Y. 2003. Model for dense granular flows down bumpy inclines. Phys. Rev. E, 67, 061303.CrossRefGoogle ScholarPubMed
Louge, M., Valance, A., Taberlet, N., Richard, P. and Delannay, R. 2005. Volume fraction profile in channeled granular flows down an erodible incline, in Garcfla-Rojo, R., Herrmann, H. J. and McNamara, S. (eds.), Powders and Grains 2005, vol.2. Rotterdam: A. A. Balkema, pp. 885–889.Google Scholar
Lovoll, G., Maloy, K. J. and Flekkoy, E. G. 1999. Force measurements on static granular materials. Phys. Rev. E, 60, 5872–5878.CrossRefGoogle ScholarPubMed
Lube, G., Huppert, H., Sparks, S. and Hallworth, M. 2004. Axisymmetric collapse of granular columns. J. Fluid Mech., 508, 175–199.CrossRefGoogle Scholar
Luding, S. 2001. From DEM simulations towards a continuum theory of granular matter, in Kishino, Y. (ed.), Powder and Grains 2001. Lisse: Swets & Zeitlinger, pp. 141–148.Google Scholar
Luding, S., Clément, E., Blumen, A., Rajchenbach, J. and Duran, J. 1994. Studies of columns of beads under external vibrations. Phys. Rev. E, 49, 1634–1646.CrossRefGoogle ScholarPubMed
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. and Chepurniy, N. 1984. Kinetic theory for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech., 140, 223–256.CrossRefGoogle Scholar
Lun, C. K. K. and Savage, S. B. 1986. The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mech., 63, 15–44.CrossRefGoogle Scholar
Lun, C. K. K. and Bent, A. A. 1994. Numerical simulation of inelastic spheres in simple shear flow. J. Fluid. Mech., 258, 335–353.CrossRefGoogle Scholar
Magnanimo, V., La Ragione, L., Jenkins, J. T., Wang, P. and Makse, H. A. 2008. Characterizing the shear and bulk moduli of an idealized granular material. Europhys. Lett., 81, 34006.CrossRefGoogle Scholar
Majmudar, T. S. and Behringer, R. P. 2005. Contact force measurements and stress-induced anisotropy in granular materials. Nature, 435, 1079–1082.CrossRefGoogle ScholarPubMed
Majmudar, T. S., Sperl, M., Luding, S. and Behringer, R. P. 2007. Jamming transition in granular systems. Phys. Rev. Lett., 98, 058001.CrossRefGoogle ScholarPubMed
Makse, H. A., Havlin, S., King, P. R. and Stanley, H. E. 1997. Spontaneous stratification in granular mixture. Nature, 386, 379–382.CrossRefGoogle Scholar
Makse, H. A., Gland, N., Johnson, D. L. and Schwartz, L. 2004. Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys. Rev. E, 70, 061302.CrossRefGoogle ScholarPubMed
Maloney, C. E. and Lemaître, A. 2006. Amorphous systems in athermal, quasistatic shear. Phys. Rev. E, 74, 016118.CrossRefGoogle ScholarPubMed
Mangeney-Castelnau, A., Vilotte, J.-P., Bristeau, M. O. et al. 2003. Numerical modelling of debris avalanche based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res., 108, 1–18.CrossRefGoogle Scholar
Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.-P. et al. 2005. On the use of Saint-Venant equations to simulate the spreading of a granular mass. J. Geophys. Res., 110, B09103.CrossRefGoogle Scholar
Mankoc, C., Janda, A., Arévalo, R. et al. 2007. The flow rate of granular materials through an orifice. Granular Matter, 9, 407–414.CrossRefGoogle Scholar
Manukyan, E. and Prigozhin, L. 2009. Formation of aeolian ripples and sand sorting. Phys. Rev. E, 79, 031303.CrossRefGoogle Scholar
Matas, J. P., Morris, J. F. and Guazzelli, E. 2004. Lateral forces on a sphere. Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles, 59, 59–70.CrossRefGoogle Scholar
Matas, J.-P., Uehara, J. and Behringer, R. P. 2008. Gas-driven subharmonic waves in a vibrated two-phase granular material. Eur. Phys. J. E, 25, 431–438.CrossRefGoogle Scholar
Maxwell, J. C. 1927. On the stability of the motion of Saturn's rings (Cambridge, 1859), in The Scientific Papers of J. C. Maxwell, Vol. I. Paris: Hermann, pp. 288–376.Google Scholar
McClung, D. and Schaerer, P. 2006. The Avalanche Handbook, 3rd edn. Seattle, WA: The Mountaineers Books.Google Scholar
McEwan, J. K., Willetts, B. B. and Rice, M. A. 1992. The grain/bed collision in sand transport by wind. Sedimentology, 39, 971–981.CrossRefGoogle Scholar
McNamara, S. and Young, W. R. 1991. Inelastic collapse and clumping on a onedimensional granular medium. Phys. Fluids A, 4, 496–504.Google Scholar
McNamara, S. and Young, W. R. 1996. Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E, 53, 5089–5100.CrossRefGoogle ScholarPubMed
McNamara, S. and Falcon, E. 2005. Simulations of vibrated granular medium with impact-velocity-dependent restitution coefficient. Phys. Rev. E, 71, 031302.CrossRefGoogle ScholarPubMed
Melo, F., Umbanhowar, P. B. and Swinney, H. 1995. Hexagons, kinks and disorder in oscillated granular layers. Phys. Rev. Lett., 75, 3838–3841.CrossRefGoogle ScholarPubMed
Mehta, A. and Luck, J. M. 1990. Novel temporal behavior of a nonlinear dynamical system: the completely inelastic bouncing ball. Phys. Rev. Lett., 65, 393–396.CrossRefGoogle ScholarPubMed
Meyer-Peter, E. and Mtiller, R. 1948. Formulas for bed-load transport. Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research. Delft: International Association for Hydraulic Structures Research, pp. 39–64.Google Scholar
Mikami, T., Kamiya, H. and Horio, M. 1998. Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci., 53, 1927–1940.CrossRefGoogle Scholar
Mills, P., Tixier, M. and Loggia, D. 1999. Influence of roughness and dilatancy for dense granular flow along an inclined wall. Eur. Phys. J. E, 1, 5–8.Google Scholar
Mills, P. and Snabre, P. 2009. Apparent viscosity and particle pressure of a concentrated suspension of non-Brownian hard spheres near the jamming transition. Eur. Phys. J. E, 30, 309–316.CrossRefGoogle ScholarPubMed
Modaressi, A., Boufellouh, S. and Evesque, P. 1999. Modeling of stress distribution in granular piles: comparison with centrifuge experiments, Chaos, 9, 523–543.CrossRefGoogle ScholarPubMed
Mohan, L. S., Nott, P. R. and Rao, K. K. 1999. A frictional Cosserrat model for the flow of granular materials through a vertical channel. Acta Mech., 138, 75–96.CrossRefGoogle Scholar
Mohan, L. S., Rao, K. K. and Nott, P. R. 2002. A Motional Cosserat model for the slow shearing of granular materials. J. Fluid Mech., 457, 377–409.Google Scholar
Mohkam, M. 1983. Contribution à l'étude expérimentale et théorique du comportement des sables sous chargements cycliques, PhD Thesis, Institut Polytechnique de Grenoble.
Montanero, J. M., Garzo, V., Alam, M. and Luding, S. 2006. Rheology of granular mixtures under uniform shear flow: Enskog kinetic theory versus molecular dynamics simulation. Granular Matter, 8, 103–115.CrossRefGoogle Scholar
Mordant, N. and Pinton, J.-F. 2000. Velocity measurement of a settling sphere. Eur. Phys. J. B, 18, 343–352.CrossRefGoogle Scholar
Moreau, J.-J. and Jean, M. 1992. Uniterality and dry friction in the dynamics of rigid body collections, in Curnier, A. (ed.), Proceedings of Contact Mechanics International Symposium. Lausanne: Presses Polytechniques et Universitaires Romandes, pp. 31-48.Google Scholar
Morris, J. F. and Boulay, F. 1999. Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol., 43, 1213–1237.CrossRefGoogle Scholar
Moukarzel, C. F. 1998. Isostatic phase transition and instability in stiff granular materials. Phys. Rev. Lett., 81, 1634–1637.CrossRefGoogle Scholar
Mueggenburg, N. W., Jaeger, H. M. and Nagel, S. R. 2002. Stress transmission through three-dimensional ordered granular arrays. Phys. Rev. E, 66, 031304.CrossRefGoogle ScholarPubMed
Mueth, D. M., Jaeger, H. M. and Nagel, S. R. 1999. Force distribution in a granular medium. Phys. Rev. E, 57, 3164–3169.Google Scholar
Mühlhaus, H. B. and Vardoulakis, I. 1987. The thickness of shear bands in granular materials. Géotechnique, 37, 271–283.CrossRefGoogle Scholar
Muite, B. K., Quinn, S. F., Sundaresan, S. and Rao, K. K. 2004. Silo music and silo quake: granular flow induced vibration. Powder Technol., 145, 190–202.CrossRefGoogle Scholar
Muller, P. and Saúl, A. 2004. Elastic effects on surface physics. Surf. Sci. Rep., 54,157–258.CrossRefGoogle Scholar
Naaim, M., Vial, S. and Couture, R. 1997. St Venant approach for rock avalanches modeling, in Multiple Scale Analyses and Coupled Physical Systems: Saint Venant Symposium. Paris: Presse de l'Ecole Nationale des Ponts et Chaussees, pp. 61–69.Google Scholar
Nataf, H.-C. and Sommeria, J. 2000. La physique et la Terre. Paris: Belin – CNRS Editions.Google Scholar
Nedderman, R. M. 1992. Statics and Kinematics of Granular Materials. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nichol, K., Zanin, A., Bastien, R., Wandersman, E. and van Hecke, M. 2010. Flow-induced agitations create a granular fluid. Phys. Rev. Lett., 104, 078302.CrossRefGoogle ScholarPubMed
Nicolas, M., Duru, P. & Pouliquen, O. 2000. Compaction of a granular material under cyclic shear. Eur. Phys. J. E, 3, 309–314.CrossRefGoogle Scholar
Nishiyama, K. and Mori, S. 1982. Frequency of sound from singing sand. Jap. J. Appl. Phys., 21, 591–595.CrossRefGoogle Scholar
Nosonovsky, M. and Adams, G. G. 2002. Interaction of elastic dilatational and shear waves with a frictional sliding interface. J. Vibration Acoust., 124, 33–39.CrossRefGoogle Scholar
Nott, P., Guazzelli, E. and Pouliquen, O. 2011. The suspensions balance model revisited. Phys. Fluids, 23, 043304.CrossRefGoogle Scholar
Nowak, S., Samadani, A. and Kudrolli, A. 2005. Maximum angle of stability of a wet granular pile. Nature Phys., 1, 50–52.CrossRefGoogle Scholar
Ogawa, S. 1978. Multitemperature theory of granular materials, in Cowin, S. C. and Satake, M. (eds.), Proceedings of the U.S.-Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials. Tokyo: Gakujutsu Bunken Fukyu-kai, pp. 208–217.Google Scholar
O'Hern, C. S., Silbert, L. E., Liu, A. J. and Nagel, S. R. 2003. Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E, 68, 011306.CrossRefGoogle ScholarPubMed
Olsson, P. and Teitel, S. 2007. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett., 99, 178001.CrossRefGoogle ScholarPubMed
Onoda, G. Y. and Liniger, E. G. 1990. Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett., 64, 2727–2730.CrossRefGoogle ScholarPubMed
O'Reilly, M. P. and Brown, S. F. 1991. Cycling Loading of Soils: From Theory to Design. London: Blackie and Son Ltd.Google Scholar
Orr, F. M., Scriven, L. E. and Rivas, A. P. 1975. Pendular rings between solids: meniscus properties and capillary force. J. Fluid Mech., 67, 723–742.CrossRefGoogle Scholar
Ottino, J. M. and Khakhar, D. V. 2000. Mixing and segregation of granular materials. Ann. Rev. Fluid Mech., 32, 55–91.CrossRefGoogle Scholar
Ouriemi, M., Aussillous, P. and Guazzelli, E. 2009a. Sediment dynamics. Part 1. Bed-load transport by laminar shearing flows, J. Fluid Mech., 636, 295–319.CrossRefGoogle Scholar
Ouriemi, M., Aussillous, P. and Guazzelli, E. 2009b. Sediment dynamics. Part 2. Dune formation in pipe flow. J. Fluid Mech., 636, 321–336.CrossRefGoogle Scholar
Ovarlez, G., Fond, C. and Clément, E. 2003. Overshoot effect in the Janssen granular column: a crucial test for granular mechanics. Phys. Rev. E, 67, 060302.CrossRefGoogle ScholarPubMed
Ovarlez, G. and Clément, E. 2005. Elastic medium confined in a column versus the Janssen experiment. Eur. Phys. J. E, 16, 421–438.CrossRefGoogle Scholar
Ovarlez, G., Bertrand, F. and Rodts, S. 2006. Local determination of the constitutive law of a dense suspension of noncolloidal particles through MRI. J. Rheol., 50, 259–292.CrossRefGoogle Scholar
Owen, P. R. 1964. Saltation of uniform grains in air. J. Fluid. Mech., 20, 225–242.CrossRefGoogle Scholar
Oyama, Y. 1939. Studies on mixing of solids. Bull. Inst. Phys. Chem. Res. Japan, 18, 600–639.Google Scholar
Pak, H. K., van Doorn, E. and Behringer, R. P. 1995. Effects of ambient gases on granular materials under vertical vibration. Phys. Rev. Lett., 74, 4643–4646.CrossRefGoogle ScholarPubMed
Pailha, M. and Pouliquen, O. 2009. A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech., 633, 115–135.CrossRefGoogle Scholar
Parker, G. 1975. Sediment inertia as cause of river antidunes. J. Hydraul. Div., 101,211–221.Google Scholar
Parker, G. 1978. Self-formed straight rivers with equilibrium banks and mobile bed. J. Fluid Mech., 89, 109–146.Google Scholar
Parker, G. and Izumi, N. 2000. Purely erosional cyclic and solitary steps created by flow over a cohesive bed. J. Fluid Mech., 419, 203–238.CrossRefGoogle Scholar
Parker, G., Haff, P. K. and Murray, A. B. 2001. A Kolmogorov-type scaling for the structure of drainage basins. Trans. Am. Geophys. Union, 82, H41-D08.Google Scholar
Parsons, D. R., Best, J. L., Orfeo, O. et al. 2005. Morphology and flow fields of three-dimensional dunes, Rio Parana, Argentina: results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. J. Geophys. Res., 110, F04S03.CrossRefGoogle Scholar
Partheniades, E. 1965. Erosion and deposition of cohensive soils. J. Hydraul. Div., 91, 105–139.Google Scholar
Pelletier, J. D. 2007. Fractal behavior in space and time in a simplified model of fluvial landform evolution. Geomorphology, 91, 291–301.CrossRefGoogle Scholar
Persson, B. N. J. 2000. Sliding Friction: Physical Principles and Applications. Berlin: Springer.CrossRefGoogle Scholar
Peyneau, P. E. and Roux, J.-N. 2008. Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E, 78, 011307.CrossRefGoogle ScholarPubMed
Philippe, P. and Bideau, D. 2002. Compaction dynamics of a granular medium under vertical tapping. Europhys. Lett., 60, 677–683.CrossRefGoogle Scholar
Phillips, O. M. 1957. On the generation of waves by turbulent wind. J. Fluid Mech., 2, 415–417.CrossRefGoogle Scholar
Phillips, O.M. 1977. The Dynamics of the Upper Ocean. Cambridge: Cambridge University Press.Google Scholar
Pirulli, M. and Mangeney, A. 2008. Result of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech. Rock Eng., 41, 59–84.CrossRefGoogle Scholar
Pitman, E. B. and Le, L. 2005. A two-fluid model for avalanches and debris flows. Phil. Trans. R. Soc. London A, 363, 1573–1601.CrossRefGoogle ScholarPubMed
Poggi, D., Katul, G. G., Albertson, J. D. and Ridolfi, L. 2007. An experimental investigation of turbulent flows over a hilly surface. Phys. Fluids, 19, 036601.CrossRefGoogle Scholar
Poschel, T. and Luding, S. 2000. Granular Gases. Berlin: Springer.Google Scholar
Pouliquen, O. and Renaut, N. 1996. Onset of granular flows on an inclined rough surface: dilatancy effects. J. Phys. II Paris, 6, 923–935.Google Scholar
Pouliquen, O., Delour, J. and Savage, S. B. 1997a. Fingering in granular flows. Nature, 386, 816–818.CrossRefGoogle Scholar
Pouliquen, O., Nicolas, M. and Weidman, P. D. 1997b. Crystallization of non-Brownian spheres under horizontal shaking. Phys. Rev. Lett., 19, 3640–3643.Google Scholar
Pouliquen, O. 1999a. Scaling laws in granular flows down rough inclined planes. Phys. Fluids, 11, 542–548.Google Scholar
Pouliquen, O. 1999b. On the shape of granular fronts down rough inclined planes. Phys. Fluids, 11, 1956–1958.Google Scholar
Pouliquen, O. and Vallance, J. W. 1999. Segregation induced instabilities of granular fronts. Chaos, 9, 621–629.CrossRefGoogle ScholarPubMed
Pouliquen, O., Forterre, Y. and Ledizes, S. 2001. Slow dense granular flows as a self-induced process. Adv. Complex Syst., 4, 441–450.CrossRefGoogle Scholar
Pouliquen, O. and Forterre, Y. 2002. Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech., 453, 133–151.CrossRefGoogle Scholar
Pouliquen, O. 2004. Velocity correlations in dense granular flows. Phys. Rev. Lett., 93, 248001.CrossRefGoogle ScholarPubMed
Pouliquen, O., Cassar, C., Jop, P., Forterre, Y. and Nicolas, M. 2006. Flow of dense granular material: towards simple constitutive laws. J. Statist. Mech., 7, P07020.Google Scholar
Pouliquen, O. and Forterre, Y. 2009. A non-local rheology for dense granular flows. Phil. Trans. R. Soc. London A, 367, 5091–5107.CrossRefGoogle ScholarPubMed
Pye, K. and Tsoar, H. 1990. Aeolian Sand and Sand Dunes. London: Unwin Hyman.CrossRefGoogle Scholar
Quartier, L., Andreotti, B., Daerr, A. and Douady, S. 2000. Dynamics of a grain on a sandpile model. Phys. Rev. E, 62, 8299–8307.CrossRefGoogle ScholarPubMed
Radjai, F., Wolf, D. E., Jean, M. and Moreau, J. J. 1998. Bimodal character of stress transmission in granular packings. Phys. Rev. Lett., 80, 61–64.CrossRefGoogle Scholar
Radjai, F., Roux, S. and Moreau, J. J. 1999. Contact forces in a granular packing. Chaos, 9, 544–550.CrossRefGoogle Scholar
Radjai, F. and Roux, S. 2002. Turbulent-like fluctuations in quasistatic flow of granular media. Phys. Rev. Lett., 89, 064302.CrossRefGoogle Scholar
Radjai, F., Troadec, H. and Roux, S. 2003. Micro-statistical features of cohesionless granular media. Italian Geotechnical J., 3, 39–49.Google Scholar
Radjai, F. and Roux, S. 2004. Contact dynamics study of 2D granular media: critical states and relevant internal variables, in Hinrichsen, H. and Wolf, D. E. (eds.), The Physics of Granular Media. Berlin: Wiley, pp. 165–187.Google Scholar
Radjai, F. and Richefeu, V. 2009. Contact dynamics as a non-smooth discrete element method. Mech. Mater., 41, 715–728.CrossRefGoogle Scholar
Radjai, F. and Dubois, F. 2011. Discrete-Element Modeling of Granular Materials. New York: ISTE-Wiley.Google Scholar
Rao, K. K. and Nott, P. R. 2008. An Introduction to Granular Flow. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Raynaud, J. S., Moucheront, P., Baudez, J. C. et al. 2002. Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspension. J. Rheol., 46, 709–732.CrossRefGoogle Scholar
Rasmussen, K. R., Iversen, J. D. and Rautaheimo, P. 1996. Saltation and wind flow interaction in a variable slope wind tunnel. Geomorphology, 17, 19–28.CrossRefGoogle Scholar
Raudkivi, A. J. 2006. Transition from ripples to dunes. J. Hydraul. Eng., 132, 1316-1320.CrossRefGoogle Scholar
Reddy, K. A., Forterre, Y. and Pouliquen, O. 2011. Evidence of mechanically activated processes in slow granular flows. Phys. Rev. Lett., 106, 108301.CrossRefGoogle ScholarPubMed
Reif, F. 1965. Fundamentals of Statistical and Thermal Physics. New York: McGraw-Hill.Google Scholar
Reis, P. M. and Mullin, T. 2002. Granular segregation as a critical phenomenon. Phys. Rev. Lett., 89, 244301.CrossRefGoogle ScholarPubMed
Reis, P. M., Ingale, R. A. and Shattuck, M. D. 2006. Crystallization of a quasi-two-dimensional granular fluid. Phys. Rev. Lett., 96, 258001.CrossRefGoogle ScholarPubMed
Reis, P. M., Ingale, R. A. and Shattuck, M. D. 2007. Forcing independent velocity distributions in an experimental granular fluid. Phys. Rev. E, 75, 051311.CrossRefGoogle Scholar
Rempel, A. W., Wettlaufer, J. S. and Worster, M. G. 2001. Interfacial premelting and the thermomolecular force: thermodynamic buoyancy. Phys. Rev. Lett., 87, 088501.CrossRefGoogle ScholarPubMed
Résibois, P. and de Leener, M. 1977. Classical Kinetic Theory of Fluids. New York: John Wiley and Sons.Google Scholar
Restagno, F., Crassous, J., Cottin-Bizonne, C. and Charlaix, E. 2002a. Adhesion between weak rough beads. Phys. Rev. E, 65, 042301.CrossRefGoogle Scholar
Restagno, F., Ursini, C., Gayvallet, H. and Charlaix, E. 2002b. Aging in humid granular media. Phys. Rev. E, 66, 021304.CrossRefGoogle ScholarPubMed
Reydellet, G. and Clément, E. 2001. Green's function probe of a static granular piling. Phys. Rev. Lett., 86, 3308–3311.CrossRefGoogle ScholarPubMed
Reynolds, O. 1876. On rolling-friction. Phil. Trans. R. Soc. London, 166, 155–174.Google Scholar
Reynolds, O. 1885. On the dilatancy of media composed of rigid particles in contact. Phil. Mag., 20, 469–481.CrossRefGoogle Scholar
Rice, J. R. 1976. The localization of plastic deformation, in Koiter, W. T. (ed.), Proceedings of the 14th IUTAM Congress. Amsterdam: North-Holland, pp. 207–220.Google Scholar
Rice, J. R. and Cleary, M. P. 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys., 14, 227–241.CrossRefGoogle Scholar
Richard, P., Nicodemi, M., Delannay, R., Ribiere, P. and Bideau, D. 2005. Slow relaxation and compaction of granular systems. Nature Mater., 4, 121–128.CrossRefGoogle ScholarPubMed
Richard, P., Philippe, P., Barbe, F. et al. 2003. Analysis by X-ray microtomography of a granular packing undergoing compaction. Phys. Rev. E, 68, 020301.CrossRefGoogle ScholarPubMed
Richards, K. J. 1980. The formation of ripples and dunes on an erodiblebed. J. Fluid Mech., 99, 597–618.CrossRefGoogle Scholar
Richefeu, V., El Youssoufi, M. S. and Radjai, F. 2006. Shear strength properties of wet granular materials. Phys. Rev. E, 73, 051304.CrossRefGoogle ScholarPubMed
Ries, A., Wolf, D. E. and Unger, T. 2007. Shear zone in granular media: three-dimensional contact dynamics simulation. Phys. Rev. E, 76, 051301.CrossRefGoogle ScholarPubMed
Rioual, F., Valance, A. and Bideau, D. 2000. Experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E, 62, 2450–2459.CrossRefGoogle ScholarPubMed
Rodriguez-Iturbe, I. and Rinaldo, A. 1997. Fractal River Networks: Chance and Self-Organization. Cambridge: Cambridge University Press.Google Scholar
Rognon, P. G., Roux, J.-N., Wolf, D., Naaim, M. and Chevoir, F. 2006. Rheophysics of cohesive granular materials. Eur. Phys. Lett., 74, 644–650.CrossRefGoogle Scholar
Rognon, P. G., Roux, J.-N., Naaim, M. and Chevoir, F. 2007. Dense flows of bidisperse assemblies of disks down an inclined plane. Phys. Fluids, 19, 058101.CrossRefGoogle Scholar
Rognon, P. G., Chevoir, F., Coussot, P. et al. 2008a. Rheology of dense snow flows: inferences from steady state chute-flow experiments. J. Rheol., 52, 729–748.CrossRefGoogle Scholar
Rognon, P. G., Roux, J.-N., Naaim, M. and Chevoir, F. 2008b. Dense flows of cohesive granular materials. J. Fluid Mech., 596, 21–47.CrossRefGoogle Scholar
Rosato, A., Strandburg, K. J., Prinz, F. and Swendsen, R. H. 1987. Why the brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett., 58, 1038–1040.CrossRefGoogle Scholar
Rose, C. P. and Thorne, P. D. 2001. Measurements of suspended sediment transport parameters in a tidal estuary. Continental Shelf Res., 21, 1551–1575.CrossRefGoogle Scholar
Rousseaux, G., Stegner, A. and Wesfreid, J. E. 2004. Wavelength selection of rolling-grain ripples in the laboratory. Phys. Rev. E, 69, 031307.CrossRefGoogle ScholarPubMed
Roux, J.-N. 2000. Geometric origin of mechanical properties of granular materials. Phys. Rev. E, 61, 6802–6836.CrossRefGoogle ScholarPubMed
Roux, J.-N. and Combes, G. 2002. Quasistatic rheology and the origin of strain. C. R. Phys., 3, 131–140.CrossRefGoogle Scholar
Roux, J.-N. and Chevoir, F. 2005. Discrete numerical simulation and the mechanical behavior of granular materials. Bull. Laboratoires Ponts Chaussees, 254, 109–138.Google Scholar
Roux, S. and Radjai, F. 1998. Texture-dependent rigid plastic behavior, in Herrmann, H. J., Hovi, J.-P. and S., Luding (eds.), Physics of Dry Granular Media. Dordrecht: Kluwer, pp. 305–311.Google Scholar
Rouyer, F. and Menon, N. 2000. Velocity fluctuations in a homogeneous 2D granular gas in steady state. Phys. Rev. Lett., 85, 3676–3679.CrossRefGoogle Scholar
Rubinow, I. and Keller, J. B. 1961. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech., 11, 447–459.CrossRefGoogle Scholar
Rudnicki, J. W. and Rice, J. R. 1975. Conditions for the localization of deformation in pressure sensitive dilatant materials. J. Mech. Phys. Solids, 23, 371–394.CrossRefGoogle Scholar
Russel, W. B., Saville, D. A. and Schowalter, W. R. 1989. Colloidal Dispersion. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ruyer-Quil, C. and Manneville, P. 2000. Improved modeling of flows down inclined planes. Eur. Phys. J. B, 15, 357–369.CrossRefGoogle Scholar
Saffman, P. G. 1965. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22, 385–400.CrossRefGoogle Scholar
Santos, A., Montanero, J. M., Dufty, J. W. and Brey, J. J. 1998. Kinetic model for the hard-sphere fluid and solid. Phys. Rev. E, 57, 1644–1660.CrossRefGoogle Scholar
Santos, A., Garzo, V. and Dufty, J. W. 2004. Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E, 69, 061303.CrossRefGoogle ScholarPubMed
Sauermann, G., Kroy, K. and Herrmann, H. J. 2001. Continuum saltation model for sand dunes. Phys.Rev.E, 64, 031305.CrossRefGoogle ScholarPubMed
Savage, S. B. and Jeffrey, D. J. 1981. The stress tensor in a granular flow at high shear rates. J. Fluid Mech., 110, 255–272.CrossRefGoogle Scholar
Savage, S. B. 1983. Granular flows down rough inclines. Review and extension, in Jenkins, J. T. and Satake, M. (eds.), Mechanics of Granular Materials: New Models and Constitutive Relations. Amsterdam: Elsevier, pp. 261–282.Google Scholar
Savage, S. B. 1984. The mechanics of rapid granular flows. Adv. Appl. Mech., 24,289–366.Google Scholar
Savage, S. B. and Sayed, M. 1984. Stresses developped by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech., 142, 391–430.CrossRefGoogle Scholar
Savage, S. B. and Lun, C. K. K. 1988. Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech., 189, 311–335.CrossRefGoogle Scholar
Savage, S. B. 1989. Flow of granular materials, in Germain, P., Piau, M. and Caillerie, D. (eds.), Theoretical and Applied Mechanics. Amsterdam: Elsevier, pp. 241–266.Google Scholar
Savage, S. B. and Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177–215.CrossRefGoogle Scholar
Savage, S. B. 1993. Disorder, diffusion and structure formation in granular flows, in Bideau, D. and Hansen, A. (eds.), Disorder and Granular Media. Amsterdam: North Holland, pp. 241–266.Google Scholar
Savijärvi, H., Maattanen, A., Kauhanen, J. and Harri, A. M. 2004. Mars pathfinder: new data and new model simulations. Q. J. R. Meteorol. Soc., 130, 669–683.CrossRefGoogle Scholar
Schaeffer, D. G. 1987. Instability in the evolution equations describing incompressible granular flow. J. Diff. Eq., 66, 19–50.CrossRefGoogle Scholar
Schaeffer, D. G. 1990. Instability and ill-posedness in the deformation of granular materials. Int. J. Numer. Anal. Methods Geomech., 14, 253–278.CrossRefGoogle Scholar
Scheel, M., Seeman, R., Brinkmann, M. et al. 2008. Morphological clues to wet granular pile stability. Nature Mater., 7, 189–193.CrossRefGoogle ScholarPubMed
Schlichting, H. J. and Nordmeier, V. 1996. Strukturen im Sand. Kollektives Verhalten und Selbstorganisation bei Granulaten. Math. Naturwiss. Unterricht, 49, 323–332.Google Scholar
Schmit, U. and Tscharnuter, W. M. 1995. A fluid dynamical treatment of the common action of self-gravitation, collisions and rotation in Saturn's B-ring. Icarus, 115, 304–319.CrossRefGoogle Scholar
Schofield, A. and Wroth, P. 1968. Critical State Soil Mechanics. London: McGraw-Hill.Google Scholar
Schörghofer, N. and Rothman, D. H. 2002. Acausal relations between topographic slope and drainage area. Geophys. Res. Lett., 29, 1633–1636.CrossRefGoogle Scholar
Scott, G. D. 1960. Packing of spheres: packing of equal spheres. Nature, 188, 908–909.CrossRefGoogle Scholar
Scott, G. D. and Kilgour, D. M. 1969. The density of random close packing of spheres. Brit. J. Appl. Phys. Ser. 2, 2, 863–866.Google Scholar
Sela, N. and Goldhisch, I. 1998. Hydrodynamics equations for rapid flows of smooth inelastic spheres. J. Fluid Mech., 361, 41–74.CrossRefGoogle Scholar
Seminara, G. 2010. Fluvial sedimentary patterns. Ann. Rev. Fluid Mech., 42, 43–66.CrossRefGoogle Scholar
Shields, A. 1936. Änwendung der Ahnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitt. Preuß. Versuchsanstalt Wasserbau Schiffbau, 26, 5–24.Google Scholar
Shinbrot, T. and Muzzio, F. J. 1998. Reverse buoyancy in shaken granular beds. Phys. Rev. Lett., 81, 4365–4368.CrossRefGoogle Scholar
Shundyak, K., van Hecke, M. and van Saarloos, W. 2007. Force mobilization and generalized isostaticity in jammed packings of frictional grains. Phys. Rev. E, 75, 010301.CrossRefGoogle ScholarPubMed
Silbert, L. E., Ertas, D., Grest, G. S. et al. 2001. Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E, 64, 051302.CrossRefGoogle ScholarPubMed
Silbert, L. E., Landry, J. W. and Grest, G. S. 2003. Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids, 15, 1–10.CrossRefGoogle Scholar
Silbert, L. E., Liu, A. J. and Nagel, S. R. 2006. Structural signatures of the unjamming transition at zero temperature. Phys. Rev. E, 73, 041304.CrossRefGoogle ScholarPubMed
Silbert, L. E., Grest, G. S., Brewster, R. and Levine, A. J. 2007. Rheology and contact lifetimes in dense granular flows. Phys. Rev. Lett., 99, 068002.CrossRefGoogle ScholarPubMed
Sloane, N. J. A. 1984. The packing of spheres. Sci. Am., 250, 116–125.CrossRefGoogle Scholar
Smid, J. and Novosad, J. 1981. Pressure distribution under heaped bulk solids. Int. Chem. Eng. Symp., 63, 1–12.Google Scholar
Somfai, E., Roux, J.-N., Snoeijer, J. H., van Hecke, M. and van Saarloos, W. 2005. Elastic wave propagation in confined granular systems. Phys. Rev. E, 72, 021301.CrossRefGoogle ScholarPubMed
Soulié, F., Cherblanc, F., El Youssoufi, M. S. and Saix, C. 2006. Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int. J. Numer. Anal. Meth. Geomech., 30, 213–228.CrossRefGoogle Scholar
Spahn, F. and Schmidt, J. 2006. Hydrodynamic description of planetary rings. GAMM-Mitt., 29, 115–140.CrossRefGoogle Scholar
Sperl, M. 2006. Experiments on corn pressure in silo cells. Translation and comment of Janssen's paper from 1895. Granular Matter, 8, 59–65.CrossRefGoogle Scholar
Staron, L. 2008. Correlated motion in the bulk of dense granular flows. Phys. Rev. E, 77, 051304.CrossRefGoogle ScholarPubMed
Staron, L. and Lajeunesse, E. 2009. Understanding how volume affects the mobility of dry debris flows. Geophys. Res. Lett., 36, L12402.CrossRefGoogle Scholar
Stokes, G. G. 1847. On the theory of oscillatory waves. Trans. Cambridge Phil. Soc., 8, 441–455.Google Scholar
Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union, 38, 913–920.CrossRefGoogle Scholar
Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer.CrossRefGoogle Scholar
Sumer, B. M. and Bakioglu, M. 1984. On the formation of ripples on an erodible bed. J. Fluid Mech., 144, 177–190.CrossRefGoogle Scholar
Sundaresan, S. 2003. Instabilities in fluidized beds. Ann. Rev. Fluid Mech., 35, 63-88.CrossRefGoogle Scholar
Taber, S. 1930. The mechanics of frost heaving. J. Geol., 38, 303–317.CrossRefGoogle Scholar
Taberlet, N., Richard, P., Valance, A. et al. 2003. Super stable granular heap in a thin channel. Phys. Rev. Lett., 91, 264301.CrossRefGoogle Scholar
Taberlet, N., Richard, P., Henry, E. and Delannay, R. 2004. The growth of a super stable heap: an experimental and numerical study. Europhys. Lett., 68, 515-521.CrossRefGoogle Scholar
Tabor, D. 1955. The mechanism of rolling friction. II. The elastic rangeProc. R. Soc. London A, 229, 198–220.CrossRefGoogle Scholar
Tabor, D. 1961. A propos du frottement de roulement: une controverse oubliee. Rev. Hist. Sci. Appl., 14, 13–18.Google Scholar
Tabor, D. 1977. Surface forces and surface interactions. J. Colloid Interfare Sci., 58, 2–13.Google Scholar
Talbot, J., Tarjus, G. and Viot, P. 2000. Adsorption-desorption model and its application to vibrated granular materials. Phys. Rev. E, 61, 5429–5438.CrossRefGoogle ScholarPubMed
Tamagnini, C., Calvetti, F. and Viggiani, G. 2005. An assessment of plasticity theories for modeling the incrementally nonlinear behavior of granular soils. J. Eng. Math., 52, 265–291.CrossRefGoogle Scholar
Taylor, D. W. 1948. Fundamentals of Soil Mechanics. New York: John Wiley.Google Scholar
Taylor, P. A., Mason, P. J. and Bradley, E. F. 1987. Boundary-layer flow over low hills. Boundary-Layer Meteorol., 39, 107–132.CrossRefGoogle Scholar
Terzaghi, K. 1943. Theoretical Soil Mechanics. New York: John Wiley.CrossRefGoogle Scholar
Tighe, B. P. and Sperl, M. 2007. Pressure and motion of dry sand: translation of Hagen's paper from 1852. Granular Matter, 9, 141–144.CrossRefGoogle Scholar
Thomas, N. 2000. Reverse and intermediate segregation of large beads in dry granular media. Phys. Rev. E, 62, 961–974.CrossRefGoogle ScholarPubMed
Tocquer, L., Lavergne, S., Descantes, Y. and Chevoir, F. 2005. Influence of angularity on dense granular flows, in García-Rojo, R., Herrmann, H. J. and McNamara, S. (eds.), Powders and Grains. Rotterdam: A. A. Balkema, pp. 1345–1348.Google Scholar
Tournat, V., Castagnède, B., Gusev, B. and Béquin, P. 2003. Self-demodulation acoustic signatures for nonlinear propagation in glass beads. C. R. Mecanique, 331, 119–125.CrossRefGoogle Scholar
Tournat, V. and Gusev, B. 2009. Nonlinear effects for coda-type elastic waves in stressed granular media. Phys. Rev. E, 80, 011306.CrossRefGoogle ScholarPubMed
Tournat, V. and Gusev, B. 2010. Acoustics of unconsolidated ‘model’ granular media: an overview of recent results and several open problems. Acta Acust. United Acust., 96, 208–224.CrossRefGoogle Scholar
Travers, T., Ammi, M., Bideau, D. et al. 1987. Uniaxial compression of 2d packings of cylinders. Effects of weak disorder. Europhys. Lett., 4, 329–332.CrossRefGoogle Scholar
Tripathi, A. and Khakhar, D. V. 2011. Rheology of binary granular mixtures in the dense flow regime. Phys. Fluids, 23, 113302.CrossRefGoogle Scholar
Trulsson, M., Andreotti, B. and Claudin, P. 2012. Transition from the viscous to inertial regime in dense suspensions. Phys. Rev. Lett., 109, 118305.CrossRefGoogle ScholarPubMed
Tsoar, H. 1983. Dynamic processes acting on a longitudinal (seif) sand dune. Sedimentology, 30, 567–578.CrossRefGoogle Scholar
Tuckerman, L. S. and Barkley, D. 1990. Bifurcation analysis of the Eckhaus instability. Physica D, 46, 57–86.CrossRefGoogle Scholar
Umbanhowar, P. B., Melo, F. and Swinney, H. 1996. Localized excitations in a vertically vibrated granular layer. Nature, 382, 793–796.CrossRefGoogle Scholar
Ungar, J. E. and Haff, P. K. 1987. Steady state saltation in air. Sedimentology, 34, 289–299.CrossRefGoogle Scholar
Valance, A. and Langlois, V. 2005. Ripple formation over a sand bed submitted to a laminar shear flow. Eur. Phys. J. B, 43, 283–294.CrossRefGoogle Scholar
van der Meer, D., Reimann, P., van der Weele, K. and Lohse, D. 2004. Spontaneous ratchet effect in a granular gas. Phys. Rev. Lett., 92, 184301.CrossRefGoogle Scholar
van der Weele, K., van der Meer, D., Versluis, M. and Lohse, D. 2001. Hysteretic clustering in granular gas. Europhys. Lett., 53, 328–334.Google Scholar
van Eerd, A. R. T., Ellenbroek, W. G., van Hecke, M., Snoeijer, J. H. and Vlugt, T. J. H. 2007. Tail of the contact force distribution in static granular materials. Phys. Rev. E, 75, 060302.CrossRefGoogle ScholarPubMed
van Hecke, M. 2010. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.: Condens. Matter, 22, 033101.Google ScholarPubMed
van Noije, T. P. C. and Ernst, M. H. 1998. Velocity distribution in homogeneous granular fluid: the free and the heated state. Granular Matter, 1, 57–64.CrossRefGoogle Scholar
van Rijn, L. C. 1984. Sediment transport, part II: suspended sediment load transport. J. Hydraul. Eng. ASCE, 110, 1613–1641.CrossRefGoogle Scholar
Vanel, L., Howell, D., Clark, D., Behringer, R. P. and Clément, E. 1999. Memories in sand: experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E, 60, R5040-R5043.CrossRefGoogle ScholarPubMed
Viggiani, G., Lenoir, N., Bésuelle, P. et al. 2004. X-ray micro tomography for studying localized deformation in fine-grained geomaterials under triaxial compression. C. R. Mécanique, 332, 819–826.CrossRefGoogle Scholar
Voivret, C., Radjai, F., Delenne, J.-Y. and El Youssoufi, M. S. 2007. Space-filling properties of polydisperse granular media. Phys. Rev. E, 76, 021301.CrossRefGoogle ScholarPubMed
Vriend, N. M., Hunt, M. L., Clayton, R. W. et al. 2007. Solving the mystery of booming sand dunes. Geophys. Res. Lett., 34, L16306.CrossRefGoogle Scholar
Walton, K. 1987. The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids, 35, 213–226.CrossRefGoogle Scholar
Wang, H. F. 2000. Theory ofLinear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton, MA: Princeton University.Google Scholar
Weng, W. S., Hunt, J. C. R., Carruthers, D. J. et al. 1991. Air flow and sand transport over sand dunes. Acta Mech., 2, 1–22.Google Scholar
Weng, W., Chan, L., Taylor, P. A. and Xu, D. 1997. Modelling stably stratified boundary-layer flow over low hills. Q. J. R. Meterol. Soc., 123, 1841–1866.CrossRefGoogle Scholar
Wentworth, C. K. 1922. A scale of grade and class terms for clastic sediments. J. Geol., 30, 377–392.CrossRefGoogle Scholar
Werlé, H. 1980. Transition et decollement: visualisations au tunnel hydrodynamique de l'ONERA. Rech. Aérosp., 5, 35–40.Google Scholar
Werner, B. T. 1988. The impact process in eolian saltation: two dimensional simulations. Sedimentology, 35, 189–196.CrossRefGoogle Scholar
Werner, B. T. and Fink, T. M. 1993. Beach cusps as self-organized patterns. Science, 260, 968–971.CrossRefGoogle ScholarPubMed
Werner, B. T. 1995. Eolian dunes; computer simulations and attractor interpretation. Geology, 23, 1107–1110.2.3.CO;2>CrossRefGoogle Scholar
Wettlaufer, J. S. and Worster, M. G. 2006. Premelting dynamics. Ann. Rev. Fluid Mech., 38, 427–452.CrossRefGoogle Scholar
Wieland, J. M., Gray, J. M. N. T. and Hutter, K. 1999. Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech., 392, 73–100.CrossRefGoogle Scholar
Wiggs, G. F. S., Livingstone, I. and Warren, A. 1996. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements. Geomorphology, 17, 29–46.CrossRefGoogle Scholar
Wiggs, G. F. S. 2001. Desert dune processes and dynamics. Prog. Phys. Geography, 25, 53–79.Google Scholar
Wildman, R. D., Huntley, J. M. and Parker, D. J. 2001a. Granular temperature profiles in three-dimensional vibrofluidized granular beds. Phys. Rev. E, 63, 061311.CrossRefGoogle ScholarPubMed
Wildman, R. D., Huntley, J. M. and Parker, D. J. 2001b. Convection in highly fluidized three-dimensional granular beds. Phys. Rev. Lett., 86, 3304–3307.CrossRefGoogle ScholarPubMed
Willett, C. D., Adams, M. J., Johnson, S. A. and Seville, J. P. K. 2000. Capillary bridges between two spherical bodies. Langmuir, 16, 9396–9405.CrossRefGoogle Scholar
Willetts, B. B., McEwan, J. K. and Rice, M. A. 1991. Initiation of motion of quartz sand grains. Acta Mech., 1, 123–134.Google Scholar
Williams, G. 1964. Some aspects of aeolian saltation load. Sedimentology, 3, 257–287.CrossRefGoogle Scholar
Williams, J. C. 1968. The mixing of dry powders. Powder Technol., 2, 13–20.CrossRefGoogle Scholar
Witham, G. B. 1974. Linear and Nonlinear Waves. New York: Wiley-Interscience.Google Scholar
Wolinski, M. A. 2009. Unifying framework for shoreline migration. J. Geophys Res., 114, F01008.Google Scholar
Wood, D. M. 1990. Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University Press.Google Scholar
Wroth, C. P. 1958. Soil behaviour during shear – existence of critical voids ratios. Engineering, 186, 409–413.Google Scholar
Wurtele, M. G., Sharman, R. D. and Datta, A. 1996. Atmospheric lee waves. Ann. Rev. Fluid. Mech., 28, 429–476.CrossRefGoogle Scholar
Wyart, M. 2005. On the rigidity of amorphous solids. Ann. Phys. Paris, 30, 1–96.Google Scholar
Wyart, M., Nagel, S. R. and Witten, T. A. 2005a. Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids. Europhys. Lett., 72, 486-492.CrossRefGoogle Scholar
Wyart, M., Silbert, L. E., Nagel, S. R. and Witten, T. A. 2005b. Effects of compression on the vibrational modes of marginally jammed solids. Phys. Rev. E, 72, 051306.CrossRefGoogle ScholarPubMed
Wyart, M. 2009. On the dependence of the avalanche angle on the granular layer thickness. Europhys. Lett., 85, 24003.CrossRefGoogle Scholar
Xu, N., Wyart, M., Liu, A. J. and Nagel, S. R. 2007. Excess vibrational modes and the boson peak in model glasses. Phys. Rev. Lett., 98, 175502.CrossRefGoogle Scholar
Yao, H., Ciavarella, M. and Gao, H. 2007. Adhesion maps of spheres corrected for strength limit. J. Colloid Interface Sci., 315, 786–790.CrossRefGoogle ScholarPubMed
Yalin, M. S. 1985. On the determination of ripple geometry. J. Hydraul. Eng., 111, 1148-1155.CrossRefGoogle Scholar
Yizhaq, H., Balmforth, N. J. and Provenzale, A. 2004. Blown by wind: nonlinear dynamics of aeolian sand ripples. Physica D, 195, 207–228.CrossRefGoogle Scholar
Zarraga, I. E., Hill, D. A. and Leighton, D. T. 2000. The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol., 44, 185–220.Google Scholar
Zhang, D. Z. and Prosperetti, A. 1997. Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. Int. J. Multiphase Flow, 23, 425–453.CrossRefGoogle Scholar
Zik, O., Levine, D., Lipson, S. G., Shtrikman, S. and Stavans, J. 1994. Rotationally induced segregation of granular materials. Phys. Rev. Lett., 73, 644–647.CrossRefGoogle ScholarPubMed
Zilker, D. P., Cook, G. W. and Hanratty, T. J. 1977. Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech., 82, 29–51.CrossRefGoogle Scholar
Zilker, D. P. and Hanratty, T. J. 1979. Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2. Separated flows. J. Fluid Mech., 90, 257–271.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×